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Abstract The time dependence of an increase in the number of correlated spins

in cluster was calculated for a particular variant of multiple-quantum (MQ)

nuclear magnetic resonance spectroscopy using an effective two-quantum

Hamiltonian that includes conventional secular nuclear dipole–dipole interaction

as a weak perturbation at the stage of correlation preparation. It was shown that

the cluster size grows steadily, while the width of the MQ spectrum stabilizes

because the decay rates of the spectral components located at different areas of

the MQ spectrum are different. The MQ bandwidth was also calculated as a

function of the preparation time for various perturbation strengths. The results

obtained are in excellent agreement with the experimental data reported in

Álvarez and Suter (Phys Rev A 84:012320, 2011).

1 Introduction

A multiple-quantum (MQ) solid-state nuclear magnetic resonance (NMR) is a

powerful tool for the experimental study of many-particle systems connected by

the natural or specifically designed interactions and specific interactions as well

as for the precise control of the nuclear-spin dynamics [1–3]. The spin-system

states arising in the MQ spectroscopy and developing under the action of certain
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radio frequency (rf) pulse sequences are called multiple-spin coherences (or MQ

coherences, depending on the experimental conditions). They are described by

the many-particle time-correlation functions (TCFs) of a rather complicated

form. The coherences and their dynamics provide great and, in some cases,

unique possibilities in the study of particle behavior in different systems, such as

particle clustering, formation of local structures on the surfaces, in liquid

crystals, in nanocavities, etc. [4–6].

The processes of origination and decay of many-particle spin-correlations in

quantum systems are of great importance in the development of modern methods of

quantum-information processing and quantum computations [7]. The coherences

prepared in a subsystem of nuclear spins can be controlled by the rf pulses to initiate

the required processes.

Also, the methods of MQ spectroscopy are unique in that they provide a

possibility for the experimental study of the processes of many-particle (many-spin)

correlation preparation in the spin systems [8–13]. The high-order TCFs are used to

describe the processes of monitoring quantum register with the aim to realize in

practice the vast potentialities of quantum computers. The accuracy of monitoring

must be increased with increasing number of qubits (spins) in the system, because

the side relaxation processes can destroy the quantum-mechanical superposition in

large clusters and render them more ‘‘fragile’’.

It was experimentally demonstrated in [8–13] that the number of dynamically

correlated spins grows exponentially with time [14, 15]. With the parameter

a0 * 0.01 ls-1 corresponding to adamantane or to the CaF2 crystal placed in a

magnetic field directed along the [111] axis [15, 16], the number of dynamically

correlated spins achieves a value of exp a0tð Þ� 1023 in a time of *0.01 s, so that

the whole crystal becomes a dynamically correlated cluster. It should be noted that

the exponential growth with time was explained in [14] for the correlations only

in ideal systems. In real systems, the exponential growth should eventually break

down under the action of various perturbing factors such as spin–lattice relaxation,

instrumental imperfections, etc. In this work, we do not discuss the possible

causes for the correlation-growth breakdown, but are focused on the explanation

of the experimental results reported in [11–13].

The possible reasons for the deviation from the exponential growth were

discussed in [11–13]. It was assumed in [11–13] that the Anderson-like

localization of dynamic correlations occurs in the nuclear spin system subjected

to a weak perturbation [11–13, 17]. Nevertheless, we have recently argued [18]

that the experimental method used in [11–13] is the main cause for the

termination of the exponential growth. Although the correlated clusters were

found in [11–13] to grow exponentially with time, the deviations from the

exponential might be masked by the monitoring process. We propose that the MQ

bandwidth stabilizes because the spectral components located at different areas of

the spectrum have different decay rates. In this work, we use developing of our

preliminary guess [18] to demonstrate the explicit explanations of results obtained

in [11–13].
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2 Growth and Decay of the MQ Coherences in Various Processes
of the Formation and Degradation of Correlations in Spin Systems

In the conventional MQ NMR spectroscopy, the secular part of the nuclear dipole–

dipole interaction (DDI) in a crystal is described by the Hamiltonian [19]

