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Abstract Slow oscillations (SlO) of magnetoresistance is a
convenient tool to measure electronic structure parameters
in quasi-two-dimensional metals. We study the possibil-
ity to apply this method to multi-band conductors, e.g., to
iron-based high-temperature superconducting materials. We
show that SlO can be used to measure the interlayer trans-
fer integral in multi-band conductors similar to single-band
metals. In addition, the SlO allow to measure and com-
pare the effective masses or the electron scattering rates in
various bands.
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1 Introduction

Discovery of the superconductivity in iron-based materi-
als [1] raised a question about the nature of the under-
lying electron pairing. Most promising is the electronic
mechanism of Cooper pair formation originating from
the dominating exchange of either spin or orbital fluc-
tuations [2–8]. Former results in the extended s-wave
order parameter that change sign between electron and
hole Fermi surface pockets, the so-called s± state [8–12].
Orbital fluctuations enhanced by the electron-phonon cou-
pling may lead to the sign-preserving s-wave gap, the s++
state [13, 14].

Since electronic mechanisms of pairing involves par-
ticles near the Fermi level, the knowledge of the topol-
ogy and details of the Fermi surface (FS) is crucial.
There are several experimental methods of determining
it. Widely used are angle-resolved photoemission spec-
troscopy (ARPES) and magnetic quantum oscillations
(MQO) measurements. ARPES provides a lot of valuable
information on the electronic structure [15, 16] especially
considering the quasi-two-dimensional nature of Fe-based
materials, but its surface sensitivity sometime may be a
severe limitation. In this respect, MQO are more reli-
able method of determining the bulk properties. MQO
measurements were performed on a number of Fe-based
materials, both pnictides and chalcogenides [17]. In par-
ticular, data are available for LaFePO [18, 19], undoped
122 systems [20–24], BaFe2(As1−xPx)2 [25, 26], KFe2As2

[27], 111 systems LiFeP and LiFeAs [28], and 11 system
FeSe [29].

The iron-based superconducting materials, as well as
most other high-Tc superconductors, have a strong quasi-
two-dimensional (Q2D) anisotropy of electronic dispersion
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and conductivity. In the tight-binding approximation, the
electronic dispersion of Q2D metals is given by

ε3D (k) ≈
∑

η

εη

(
k||

) − 2tz,η
(
k||

)
cos(kzd), (1)

where η numerates different Fermi-surface pockets (or
bands) with in-plane dispersion εη

(
k||

)
, k|| = {

kx, ky
}

is
the in-plane electron momentum, d is the interlayer lattice
constant, and the interlayer transfer integral tz is much less
than the in-plane Fermi energy EFη = μη of any band η.
Below, we assume that tz is momentum-independent and
the same for all bands η: tz,η

(
k||

) = tz. Then, the Fermi
surface of each band is a cylinder with weak warping ∼
4tz/EF � 1. The MQO with such FS have two close funda-
mental frequencies F0 ± ΔF . In a magnetic field, B = Bz

perpendicular to the conducting layers F0/B = μη/�ωc,η

and ΔF/B = 2tz/�ωc,η, where �ωc,η = �eBz/m∗
ηc is the

distance between the Landau levels (LL), sometimes called
the cyclotron energy, and m∗

η is an effective electron mass
for this band η.

Magnetoresistance (MR) in layered Q2D conductors has
interesting features, which do not appear in 3D metals. At
2tz < μ, the angular oscillations of interlayer MR (AMRO)
have been observed in many layered organic metals (see,
e.g., Refs. [31–37] for reviews) and in some cuprate high-Tc

superconductors [38], which was interpreted as a signature
of a well-defined quasi-2D Fermi surface in these materi-
als. For an isotropic in-plane electron dispersion, AMRO
are qualitatively described by the renormalization of the
interlayer transfer integral: [39]

tz = tz (θ) = tz (0) J0 (kFd tan θ) , (2)

where J0(x) is the Bessel’s function, pF = �kF is the in-
plane Fermi momentum, and θ is the angle between the
magnetic field B and the normal to conducting layers.

