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Abstract The spin resonance peak in the iron-based superconductors is observed in
inelastic neutron scattering experiments and agrees well with predicted results for
the extended s-wave (s±) gap symmetry. On the basis of four-band and three-orbital
tight-binding models we study the effect of nonmagnetic disorder on the resonance
peak. Spin susceptibility is calculated in the random-phase approximation with the
renormalization of the quasiparticle self-energy due to the impurity scattering in the
static Born approximation. We find that the spin resonance becomes broader with the
increase of disorder and its energy shifts to higher frequencies. For the same amount
of disorder the spin response in the s± state is still distinct from that of the s++ state.

Keywords Fe-based superconductors · Spin resonance peak · Spin–orbit coupling ·
Impurity scattering

1 Introduction

The discovery of Fe-based superconductors (FeBS) in 2008 with a maximal Tc of 55 K
gave rise to the debates on the origin of the superconducting state. FeBS can be broadly
divided into two classes, pnictides and chalcogenides [1–3]. Since conductivity is
provided by theFeAs layer, the discussion of physics in termsof quasi two-dimensional
system in most cases gives reasonable results [4]. Fe d-orbitals form the Fermi surface
(FS) that excludes the cases of extremehole and electron dopings consisting of twohole
sheets around the Γ = (0, 0) point and two electron sheets around the M = (π, π)
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point in the 2-Fe Brillouin zone (BZ). In the 1-Fe BZ, the latter corresponds to the
electron sheets around the (π, 0) and (0, π) points. Nesting between these two groups
of sheets is the driving force for the spin-density wave (SDW) long-range magnetism
in the undoped FeBS. Upon doping the SDW state is destroyed, but the residual
scattering with the wave vector Q connecting hole and electron pockets naturally
leads to enhanced antiferromagnetic fluctuations. Q is equal to (π, π) in the 2-Fe BZ
and to (π, 0) or (0, π) in the 1-Fe BZ.

Different mechanisms of Cooper pair formation result in distinct superconducting
gap symmetry and structure [4]. In particular, the RPA-SF (random-phase approxi-
mation spin fluctuation) approach gives the extended s-wave gap that changes sign
between hole and electron Fermi surface sheets (s± state) as the main instability for
a wide range of doping concentrations [4–6]. On the other hand, orbital fluctuations
promote the order parameter to have the sign-preserving s++ symmetry [7]. Thus,
probing the gap structure can help in elucidating the underlying mechanism. In this
respect, inelastic neutron scattering is a powerful tool since the measured dynamical
spin susceptibility χ(q, ω) in the superconducting state carries information about the
gap structure.

For the local interactions (Hubbard and Hund’s exchange), χ can be obtained in the
RPA from the bare electron–hole bubble χ0(q, ω) by summing up a series of ladder
diagrams to give

χ(q, ω) = [
I −Usχ0(q, ω)

]−1
χ0(q, ω), (1)

whereUs and I are interaction and unit matrices in orbital or band space, and all other
quantities are matrices as well. Scattering between nearly nested hole and electron
Fermi surfaces in FeBS produce a peak in the normal-state magnetic susceptibility at
or near q = Q. For the uniform s-wave gap, sign�k = sign�k+Q and there is no
resonance peak. For the s± order parameter as well as for an extended non-uniform
s-wave symmetry, Q connects Fermi sheets with the different signs of gaps. This
fulfills the resonance condition for the interband susceptibility, and the spin resonance
peak is formed at a frequency ωs below Ωc = min

(|�k| + |�k+q|
)
. The existence

of the spin resonance in FeBS was predicted theoretically [8,9] and subsequently
discovered experimentally with many reports of well-defined spin resonances in all
systems, see [4].

Since there is always some amount of disorder even in the crystals of a very good
quality, it is necessary to study the evolution of the spin response with increasing
amount of disorder. Here we do this within two models for the band structure—one is
the simple four-band model in the 2-Fe BZ [8] and the other one is the three-orbital
model in the 1-Fe BZ [10] with the spin–orbit coupling [11]. The effect of disorder
on the spin susceptibility is incorporated via the static Born approximation for the
quasiparticle self-energy due to the impurity scattering.

2 Models and Approximations

We study the spin response in the superconducting state of FeBS within the tight-
binding models for the two-dimensional iron layer. Some basic information can be
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gained from the four-band model of Ref. [8], that is able to reproduce the FS obtained
via band structure calculations. It has the following single-electron Hamiltonian H0 =
− ∑

k,α,σ

εi nkiσ − ∑

k,i,σ
t ikd

†
kiσdkiσ , where dkiσ is the annihilation operator of the d-

electron with momentum k, spin σ , and band index i = {α1, α2, β1, β2}, εi are the
on-site single-electron energies, tα1,α2k = tα1,α21

(
cos kx + cos ky

)+tα1,α22 cos kx cos ky
is the electronic dispersion that yields hole pockets centered around the Γ point, and
tβ1,β2k = tβ1,β21

(
cos kx + cos ky

) + tβ1,β22 cos kx
2 cos ky

2 is the dispersion that results in
the electron pockets around the M point. Using the abbreviation (εi , t i1, t

i
2) we choose

the parameters (−0.60, 0.30, 0.24) and (−0.40, 0.20, 0.24) for the α1 and α2 bands,
respectively, and (1.70, 1.14, 0.74) and (1.70, 1.14,−0.64) for the β1 and β2 bands,
correspondingly (all values are in eV).