Hd ¼
X

i 6¼j

bijSziSzj � ð1=2Þ
X

i 6¼j

bijSþiS�j: ð1Þ

The corresponding effective Hamiltonian for the system subjected to the

sequence of rf pulses is

H0 ¼ ð�1=4Þ
X

i 6¼j

bijðSþiSþj þ S�iS�jÞ; ð2Þ

where bij are the DDI constants and S�j ¼ Sxj � iSyj. Hamiltonian (2) is nonsecular

with respect to the external magnetic field. In the course of so-called ‘‘preparation

period’’ of duration T ¼ N0s0 [or T ¼ Nðs0 þ s1Þ, Fig. 1], the initial magnetization

transforms into various rather complicated TCFs generated by the different products

of spin operators entering into Eqs. (1) and (2). The corresponding density matrix is

qðTÞ ¼ expfiHeffTgqeq expf�iHeffTg ¼
X

M

qMðTÞ: ð3Þ

This matrix can be represented as a sum of the off-diagonal elements (qM), where

the magnetic quantum number M denotes the order of MQ coherence and specifies

its position in the MQ spectrum. In this section, we deal with the Hamiltonian

Heff ¼ H0 defined by Eq. (2), while in the next section, a modified Hamiltonian is

used. Usually the arising coherences are marking by a phase shift u [1–3, 8–13] The

respective phase shift is equal to Mu, where u is the phase shift of the first-order

coherence. The intensity of the M-quantum coherence can be found from the Mth

harmonic of the corresponding Fourier series.

We assume that the distribution function for the coherences in the MQ spectrum

has the form

gMðTÞ / exp � M2

KðTÞ

� �k=2
( )

: ð4Þ

Fig. 1 Schemes of the experiments carried out in a [8–10] and b [11–13]
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For k ¼ 2, this expression becomes a Gaussian distribution in M, while for k ¼ 1,

to the exponential one. The Gaussian form was advanced and justified in [1, 3] for a

phenomenological statistical model. This model was applied, e.g., in [1, 8–10] to

describe the experimental MQ spectra. By contrast, the authors of [12, 20] argued

that, in the description of the coherence distribution, the exponential function is

preferable to the Gaussian. The exponential form (k ¼ 1) was theoretically

examined and substantiated in [6, 21, 22]. The variance KðTÞ=2 in Eq. (4) is

determined by the number KðTÞ of spins dynamically correlated during the

preparation time T under the action of Hamiltonian (2). This number, called the

number of correlated spins or the effective cluster size, increases with increasing

preparation time. The experimental results obtained in [8, 9] for the effective cluster

size in adamantane (Fig. 2) show its exponential growth, in good agreement with

our theoretical calculations published in [14, 15]; namely,

KðTÞ ¼ expða0TÞ; ð5Þ

with a0 = 0.0083 ls-1.

For the experimental scheme shown in Fig. 1a [8], the coherence relaxes with

time under the action of DDI (1) as [23]

C0MðtÞ ¼ expf�A2M2t2g expf�Kb2t2=2g: ð6Þ
In Eq. (6), the decay of MQ coherence obeys Gaussian’s law with respect to

parameter M. This expression was derived in [23] for a situation where each spin in

the lattice is surrounded by a large number of the approximately equivalent

neighbors.

Following the free-evolution period, a new sequence of pulses inverting the sign

of effective Hamiltonian (2) is applied to the system. This is equivalent to the time

reversal [1], as a result of which the complicated TCFs (3) again return to its initial

Fig. 2 Common logarithm of the effective cluster size K as a function of the pumping time T (ls) in
adamantane. Triangles and black squares are the experimental results presented in [8] and [9],
respectively. The solid line is for Eq. (5). The dashed line is the result of approximation adopted for the
relaxation process considered in [15]
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value of the observed quantity corresponding to a zero-quantum longitudinal

magnetization. The amplitude of a partial (i.e., for a given value of M)

magnetization can be measured by applying p/2 pulse (to turn the magnetization

into the plane perpendicular to an external magnetic field) followed by the Fourier

transform with respect to u. By repeating this procedure many times for various

values of t, one can eventually determine the relaxation rate.

For the experimental method schematized in Fig. 1a, the MQ-coherence profile is

described by the following function of M and time:

f0MðT ; tÞ ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

pKðTÞ
p exp � M2

KðTÞ

� �
expf�A2M2t2g expf�KðTÞb2t2=2g: ð7Þ

The constants A2 and b2 are the respective lattice sums of the coefficients bij in

Hamiltonian (1). Using the experimental results obtained in [8] for adamantane, we

found [23] that in this crystal A2 & 200 m s-2 for R = 650 (Fig. 3).

As in [8–10], we determine the effective cluster size KeffðT ; tÞ from the half-

width of the spectral band. The corresponding intensity profile can be described by

introducing the following effective Gaussian distribution over M:

exp � M2

KeffðT; tÞ

� �
¼ exp � M2

KðTÞ

� �
expf�A2M2t2g;

with

KeffðT ; tÞ ¼
1

1=KðTÞ þ A2t2
: ð8Þ

The first and the last multipliers in Eq. (7) have no effect on the cluster size

because they do not depend on M. These multipliers are responsible only for a

change in intensity of the entire spectrum. It follows from Eq. (8) that the width of

the MQ spectrum and the effective cluster size KeffðT ; tÞ both decrease with

increasing decay time [i.e., the time of evolution under the action of Hamiltonian

(1)], in full agreement with the experimental results obtained in [9].

