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Abstract On the basis of the periodic Anderson model, the microscopic Ginzburg–
Landau equations for heavy-fermion superconductors in the coexistence phase of
superconductivity and antiferromagnetism have been derived. The obtained expres-
sions are valid in the vicinity of quantum critical point of heavy-fermion supercon-
ductors when the onset temperatures of antiferromagnetism and superconductivity are
sufficiently close to each other. It is shown that the formation of antiferromagnetic
ordering causes a decrease of the critical temperature of superconducting transition
and order parameter in the phase of coexisting superconductivity and antiferromag-
netism.

Keywords Ginzburg–Landau equations · Superconductivity · Antiferromagnetism ·
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1 Introduction

The phenomenological Ginzburg–Landau (GL) theory is, up to now, widely used for
describing new superconductors. Using the original Gor’kov method, a microscopic
derivation of GL equations of superconductors with anisotropic order parameter was
done [1–3]. Generalization of the Gor’kov method on the strongly correlated Hubbard
model and Emery model in the atomic representation has been provided in [4,5].
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Microscopic GL equations have been also obtained for the t-J model in the slave-
boson approach [6].

In the last time, a considerable interest is caused by a generalization of the GL
theory for the materials in which at the same conditions the Cooper instability and
long-range magnetic order are induced leading to a transition in the coexistence phase
of superconductivity and antiferromagnetism (SC+AFM). For U-based ferromagnetic
superconductors with triplet pairings the GL equations have been derived in [7]. The
microscopic GL expansion in the SC+AFM phase for the Hubbard model and t-J
model in the mean-field approximation has also been given in Refs. [8,9].

At present Ce-based intermetallic compounds with heavy fermions (for example,
CeIn3, CeRhIn5, CePt2In7 [10]) arewidely known inwhich a transition to the homoge-
neous SC+AFM phase is implemented at low temperatures and under pressure. In this
work, in the framework of the effective periodic Andersonmodel described in [11], the
microscopic derivation of the GL equations for such superconductors will be carried
out.

2 Model and Method

The Hamiltonian of the periodic Anderson model, with the exchange interaction
between localized electrons as the main mechanism of superconductivity and anti-
ferromagnetism, has a form:

̂Heff =
∑

mσ

ξ0c
†
mσ cmσ +

∑

mlσ

tmlc
†
mσ clσ +

∑

mσ

ξLσ X
σσ
m

+1

2

∑

m �=l

Jml

(

SmSl − 1

4
N̂m N̂l

)

+

+
∑

mlσ

[

Vmlc
†
mσ X

0σ
l + V ∗

ml X
σ0
l cmσ

]

, (1)

where cmσ and c†mσ are the annihilation and creation Fermi operators of an itinerant
electron for the Wannier site m and the projection of the spin σ , ξ0 is the site energy
of an itinerant electron with respect to the chemical potential μ, and tml is hopping
parameter between sites m and l. Xns

m is the Hubbard operator related to the site m,
which is constructed using the atomic states |m; n〉 and |m; s〉 as usual, ξLσ is the bare
energy of a localized electron counted from μ. Sm is the quasispin vector operator
of a localized electron, whose components are related to the Hubbard operators by
the standard way; N̂m is the number operator of localized electrons; and Jml is the
effective exchange constant of quasilocalized electrons on sites m and l. Vml is the
matrix element that describes the hybridization of the localized and itinerant states
related to the same Wannier site (m = l) or to different sites (m �= l).

To describe antiferromagnetism a two-sublattice description is used. Therefore in
the SC+AFM phase, two normal and two anomalous Matsubara Green’s functions [4]
for quasilocalized electrons are introduced:
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G(FF)
σσ

(

x, x ′) = −
〈

Tτ X̃
0σ (x) X̃σ0 (

x ′)〉 ,

G(GF)
σσ

(

x1, x
′) = −

〈

Tτ Ỹ
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Here x = (R f , τ ), x1 = (Rg, τ ), sites f and g belong to different sublattices, σ̄

denotes opposite projection of spin σ . It should be noted that the energy of localized
electron is renormalized by the antiferromagnetic exchange field. So the energy in the
f-sublattice is ξLσ = ξL − ησ J0R f /2, where ξL = E0 − μ − J0nL/4, nL = 〈N̂ f 〉,
R f = 〈Szf 〉, ησ = +1 (−1) if σ =↑ (↓).

Following Gor’kov’s method, the equations of motion for the thermodynamic
Green’s functions have been simplified using the Hubbard-I approximation. To derive
the equations of motion on themean-field level the Zwanzig–Mori projection-operator
formalism has been used.

Using the relations between the Green’s functions for itinerant electrons and
localized Green’s functions the Gor’kov equations for the Fourier transforms in the
SC+AFM phase have been obtained:
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The equations for the G(GF)
σσ (p) and F†

FF σ̄ (p) can be obtained from the presented

ones by substitutionG(FF)
Aσ (p) → G(GF)

Aσ (p), and vice versa. In Eqs. (4) and (5) it has

been taken into account thatG(GF)
Aσ does not depend on spin. Here p = (p, iωn),ωn is a
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is aHubbard renormalization.