At tz ∼ �ωc, several additional qualitative features of
MR appear. For example, the strong monotonic growth of
interlayer MR Rzz(Bz) was observed in various Q2D metals
[40–49, 54] and recently theoretically explained [49–53]. At
tz � �ωc, the MR acquires the so-called slow oscillations
[54, 55] and the phase shift of beats [55, 56]. These two
effects appear in the higher orders in �ωc/tz and, therefore,
are missed in the standard 3D theory of MR [57–59].

These slow oscillations (SlO) originate from the finite
interlayer hopping tz contrary to usual MQO with low fre-
quency, originating from small FS pockets. The product
of oscillations with two close frequencies F0 ± ΔF gives
oscillations with frequency 2ΔF :

cos(F0+ΔF) cos(F0−ΔF) = cos(2F0) + cos(2ΔF)

2
. (3)

The conductivity, being a nonlinear function of the oscil-
lating electronic density of states (DoS) and of the diffusion
coefficient, has SlO with frequency 2ΔF ∝ tz, while the
magnetization, being a linear functional of DoS, does not
show SlO [54, 55]. The SlO have many interesting and
useful features as compared to the quantum oscillations.
First, they survive at much higher temperature than MQO,
because, contrary to MQO, they are not suppressed by the
temperature smearing of Fermi distribution function. Sec-
ond, they are not sensitive to a long-range disorder, which
damps the fast MQO similarly to finite temperature due
to a spatial variation of the Fermi energy. Third, the SlO
allow to measure the interlayer transfer integral tz and the
in-plane Fermi momentum pF ≡ �kF. These features make
the SlO to be a useful tool to study the electronic proper-
ties of Q2D metals. Almost 30 years since their discovery
[60, 61] and more than 10 years after their explanation [54,
55], the SlO where investigated only for the interlayer con-
ductivity σzz(B), when the current and the magnetic field
are both applied perpendicularly to the 2D layers, and only
in organic compounds. The SlO were shown to be a use-
ful and very accurate tool to measure the interlayer transfer
integral tz. In addition, the SlO allow to obtain information
about the in-plane Fermi momentum kF and even about the
type of disorder, as short- or long-range disorder [54, 55].
Later, it was realized that the monocrystals of most lay-
ered Q2D compounds, including pnictide high-temperature
superconductors, as a rule, have the shape of very thin flakes
for which the correct measurements of the interlayer con-
ductivity is very difficult, especially in the case of good
metallic properties of studied compounds. Recently, the
first measurements and qualitative analysis of SlO of the
intralayer (in-plane) conductivity in the non-organic layered
Q2D rare-earth tritelluride compounds RTe3 (R =Gd and
Tb) was reported [62]. From these experimental data for the
first time in these strongly anisotropic Q2D conductors, the
authors obtained the value of the interlayer transfer integral
tz and estimated the in-plane Fermi momentum after the FS
reconstruction due to the double charge-density-wave super-
structure [62]. Thus, the slow oscillations of MR proved
to be a powerful technique to explore the electronic struc-
ture of various compounds. In this report, we investigate the
possibility of its application to the multiband systems like
iron-based high-Tc superconducting materials.

Contrary to the situation in the strongly correlated
high-Tc cuprates, in Fe-based superconductors consensus
between electronic band structure calculations in the den-
sity functional theory (DFT), ARPES, QO, and Compton
scattering [30] has been promptly established, so that the in-
plane electron dispersion εη

(
k||

)
for each band η is known.