Fig. 3 Decoherence rates 1=Td (in ms-1) for different orders of coherence in the cluster of size R = 650
(T ¼ 660 ls). The circles correspond to the experimental rates [8] and the curve is for the function
1=Td ¼ 205:48M2 þ 23145:1
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3 Growth and Decay of the MQ Coherences in the Processes Including
Both Formation and Degradation of the Correlations in Spin Systems

As opposed to the conventional MQ experiments, the experiments performed in

[11–13] (Fig. 1b) lead to the substitution of a single Hamiltonian by the new special

effective Hamiltonian representing a weighted sum of Hamiltonians (1) and (2):

Heff ¼ ð1 � pÞH0 þ pHd; ð9Þ

with

p ¼ s1=sc; sc ¼ s0 þ s1:

In the preceding approach, Hamiltonians (1) and (2) act separately at different

time intervals. Now, both terms in Eq. (9) operate simultaneously, with the first one

being responsible for a decrease in the growth rate of coherence, compared to a pure

situation with p = 0, while the second, for a change in the damping law given by

Eq. (7). For a model system comprising 201 equivalent spins, the damping

magnitude was numerically evaluated in [24]. It was found in [24] that the damping

time is inversely proportional to p and decreases with increasing order of coherence.

The number of spins dynamically correlated during the course of preparation period

is specified by the second moment KðNscÞ ¼ 2\\M2 [ [ of the coherence

intensity profile [14, 25]. It is thus of interest to calculate the time dependence of this

moment and compare it with the result given by Eq. (5). It was shown in Ref. [18] that

for p\\ 1 the second moment increases with time T ¼ Nsc as

KðTÞ ¼ expðapTÞ; ð10Þ

where

ap � a0ð1 � pÞ: ð11Þ
If p\\1 in the case of simultaneous emergence and degradation of MQ

coherences (see Fig. 1b), a coherence that arises at time instant t under the

interaction H0 from Hamiltonian (9) on the time interval [0, T] will further degrade

under the interaction pHd from Hamiltonian (9). Then the decay occurs during a

time interval of T - t. As it follows from the aforesaid, to describe the degradation

in the experiment (Fig. 1b), one has to replace the instant time t by average with

respect to the emergence instant of coherence. Thus for a function describing the

decay of coherence with a given M, we obtain:

hCMðT � tÞit ¼ hexpf�p2A2M2ðT � tÞ2git: ð12Þ
To carry out averaging in Eq. (12), one needs to know the time-dependent

probability density R(t) of coherence emerging. It can be obtained by taking the time

derivative of expression (10):

RðtÞ ¼ 1

D

dKðtÞ
dt

¼ ap

D
expðaptÞ; ð13Þ

where D is the normalization factor

D ¼ expðapTÞ � 1:
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As the result of averaging in Eq. (12), we arrive at the following expression for

the TCF describing the intensity relaxation of the Mth-order coherence in the MQ

spectrum:

hCMðT � tÞit ¼
ZT

0

expf�p2A2M2ðT � tÞ2gRðtÞdt ¼ U2ðy;mÞ
1 � e�y

; ð14Þ

where y ¼ apT , m ¼ Mj j Ap
ap

, and

U2ðy;mÞ ¼
Zy

0

e�xe�ðmxÞ2

dx ¼
ffiffiffi
p

p

2m
exp

1

4m2

� �
erf ymþ 1

2m

� �
� erf

1

2m

� �� �
:

ð15Þ
Hence, with regard to the relaxation, the MQ spectrum can be written as

fMðTÞ / gMðTÞ\CMðT � tÞ[ t: ð16Þ
We now define the average effective cluster size Keff ¼ M2

e as its value for which

the intensity of MQ spectrum is lowered by a factor of e, i.e.,

exp � M2
e

KðTÞ

� �k=2
( )

U2ðy;meÞ
1 � e�y

¼ 1

e
; ð17Þ

where me ¼ Mej j Ap
ap

. For y ¼ apT\\1 one has

Me � ey=2 1 � 1

3k
yAp

ap
ey=2

� �2
( )

:

In the limit y ¼ apT [ [ 1, Keff achieves its steady-state value

Kst �
3; 2a2

p

A2p2
: ð18Þ

In this work, we solved Eq. (17) numerically with the experimental value of

parameter p taken from [12]. The results obtained are shown in Fig. 4.