Superconducting order parameter �p is given by integral equation:

�p = T
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2
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In what follows the first-nearest-neighbor approximation for the exchange interaction
is used. G(FF)

Aσ , G(GF)
Aσ are related to Green’s function of the background state: a Néel

antiferromagnetic state if R f �= 0, a paramagnetic state if R f = 0, and satisfied the
following equations:
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For simplicity we take into account only intra-sublattice hybridization Vp, then

ap =
(

iωn − ξcp
) |Vp|2

(
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)2 − �2

p

, bp = �p|Vp|2
(
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)2 − �2

p

, (9)

where ξcp = ξ0 + tp, tp, �p describe intra-sublattice and inter-sublattice hoppings in
k-space.

3 Results

We limit ourself by the consideration of only d-wave superconductivity as leading
pairing symmetry. Then in the absence of the external magnetic field GL equations in
the Wannier representation have a simple form:

[

αs (T ) + βs�
2
f + γ1R

2
f

]

� f = 0, (10)
[

αm (T ) + βm R2
f + γ2�

2
f

]

R f = 0, (11)

where R f is the antiferromagnetic order parameter as determined above, αs(m) (T ),
βs(m), γ1(2) —GL coefficients, and the amplitude of superconducting order parameter
at site f is

� f =
∑

δx

� f, f+δx −
∑

δy

� f, f+δy . (12)

The summation on δx , δy are carried over nearest sites along x axis and y axis, respec-
tively. In real space, GL equation can be obtained after taking a continuum limit for
slowly varying � f , R f .

The difference between the GL coefficients γ1 and γ2 is connected with the fact
that Cooper instability does not change much the antiferromagnetic order parameter
in the SC+AFM phase as it has been shown in [11]. Otherwise the antiferromagnetic
ordering has a particularly strong influence on the superconducting order parameter.
Therefore the term with γ2 in Eq. (11) can be neglected.

It should be noted that Eqs. (10) and (11) for non-zero � f , R f are valid only near
a critical temperature Tco of the SC+AFM phase. It means that the Néel temperature
TN should be close to the onset temperature of superconductivity Tc. We assume
that TN > Tc which is a case of rare-earth heavy-fermion superconductors such as
CeCu2Si2, CeIn3, and CeRhIn5.

The temperature dependence of superconducting order parameter in this assumption
is described by

�2
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where αs(T ) = α
′
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)

, and

Tco = α
′
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α
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Tc. (14)
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When the antiferromagnetic order parameter is rather small near the critical tem-
perature Tco, it is possible to expand the Green’s functions G(FF)

Aσ , G(GF)
Aσ into series

in terms of R f . Solving the system Eqs. (4) and (5) by iterations in the SC+AFM
phase microscopic expressions for the GL coefficients have been found:
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where F0 is a Hubbard renormalization and G(FF)
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0 are Green’s functions in

the paramagnetic phase, φd—d-wave basis function.
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It ismore convenient to represent theGLcoefficients connectedwith antiferromagnetic
ordering in the transformed form:
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where E (0)
ik — hybridization spectrum in the paramagnetic phase in two-sublattice

representation. And the coefficient arising in the SC+AFM state has a form
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Fig. 1 Temperature dependence of the antiferromagnetic R f and superconducting � f order parameters.
The approximate dependence R f (T ) fromLandau theory is shown by the dashed line, the exact dependence
by the dash-dotted line, TN is the Néel temperature. The dotted line represents the Ginzburg–Landau
dependence� f (T )without antiferromagnetic ordering andTc is the onset temperature of superconductivity.
The solid line is the same dependence in the coexistence phase of superconductivity and antiferromagnetism
with the critical temperature Tco (Color figure online)

In Fig. 1, temperature dependencies of the antiferromagnetic R f (dashed and
dash-dotted lines) and superconducting � f (dotted and solid lines) order parameters
obtained using the microscopic GL theory are plotted. We take parameters ne = 1.2
(electron concentration), E0 = 1.8t1 (the bare energy of localized states), V = 0.3|t1|,
J = 0.05|t1|, t1 — hopping matrix element of the tight-binding model. Comparing
dashed and dash-dotted lines in Fig. 1, it is seen that the approximate dependence of
the antiferromagnetic order parameter R2

f (T ) = −αm(T )/βm has a good agreement
with the exact one obtained from the microscopic equations. The GL dependence
�2

f (T ) = −αs(T )/βs when antiferromagnetism is not taken into account is shown
by the dotted line. The dependence � f (T ) in the SC+AFM phase is determined by
the formula (13) and shown in Fig. 1 by the solid line. It is seen that antiferromagnetic
ordering suppresses superconductivity and the onset temperature of superconductiv-
ity with the superconducting order parameter are decreased in an antiferromagnetic
background.

4 Conclusions

Wehave derived themicroscopicGinzburg–Landau coefficients for strongly correlated
heavy-fermion superconductors in the zero-field coexistence phase of superconduc-
tivity and antiferromagnetism. The obtained coefficients have a strong dependence on
the Fermi level position and the energy of localized level. They also are determined by
the hybridization strength and magnitude of exchange interaction between localized
electrons which is responsible for both superconductivity and antiferromagnetism.
The temperature dependencies of superconducting and antiferromagnetic order para-
meters near the transition temperature of the coexistence phase of superconductivity
and antiferromagnetism have been found. It has been shown that superconductivity is
suppressed due to antiferromagnetism.
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