The gross feature is that excluding the cases of extreme hole
and electron dopings, the in-plane FS in Fe-based materials
consists of two or three hole pockets around the Γ = (0, 0)
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point and two electron pockets around the M = (π, π) point
in the 2-Fe Brillouin zone corresponding to the crystallo-
graphic unit cell. The scattering between these two groups
of FSs believed to be responsible for the stripe antiferromag-
netic order in undoped materials and for the spin fluctuation
mediated pairing in doped compounds. Thus, the two-band
model is the minimal model capturing the basic yet essen-
tial physics of pnictides and chalcogenides (see discussion
in Ref. [8]). Below, we generalize the qualitative study of
SlO of intralayer MR in Ref. [62] from the one-band to a
multi-band model, assuming that there are λ different bands.

2 Calculations

According to (90.5) of Ref. [63], the intralayer conductivity
at finite temperature is given by [63]

σyy =
∫

dε
[−n′

F(ε)
]

σyy(ε), (4)

where the derivative of the Fermi distribution function
n′

F(ε) = −1/{4T cosh2 [(ε − μ)/2T ]}, and the zero-
temperature electron conductivity at energy ε is

σyy(ε) =
∑

η

σyy,η(ε) =
∑

η

e2gη (ε) Dy,η (ε) . (5)

Here, gη(ε) is the DoS and Dy,η(ε) is the diffusion coef-
ficient along y-axis of electrons from the band η. It is
convenient to use the harmonic expansion for the oscillating
DoS gη(ε). Below, we will need only the first terms in this
harmonic series, which at finite tz ∼ �ωc are given by [55,
64–67]

gη (ε) ≈ g0,η

[
1 − 2 cos

(
2πε

�ωc,η

)
J0

(
4πtz

�ωc,η

)
RD,η

]
,

(6)

where g0,η = m∗
η/π�

2d is the DoS per two spin compo-
nents at the Fermi level from the band η in the absence
of magnetic field, J0(x) is the Bessel’s function, RD,η ≈
exp

[−π/ωc,ητ0,η

]
is the Dingle factor [70–72], τ0,η is the

electron mean free time without magnetic field, which for
scattering by point-like impurities depends only on the total
DoS and not on the band index η: τ0,η = τ0 = �/2Γ0, where
Γ0 is the LL broadening.

The calculation of the diffusion coefficient Dy(ε) is less
trivial and requires to specify the model. At μ 	 �ωc,
the quasi-classical approximation is applicable. In an ideal
crystal in a magnetic field B, the electrons move along the
cyclotron orbits with a fixed center and the Larmor radius of
band η, RL,η = pF,ηc/eBz. Without scattering, the electron
diffusion in the direction perpendicular to B is absent. The
electron-electron (e-e) interaction in the absence of mag-
netic field and of umklapp processes does not change the

total electron momentum and, hence, does not change elec-
tric conductivity, though in combination with disorder, the
e-e interaction leads to substantial corrections to conduc-
tivity [73]. Scattering by impurities changes the electronic
states and leads to the electron diffusion perpendicular to
magnetic field, and we take into account only this mech-
anism of the in-plane electron diffusion in perpendicular
magnetic field. For simplicity, we consider only the scatter-
ing by short-range impurities, described by the δ-function
potential: Vi(r) = Uδ3 (r − ri). Scattering by impurities
is elastic, i.e., it conserves the electron energy ε, but the
quantum numbers of electron states may change. The matrix
element of impurity scattering is given by

Tmm′ = Ψ ∗
m′(ri)UΨm(ri), (7)

where Ψm(r) is the electron wave function in the state m.
During each scattering, the typical change Δy = ΔPxc/eBz

of the mean electron coordinate y0 perpendicular to B is of
the order of RL,η, because for larger Δy 	 RL the matrix
element in (7) is exponentially small because of small over-
lap of the electron wave functions Ψ ∗

m′(ri)Ψm(ri) ∼ Ψ ∗
m(ri +

Δy)Ψm(ri).1 The diffusion coefficient for the band η is
approximately given by

Dy,η(ε) ≈
〈
(Δy)2

〉

η
/2τη (ε) , (8)

where τη(ε) is the energy-dependent electron mean scat-
tering time by impurities, and the angular brackets in (8)
mean averaging over impurity scattering events. In the
Born approximation, the mean scattering rate on point-like
impurities is independent on the band η and given by

