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Abstract Wehave developed the spinwave theory of Heisenbergmagnets with strong
single-ion anisotropy of arbitrary symmetry with two and more sublattices. Using
this approach, the low-temperature magnetic properties of the single-chain magnet
catena-[FeII(ClO4)2FeIII(bpca)2](ClO4) with four sublattices and twisting mutually
orthogonal easy plane have been calculated. It has been shown that the modulation
of the easy planes directions creates on the one hand the low-temperature excitation
spectrum similar to the one of the Ising models, and on the other hand strong spin
fluctuations.

Keywords Quantum magnets · Spin wave theory · Strong single-ion anisotropy

1 Introduction

Recently, the organic single-chain magnets (SCMs) with strong single-ion anisotropy
and several magnetic sublattices have attracted significant interest [1]. Practically,
the main desired properties of these compounds are connected with the possibility of
excitation of themicroscopic domainswith sharp domainwalls under external stimulus
like light irradiation [1–4]. The lifetime of these excited states can be as long as several
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Fig. 1 Themagnetic structure of the single-chain magnet catena-[FeII(ClO4)2FeIII(bpca)2](ClO4) (Color
figure online)

hours [1,2]. Due to this property, the SCMs are considered to be the perspective
elemental base of spintronics and memory devices. From a fundamental point of view,
the SCMs are of interest as low-dimensional magnetic materials in which the spin and
charge fluctuations could contribute much to low-temperature magnetic properties of
the ones [5–9]. In terms of the magnetic structure and optical properties, one of the
most interesting SCMs is the catena-[FeII(ClO4)2FeIII(bpca)2](ClO4) (below SCM-
catena) [10,11]. From themagnetic point of view, the SCM-catena is a four-sublattices
Heisenberg ferrimagnetic chain with twisting and mutually orthogonal easy planes
(Fig. 1). Due to different orientations of the above easy planes, the effective easy
axis along the chain direction is induced and microscopic magnetic domains with
sharp domain walls are created. On the other hand, the presence of the easy-plane
single-ion anisotropy induces strong spin fluctuations [12,13] which have to be taken
into account for consecutive analysis of experimental data [10]. In this work, we
have developed a spin wave approach for the description of Heisenberg magnets with
single-ion and exchange anisotropy. The exactly considered single-ion anisotropy of
arbitrary symmetry is involved in the single-ion Hamiltonian. Using this approach,
the low-temperature properties of the SCM-catena have been calculated.

2 General Approach for Description of Two Sublattice Anisotropic
Heisenberg Magnets

Let us consider an anisotropic two-sublattices Heisenbergmagnet. Assuming the pres-
ence of non-zero averages of magnetization on the A and B sublattices: 〈SA〉, 〈SB〉,
the Hamiltonian of the model can be written in the form

̂H =
∑

f ∈A

[

H A
a (S f ) − HASA

f

]

+
∑

g∈B

[

H B
a (Sg) − HBSB

g

]

+

+
∑

f f ′

(

�S f , Î f f ′ · �S f ′
) +

∑

gg′

(

�Sg, K̂gg′ · �Sg′
) +

∑

f g

(

�S f , Ĵ f g · �Sg
)

. (1)

where S f and Sg are the vector operators of the spin moments of the sites f and
g connected with A and B sublattices, respectively. �S f = S f − 〈SA〉, �Sg =
Sg − 〈SB〉; HA = gAH + Î0〈SA〉 + Ĵ0〈SB〉 and HB = gBH + K̂0〈SB〉 + Ĵ0〈SA〉
are the effective magnetic fields and gA and gB are the g-factors of the A and B
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magnetic ions, respectively. H is the external magnetic field, and Î0, K̂0, Ĵ0 are the
Fourier-transforms of matrices at the zero quasimomentum: Î0 = ∑

f Î f f ′ , K̂0 =
∑

g K̂gg′ Ĵ0 = ∑

g Ĵ f g . The three-dimensional matrices Î f f ′ , K̂gg′ and Ĵ f g have
the diagonal form with arbitrary diagonal elements and describe the anisotropy of the
exchange interaction. The single-ion anisotropy of the ions on the A and B sublattices
are described by operators H A

a (S f ) and H B
a (Sg), respectively.