The matrix elements of the bare spin susceptibility in the multiband system has the
form:χ i j

0 (q, iΩ) = − T
2

∑
k,ωn

[
Gi (k + q, iωn + iΩ)G j (k, iωn) + Fi (k + q, iωn+

iΩ)F j (k, iωn)
]
, where Ω and ωn are Matsubara frequencies, Gi and Fi are the nor-

mal and anomalous (superconducting) Green’s functions, respectively. Physical spin
susceptibility χ(q, iΩ) = ∑

i, j χ
i, j (q, iΩ) obtained by calculating matrix elements

χ i, j (q, iΩ) via equation (1) with the interaction matrixUi, j
s = Ũδi, j + J̃/2(1−δi, j ).

We assume here the effective Hubbard interaction parameters to be J̃ = 0.2Ũ
and Ũ ∼ tβ11 in order to stay in the paramagnetic phase [8]. We consider the
magnetic susceptibility in the superconducting state assuming the s± state with
�k = �0

2

(
cos kx + cos ky

)
, where �0 was chosen to be 5 meV.

The model described above lack for the orbital content of the bands. Now we intro-
duce an additional level of complexity by considering the three-orbital model in the
1-Fe BZ [10]. By introducing the spin–orbit (SO) interaction to it [11], it is possible to
explain the observed anisotropy of the spin resonance peak in Ni-doped Ba-122 [12].
In particular, χ+− and 2χzz components of the spin susceptibility are different thus
breaking the spin-rotational invariance 〈S+S−〉 = 2 〈Sz Sz〉. This model comes from
the three t2g d-orbitals. The xz and yz components are hybridized and form two
electron-like FS pockets around (π, 0) and (0, π) points, and one hole-like pocket
around Γ = (0, 0) point. The xy orbital is considered to be decoupled from them
and form an outer hole pocket around Γ point. The latter differs from some popular
orbital models for FeBS [4,5]. However, according to ARPES data [13,14] and the
DFT calculations for highly doped systems [15] and undoped 122, 1111, and 111mate-
rials [16–18], xy orbital contribution to the Fermi surface near Γ point is quite large in
the 2-Fe Brillouin zone. This situation is simulated by introducing the xy hole pocket
near Γ point in the three-orbital model. The Hamiltonian is given by H = H0 + HSO ,
where H0 = ∑

k,σ,l,m
εlmk c†klσ ckmσ is one-electron part with ckmσ being the annihilation

operator of a particle with momentum k, spin σ , and orbital indexm. Keeping in mind
the similarity of H0 to the Sr2RuO4 case, for simplicity we consider only the Lz-
component of the SO interaction, which affects xz and yz bands only [19]. The matrix

of the full Hamiltonian H has the form ε̂kσ =
⎛

⎝
ε1k 0 0
0 ε2k ε4k + i λ2 signσ
0 ε4k − i λ2 signσ ε3k

⎞

⎠ ,
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where ε1k = εxy − μ + 2txy(cos kx + cos ky) + 4t ′xy cos kx cos ky , ε2k = εyz −
μ + 2tx cos kx + 2ty cos ky + 4t ′ cos kx cos ky + 2t ′′(cos 2kx + cos 2ky), ε3k =
εxz − μ + 2ty cos kx + 2tx cos ky + 4t ′ cos kx cos ky + 2t ′′(cos 2kx + cos 2ky), ε4k =
4txzyz sin kx/2 sin ky/2. To reproduce the topology of the FS in pnictides, we choose
the following parameters (in eV): μ = 0, εxy = −0.70, εyz = −0.34, εxz = −0.34,
txy = 0.18, t ′xy = 0.06, tx = 0.26, ty = −0.22, t ′ = 0.2, t ′′ = −0.07, txzyz = 0.38.
As in the case of Sr2RuO4, eigenvalues of ε̂kσ do not depend on the spin σ , therefore,
spin-up and spin-down states are still degenerate in spite of the SO interaction.

The components of the physical spin susceptibility χ+−,zz(q, iΩ) = 1
2

∑
l,m

χ
ll,mm
+−,zz(q, iΩ) are calculated usingEq. (1)with the interactionmatrixUs fromRef. [5].

We choose the following values for the interaction parameters: spin–orbit coupling
constant λ = 100 meV, intraorbital Hubbard U = 0.9eV, Hund’s J = 0.1eV, interor-
bital U ′ = U − 2J , and pair-hopping term J ′ = J . In the superconducting state we
assume either the s++ state with�k = �0 or the s± state with�k = �0 cos kx cos ky ,
where �0 = 20 meV.