1/τη(ε) = 1/τ(ε) = 2πniU
2g(ε), (9)

where ni is the impurity concentration and g(ε) ≡ ∑
η gη(ε)

is the total DoS. This scattering rate has MQO, which are
reduced as compared to those of the DoS in (6), because
MQO of the DoS from different bands have different fre-
quencies and partially cancel each other. Indeed, if one takes
the total number of bands λ > 1 and the same average DoS
from each band: g0,η = g0, one obtains

g(ε)

λg0
≈ 1 −

∑

η

2

λ
cos

(
2πε

�ωc,η

)
J0

(
4πtz

�ωc,η

)
RD,η. (10)

The MQO of
〈
(Δy)2

〉
η

≈ R2
L,η are, usually, weaker than

MQO of gη(ε), and in 3D metals they are neglected [63].
Then

Dy,η(ε) ≈ R2
L,η/2τ(ε) ∝ g(ε). (11)

1For a short-range disorder, the 2D electron wave function in magnetic
field decays exponentially at distance larger than the Larmor radius
[68, 69]. Therefore, for Δy 	 RL, the matrix element Tmm′ is expo-
nentially small resulting from the small overlap of the electron wave
functions Ψ ∗

m′ (ri)Ψm(ri) ∼ Ψ ∗
m(ri + Δy)Ψm(ri).
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However, in Q2D metals, when tz ∼ �ωc, the MQO of〈
(Δy)2

〉
can be of the same order as MQO of the DoS. More-

over, they are not suppressed as strongly by the averaging
over various bands η, as g(ε) is. Therefore, instead of (11)
at RD � 1, one has

Dy,η(ε)

D0,η

≈ 1 − 2αη cos

(
2πε

�ωc,η

)
J0

(
4πtz

�ωc,η

)
RD,η (12)

−
∑

η′ 
=η

2βηη′ cos

(
2πε

�ωc,η′

)
J0

(
4πtz

�ωc,η′

)
RD,η′,

where D0,η ≈ R2
L,η/2τη, and the numbers αη ∼ 1 and

βηη′ ∼ 1/λ. Combining (5), (6), and (12), one obtains

σyy(ε) = e2
∑

η

g0,ηD0,η (13)

×
[

1 − 2 cos

(
2πε

�ωc,η

)
J0

(
4πtz

�ωc,η

)
RD,η

]

×
[

1 − 2αη cos

(
2πε

�ωc,η

)
J0

(
4πtz

�ωc,η

)
RD,η

−
∑

η′ 
=η

2βηη′ cos

(
2πε

�ωc,η′

)
J0

(
4πtz

�ωc,η′

)
RD,η′

⎤

⎦ .

The slow oscillations arise from the product of second
terms in both square brackets with the same cyclotron fre-
quency ωc,η = ωc,η′ , i.e., η = η′, because only these
terms give the energy-independent term 1/2, which is not
affected by the averaging over ε: cos2

(
2πε/�ωc,η

) =[
1 + cos

(
4πε/�ωc,η

)]
/2. Hence, the classical (monotonic

+ slow oscillating) part of σyy(B) is obtained by collecting
all leading energy independent terms in (4) with subsequent
trivial integration over ε after substitution to (4),

σSlO
yy (B) ≈ e2

∑

η

g0,ηD0,η

[
1 + 2αηJ

2
0

(
4πtz

�ωc,η

)
R2

D,η

]
.

(14)

The other cross products in (13) give MQO, i.e., the ε-
dependent terms ∝ cos

(
2πε/�ωc,η′

)
, which after tempera-

ture smearing in (4) acquire the usual temperature damping
factor of MQO:

RT,η =
(

2π2kBT /�ωc,η

)
/ sinh

(
2π2kBT /�ωc,η

)
. (15)

On contrary, the SlO in (14) are not damped by temperature
within our model.