4 Discussion

The time dependence of the effective number of correlated spins Keff calculated in

this work (Fig. 4) is in close agreement with the experimental results obtained in

[12]. It adequately reflects all the characteristic features of the observed time

evolution of cluster size. The most important results of the theory presented above

are the following.

The stabilization of cluster size was experimentally observed in [12], where it

was found that the steady-state value Kst is inversely proportional to the square of

parameter p, as is predicted by formula (18). The experimental and theoretical p-

dependences of Kst are demonstrated in Fig. 5. However, the experimental value of

the coefficient multiplying this function did not coincide exactly with the ratio of
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parameters from Eq. (18) that was earlier determined in [15, 23] (cf. Figs. 2, 3). We

believe that one possible reason is that in a time (y� 10) of the experiment

conducted in [12] the steady state was not achieved.

Fig. 4 Evolution of effective
cluster size in the experiments
schematically illustrated in
Fig. 1b (the value of p is
indicated under the
corresponding curve); a for the
Gaussian MQ spectrum (4);
b for the exponential form; and
c for both forms on the same
graph (the Gaussian form is
shown by the solid lines and the
exponential form, by dots); the
abscissa is the time in units of
ap
-1
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According to the aforesaid, the stabilization of the cluster size is associated with

the behavior of the MQ-coherence profile as a function of M. Indeed, the M-

dependence of the MQ spectrum is expressed by

fMðTÞ ¼ gMðTÞ\CMðT � tÞ[ t

/ exp � M2

KðTÞ

� �k=2
( )

\ expf�p2A2M2ðT � tÞ2g[ t; ð19Þ

where the number K grows exponentially with T. Therefore, the first factor in

Eq. (19) depends on M weaker than the second one, so that the M-dependence of the

MQ spectrum is almost completely determined by the latter. In Eqs. (12), (13) and

(14), the number of coherences KðtÞ achieves its maximal value KðTÞ near the

boundary t = T. At a distance of Dt ¼ T � t from it the number of coherences

decays exponentially [R tð Þ� expð�apDtÞ]. As a result, the main contribution to the

integral in Eq. (14) comes from the area Dt� 1=ap\\T and, hence, \CMðT �
tÞ[ t becomes independent of T. Correspondingly, the intensity profile becomes

time-independent, as also does the mean cluster size defined by the band half-width,

while the cluster, in reality, continues to grow.

On the other hand, the interpretation based on the localization concept suggested

in [11–13, 17] seems to be ambiguous. One can present the following arguments

against this idea. Suppose that the interaction pHd is switched on only at the final

step of the experiment, i.e., at the stage of evolution reversal, while the correlations

have been prepared with the ideal Hamiltonian H0. From the theoretical viewpoint,

this implies a cyclic permutation of the evolution operators under the sign Tr in the

expression describing the observed signal:

C/ðNs0;NscÞ ¼ TrfUþ
0 U/zUpSzU

þ
p U

þ
/zUoSzg=TrfS2

zg;

where Up ¼ expf�iNscð1 � pÞH0 � iNscpHdg, U0 ¼ expf�iNs0H0g, and U/z ¼
expfi/Szg is the operator for the rotation through an angle u about the z axis.

Mathematically, this procedure is the identical transformation. However, due to the

fact that, after the permutation, Hamiltonian H0 is no longer distorted by the

perturbation Hd, it is beyond reason to speak about the localization occurring in the

Fig. 5 Stabilized cluster size
Kst of correlated spins as a
function of the perturbation
parameter p. The experimental
results from [12] are shown by
the black squares. The data
obtained for y = 10 (Fig. 4) are
indicated by the circles for the
Gaussian MQ spectrum (4) and
by triangles, for the exponential
form. The data for both forms at
y = 30 which equal (18) are
shown by solid line
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course of the preparation period because the large clusters continue to grow. The

fact that the cluster size increases in the absence of the above-mentioned

perturbation is also pointed out in other works [1, 8–13].

The clusters are characterized by their parameters such as the number of

constituent spins, the quantum numbers, etc. [1, 3, 9, 22, 26]. Should the

perturbation be switched on at the second (mixing) step of the process, the clusters

differing in these parameters would decay with different rates. The authors of [11–

13, 26] assume that the number of spins in cluster (K) is a dominant factor that

governs the process of cluster destruction and that the decay rate increases with

increasing K. This implies that the large clusters are more fragile than the smaller

ones and therefore their size stabilizes at a certain value of K.

By contrast, we demonstrate in this work that it is the coherence order (M) that is

of primary importance in the cluster evolution. Namely, the MQ coherences with

large M decay faster than the lower-order coherences do, so that the MQ band shape

stabilizes well before the number of spins in the cluster ceases to increase. In

conclusion, the ultimate answer to this problem calls for further experimental and

theoretical investigations.
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