As was shown recently [20–22], the multiband superconductors may demonstrate
behavior much more complicated than originally expected from the Abrikosov–
Gor’kov theory [23]. In particular, s± → s++ transitionmay take place for the sizeable
intraband attraction in the two-band s± model with the nonmagnetic impurities [20].
Discussion of such effects iswell beyond the scope of the present study since it requires
a self-consistent solutionof the frequency andgap equationswithin the strong-coupling
T -matrix approximation. Here we use a simple static Born approximation for the qua-
siparticle self-energy to see the basic effects of nonmagnetic disorder on the spin
resonance. That is, the multiple scattering on the same impurity results in the fol-
lowing self-energy: �(k) ≈ − i

2τk
with τk being the quasiparticle lifetime (see, e.g.,

the so-called first Born approximation in Ref. [24]). Calculating the exact momentum
dependence of the quasiparticle lifetime is again the separate complicated task that
would require realistic multiorbital models with a proper orbital-to-band contribution
similar to what was done for the calculation of the transport coefficients in Ref. [25].
This is again beyond the scope of the present work, so, neglecting the momentum
dependence of τk, we set �(k, iΩ) = −iΓ , where we treat the impurity scattering
rate Γ as a parameter.

3 Results and Discussion

First, we consider the spin response in the four-bandmodel. The result of the analytical
continuation (iΩn → Ω + iδ with δ → 0+) is show in Fig. 1 for the set of impurity
scattering ratesΓ . In the case of smallΓ , the spin resonance peak is clearly seen below
the energy of 2�0. With increasing Γ it becomes broader and almost vanishes once
Γ becomes comparable to �0. We can trace the energy of the spin resonance ωs as a
function of Γ . Value of ωs is determined as the maximum of Imχ(Q,Ω). The result
is shown in Fig. 1. Clearly, ωs shifts to higher frequencies with increasing disorder.

These findings are in good agreement with the results of Ref. [26] where the band
modelwas simpler than used here, but the vertex corrections in the particle–hole bubble
due to the impurity scattering were included. In particular, for the same reduction of
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Fig. 1 Calculated Imχ(Q,Ω) with Q = (π, π) in the 2-Fe BZ for the four-band model in the s± state
(main panel) and the spin resonance frequency ωs determined as the maximum of Imχ(Q, Ω) (inset) for
different values of the impurity scattering rate Γ . The spin resonance below Ω = 2�0 becomes much
broader with increasing Γ and effectively disappears for Γ > �0 (Color figure online)
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Fig. 2 Calculated Imχ(Q, Ω) withQ = (π, 0) in the 1-Fe BZ in the normal state, and for the s++ and s±
pairing symmetries. In the latter case, the resonance is clearly seen below Ω = 2�0 (Color figure online)

the resonance peak height we see a similar broadening of the peak and small changes
in the resonance frequency. Such agreement implies that the vertex corrections do
not play a crucial role in the low-energy spin response while they are known to be
important for the proper calculation of the transport coefficients. On the other hand,
compared to Ref. [26], we go to larger values of the scattering rate and observe a
nonlinear increase of the resonance frequency.

Now we switch to the three-orbital model. We calculated both +− and zz compo-
nents of the spin susceptibility and confirmed that in the non-superconducting state
χ+− > 2χzz at small frequencies, see Fig. 2. For the s± superconductor we observe a
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well-defined spin resonance and χ+− is again larger than 2χzz [11]. Interestingly, for
the s++ state the disparity between χ+− and 2χzz is extremely small. With increas-
ing impurity scattering rate the spin resonance peak broadens and its energy shifts to
higher frequencies. This is similar to the results in the four-band model so we con-
clude that the orbital character and the SO coupling do not have much effect on the
impurity-induced smearing of the spin resonance within the present approximation for
the quasiparticle self-energy. Note that the spin response in the s± state is still distinct
from the one in the s++ state even for a sizeable value of Γ . This is important for the
discussion of inelastic neutron data. Since all real materials are prone to disorder the
natural question arises: is it possible to distinguish between s± and s++ states in the
presence of nonmagnetic impurities looking at the neutron data? Here we demonstrate
that if the answer is yes, then spin responses would be quite different. And the other
important difference comes from the negligible disparity of χ+− and 2χzz components
in the s++ state, that contradicts the results of the polarized neutron data [12].

4 Conclusion

We analyzed the spin response in the superconducting state of FeBS in the presence
of nonmagnetic disorder. The disorder was treated in the simple static Born approxi-
mation thus giving only basic qualitative trends. The average impurity scattering rate
Γ was considered as a parameter. For the small Γ , the spin resonance peak is clearly
observed below the energy of 2�0 and with increasing Γ it becomes broader and
almost vanishes once Γ becomes comparable to�0. The energy of the spin resonance
ωs (determined as the maximum of the spin susceptibility) shifts to higher frequencies
with increasing disorder. The spin resonance peak gains anisotropy in spin space due
to the spin–orbit coupling, so for the s± superconductor χ+− is larger than 2χzz . On
the other hand, for the s++ state the disparity between transverse and longitudinal
components is negligible. The spin response in the s± state is still distinct from that
in the s++ state even for a sizeable value of Γ .
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