Approximately, one can use the asymptotic expansion of
the Bessel function in (14) for large values of the argu-
ment: J0(x) ≈ √

2/πx cos (x − π/4), x 	 1. Then, after
introducing the frequencies of SlO,

FSlO,η = 4tzB/�ωc,η, (16)

Equation (14) simplifies to

σSlO
yy (B) ≈ e2

∑

η

g0,ηD0,η (17)

×
[

1 + α�ωc,η

2π2tz
sin

(
2πFSlO,η

B

)
R2

D,η

]
.

In tilted magnetic field at constant |B|, ωc ∝ cos θ and tz
changes according to (2). Then the frequencies of SlO will
depend on tilt angle θ of magnetic field (with respect to the
normal to conducting layers) as

FSlO,η (θ) /FSlO,η (0) = J0
(
kF,ηd tan θ

)
/ cos (θ) . (18)

Note that this dependence is non-monotonic and crucially
different from the angular dependence of MQO frequen-
cies, given by the simple cosine law: FMQO(θ)/FMQO(0) =
1/ cos(θ).

3 Discussion and Conclusions

As one can see by comparing (17) with the results of
Ref. [62], for multiband conductors both the slow oscilla-
tions and MQO of magnetoresistance are damped in their
relative amplitude by the factor ∼ 1/λ as compared to
single-band conductors, where λ is the number of differ-
ent bands. The origin is the different contributions to the
sum over η from the first (unity) and the second (band-
dependent) terms in the square brackets. This is similar to
the relative damping of the MQO of the DoS in (10). Nev-
ertheless, the SlO can be observed and used to extract the
parameters of electronic structure from experimental data.

As one can see from (17), the slow oscillations of MR in
multi-band conductors are in most aspects similar to SlO in
single-band conductors, studied in Refs. [54, 55, 62]. Each
frequency of SlO corresponds to a particular band η and can
be used to extract electronic parameters of this band. For
the case of momentum-independent interlayer hopping tz, if
the cyclotron mass or Landau-level separation is known for
at least one band, i.e., from the temperature dependence of
MQO amplitude, the frequency FSlO,η of slow oscillations
of magnetoresistance for this band gives the value of the
interlayer transfer integral tz according to (16). The angu-
lar dependence of the SlO frequency has a non-monotonic
angular dependence given by (18), which allows to extract
the Fermi momentum kF,η for this particular band as func-
tion of the azimuth angle φ from experimental data on SlO.
Since the interlayer transfer integral is the same for all
bands, the measured ratios of the SlO frequencies for var-
ious bands η give the ratios of their effective (cyclotron)
masses m∗

η, which allows to determine m∗
η for all bands if

m∗
η is known for at least one band. This application of SlO
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was absent for single-band metals, being new for the multi-
band conductors. This application is very helpful, because
the temperature dependence of the MQO amplitudes cannot
always be clearly fitted by the Lifshitz-Kosevich formula
and by (15) for all observed frequencies. If there is an inde-
pendent way to determine tz, the SlO give an alternative way
to determine all effective masses m∗

η. The damping of slow
oscillations, determined only by the Dingle factor, can be
used to compare the Dingle temperatures and, therefore, the
scattering amplitudes for different bands.

To summarize, in this paper, we have theoretically stud-
ied the slow oscillations of intralayer magnetoresistance due
to the interlayer electron hopping and shown the possibil-
ity of using this rather new phenomenon to measure the
parameters of electronic structure of multi-band quasi-two-
dimensional conductors. The application of this method to
multi-band conductors has some specific features, absent
for single-band metals, which allow to extract and com-
pare the electronic parameters of different bands. We believe
that this technique can be used to measure the interlayer
transfer integral tz and other important parameters in iron-
based pnictides and chalcogenides, MgB2, Sr2RuO4, and in
a variety of multiband conductors and superconductors.
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