We use the ideology of atomic representation [14]. This allows us to consider strong
single-ion anisotropy correctly. The atomic representation assumes a diagonalization
of the single sites operators of the Hamiltonian (2). Let us introduce the Hubbard
operators [15] X pq

f j = |� p
f j 〉〈�q

f j | based on the eigenstates {|� p
f j 〉} of the single-ion

operators of the A and B sublattices. In this representation, the spin operators have the
form Sz(+)

f j = ∑

α

γ‖(⊥), j (α)Xα
f j + ∑

p
�‖(⊥), j (p)h

p
f j ; where j = A, B; h p

j ≡ X pp
j ;

γ‖(⊥)(α), �‖(⊥)(α) are the parameters of the representation of the spin operators in
terms of the Hubbard operators. The sum over α is the sum over the root vectors
α = α(p, q) for which X pq

j ≡ Xα(p,q)
j . The Hamiltonian of the system (2) in the

atomic representation has the form:

̂H = ̂H0 + ̂Hexch; ̂H0 =
∑

f

∑

n

[

EA,nh
n
f A + EB,nh

n
f B

]

;

̂Hexch =
∑

j, j ′=A,B

∑

f ∈ j; g∈ j ′

∑

λλ′

(

c j (λ), V̂ j j ′
f g · c j ′(λ′)

)

�Rλ
f �Rλ′

g ; (2)

where

Rλ
f =

{

Xα
f , λ = α;

hnf , λ = n; c j (λ) =
{ [γ‖; j (α), γ⊥; j (α), γ‖; j (−α)], λ = α;

[�‖; j (n), �⊥; j (n), �‖; j (n)], λ = n.
(3)

Matrices V̂ j j ′ are V̂ AB
f g = â Ĵ f g ˆ̃a; V̂ AA

f g = â Î f g ˆ̃a; V̂ BB
f g = â K̂ f g ˆ̃a, where the matrix

â has the components: â = 0.5 · [0, 0, 2; 1, − i, 0; 1, i, 0]. For studying the
formulated model (2) let us introduce the two-time retarded Green functions [16]:

Gαβ

j j ′( f − f ′; t − t ′) ≡ 〈〈Xα
f j (t)|X−β

f ′ j ′(t
′)〉〉 = −iθ(t − t ′)〈[Xα

f j (t), X
−β

f ′ j ′(t
′)]〉,

(4)

where Xα
f j (t) are the Hubbard operators in the Heisenberg representation. Using the

Hubbard I approximation [15]: 〈[Xα
f j (t), X

−β

f ′ j ′(t
′)]〉 = δ f f ′δ j j ′δαβb jα , the Green

functions in the frequency-momentum representation have been obtained:

Gαβ

j j ′(q, ω) =
(

b jαDjα(ω)c j (−α), V̂ j A
q A j ′β + V̂ j B

q B j ′β
)

+ δ jα; j ′βb jαDjα(ω).

(5)

Here, b jα(p,q) = N jp−N jq ; Djα(p,q)(ω) = [ω+ε jα(p,q)]−1 ≡ [ω + E jp − E jq ]−1.
N jp and E jp are the occupation numbers and the energies of the single-ion eigenstates
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|� p
f j 〉 with sublattice j = A, B, accordingly. The two three-dimensional vectors A jβ

and B jβ are determined by a system of six equations:

(

1̂ − L̂ AA · V̂ AA
q L̂ AA · V̂ AB

q

L̂ BB · V̂ BA
q 1̂ − L̂ BB · V̂ BB

q

)

(

A j

B j

)

= b jβDjβ(ω)

(

δ j AcA
δ j BcB

)

;

A jβ(q, ω) =
∑

α

cA(α)Gαβ
Aj (q, ω); B jβ(q, ω) =

∑

α

cB(α)Gαβ
Bj (q, ω). (6)

There 1̂ is the three-dimensional unit matrix, V̂ j j ′
q are the Fourier-transforms of

the matrices V̂ j j ′
f g . The n and m elements of the three-dimensional matrix L̂ j j are

(L̂ j j )nm = ∑

α Djαb jα(c j (−α))n(c j (α))m . The Green functions (4), the low-
temperature spectral and thermodynamic properties of the anisotropic two-sublattices
Heisenberg magnets can be calculated using the Eqs. (5–6). The generalization of the
submitted approach for anisotropic magnets with more sublattices is clear.

3 Low-Temperature Properties of the Single-Chain Magnet
catena-[FeII(ClO4)2FeIII(bpca)2](ClO4)

Let us consider the single-chain magnet SCM-catena [10,11] with the magnetic struc-
ture depicted in Fig. 1. Let us also take into account the presence of the experimentally
observed short range ferrimagnetic ordering in the system along z-axis (Fig. 1). Gen-
eralized, the submitted approach for the case of four sublattices the Hamiltonian of
the SCM-catena can be written in the following form:

̂HG =
∑

j=1

∑

f,n

E jnh
n
f j + J

4
∑

j=1

∑

〈 f j f j+1〉

∑

λ,λ′

(

c j (λ), ̂V · c j+1(λ
′)
)

�Rλ
f i�Rλ′

f, j+1.

(7)
The single-ion energy levels E jn have been calculated in the self-consistent mean-
field approximation. In these calculations, we restricted ourself to isotropic nearest-
neighbour exchange interaction by intensity J . The modulation of the directions of
the easy-plane single-ion anisotropy by intensity 2D (Fig. 1) has also been taken into
account. Using the Hubbard I approximation one obtains:

Gαβ
Aj (q;ω) = δAjδαβDAα(ω) + J DAα(ω)bAα

(

cA(−α), ̂V ·
(

D j e
−4iq + B j

))

;
Gαβ

Bj (q;ω) = δBjδαβDBα(ω) + J DBα(iω)bBα

(

cB(−α), ̂V · (

A j + C j
))

. (8)

The actual components of the A j , B j , C j , and D j can be obtained by the following
system of equations:

(

P+
j

P−
j

)

=
(


̂ (q, ω) Ŵ (q, ω)

Ŵ (q, ω) 
̂ (q,−ω)

)

(

P+
j

P−
j

)

+
(

y j⊥ (β, ω)

y j⊥ (−β,−ω),

)

; (9)
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Fig. 2 The magnetization of the A,C sublattices 〈SzA,C 〉 versus anisotropy D dependencies. Solid lines
correspond to the spin-wave approximation calculations, dotted lines—mean-field approximation. The
vertical solid and dotted lines mark the values of anisotropy D/J = 3/8 and D/J = 6/8, accordingly
(Color figure online)

where P+(−)
j = {A2(3)

j ; B2(3)
j ; C2(3)

j ; D2(3)
j }. y⊥ j (β, ω) are the four-dimensional

vectors with components yij⊥(β, ω) = δi jγ⊥ j (β)Djβ(ω)) where i, j = A, B,C, D.

Matrices 
̂ and Ŵ have the form:


̂ = J

2

⎛

⎜

⎜

⎝

−1 zA 0 zAe−4iq

zB −1 zB 0
0 zA −1 zA

zBe4iq 0 zB −1

⎞

⎟

⎟

⎠

; Ŵ = J

2

⎛

⎜

⎜

⎝

0 w 0 we−4iq

0 0 0 0
0 −w 0 −w

0 0 0 0

⎞

⎟

⎟

⎠

.

(10)

The denominator of the Green functions (8) has the form:

�⊥(q, ω) = �̃⊥
(

q, ω
)

�̃⊥
(

q + π

2
, ω

)

− J

2
zB(ω)zB(−ω)w2(ω)

(

1 + cos(4q)
);

�̃⊥(q, ω) =
[

1 − 0.25·J 2q zA(iω)zB(iω)
] [

1 − 0.25·J 2q zA(−ω)zB(−ω)
]

+

+
(

Jq
2

)4

zB(ω)zB(−ω)w2(ω), (11)

where Jq = 2J cos(q), zA,B(ω) = (L AA(BB))22, w(ω) = (L AA)23.
The solutions of equation�⊥

(

q, ω
) = 0 determine the elementary excitation spec-

trum of the SCM-catena. The magnetic averages of the sublattices can be calculated
by calculations of the single-ion occupation numbers of magnetic states of sublattices.
The latest has been extracted from Green functions Gαα

j j ( f = f ′; t = t ′) (4) using
the spectral theorem [16].
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Fig. 3 The quasimomentum dependence of the two low energies branches of the excitation spectrum of
SCM-catena with D/J = 3/8 (solid lines) and D/J = 6/8 (dotted lines) (Color figure online)

4 Results and Conclusions

The dependencies of 〈SzA,C 〉 for HS iron ions (S = 2; A and C sublattices) versus
anisotropy D are shown in Fig. 2. Solid lines correspond to calculations in the spin-
wave approximation; dotted lines—in themean-field approximation. The vertical solid
and dotted lines mark the values of anisotropy D/J = 3/8 (experimentally evaluated
for SCM-catena) and D/J = 6/8, accordingly. It is seen that the average value of
the z-spin projection of the HS iron ions with S = 2 decreases to 〈SzA,C 〉 ≈ 1.63 for
D/J = 3/8 and to 〈SzA,C 〉 ≈ 3/2 for D/J = 6/8. Moreover, in both cases more than
one-half of the magnetization change is created by spin wave fluctuations. It is worth
noting that in our notations the parameters of the single-ion anisotropy D = D′/2
and the exchange J = 2J ′ are renormalized compared with the same parameters
D′ = 15 K , J ′ = 7 K evaluated in the work [10]. The presence of these strong spin
fluctuations would be taken into account during analysis of experimental data of static
[12,13] and dynamic [17–19] magnetic properties of the material [1,10].

The results of the numerical solution of Eq. (11) are shown in Fig. 3. Solid lines
represent the quasimomentum dependence of the two low energies branches of the
excitation spectrum of the SCM-catena with D/J = 3/8. Dotted lines are the qua-
simomentum dependence of the similar spectrum branches for D/J = 6/8. In both
cases, the excitation spectrum has a characteristic gap of width � ∼ J and a low
(relative to �) dispersion of the main excitation branches. This means that on a quali-
tative level, the energy structure of the SCM-catena coincides with the single-particle
excitation spectrum of a ferrimagnetic Ising chain for which � = 2J S1S2 and there
is no dispersion of branches. These properties fulfil oneself with D/J = 6/8. These
results explain the experimental data for the SCM-catena family compounds which
display properties typical for magnets with the easy-axis type of anisotropy [10,11].
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