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Abstract We demonstrate the instability of the normal state
of purely repulsive fermionic systems towards the transition
to the Kohn-Luttinger superconducting state. We construct
the superconducting phase diagrams of these systems in
the framework of the Hubbard and Shubin-Vonsovsky mod-
els on the square and hexagonal lattices. We show that an
account for the long-range Coulomb interactions, as well as
the Kohn- Luttinger renormalizations, lead to an increase in
the critical superconducting temperatures in various mate-
rials, such as high-temperature superconductors, idealized
monolayer, and bilayer of doped graphene. Additionally,
we discuss the role of the structural disorder and the non-
magnetic impurities in superconducting properties of real
graphene systems.
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1 Introduction

In recent years, a significant progress in experimen-
tal and theoretical investigation of high-temperature and
low-temperature superconducting systems with nonphonon
nature of the Cooper pairing and nontrivial structure of the
order parameter has been achieved. Along with the numer-
ous studies of superconducting properties of these systems
which utilized pairing mechanisms caused by electron cor-
relations and other exotic superconductivity mechanisms,
some authors widely discuss the possibility of the develop-
ment of Cooper instability in new superconducting systems
using the Kohn-Luttinger mechanism, suggesting the trans-
formation of initial repulsive interaction of two particles in
vacuum into the effective attraction in the presence of the
fermionic background [1–5, 28]. In this paper, we consider
the fermionic systems, such as high-temperature supercon-
ductors and monolayer and bilayer of doped graphene,
in which the anomalous p-, d-, and f -wave pairing are
realized, and show that in many cases the proposed mecha-
nism results in quite reasonable superconducting transition
temperatures.

2 The Kohn-Luttinger Superconductivity
in the Hubbard and Shubin-Vonsovsky Models

The Hubbard model [6] with the Hamiltonian

Ĥ =
∑

pσ

(εp − μ)c†
pσ cpσ + U

∑

pp′q
c

†
p↑c

†
p′+q↓cp+q↓cp′↑ (1)

is the minimal model taking into account the band motion
of electrons in a solid and strong electron interaction. Since
the end of 1980s, a lot of experimental data on cuprates indi-
cated that the main dynamics of Fermi excitations evolves in
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the CuO2 planes and that is why the 2D Hubbard model on
a simple square lattice was mainly used to describe the non-
phonon mechanisms of high-Tc superconductivity. Figure 1
depicts the superconducting phase diagram of the Hubbard
model. In the region of low electron densities 0 < n < 0.52,
superconductivity with the dxy-wave symmetry of the order
parameter is realized [4, 7]. In the interval 0.52 < n < 0.58,
the strong competition between p-wave and dxy-wave pair-
ings takes place [8–10]. For n > 0.58, superconductivity
of the dx2−y2 -wave type dominates [11]. It should be noted
that the maximal Tc in the 2D Hubbard model was obtained
in [11] in the regime U/W ∼ 1 (W is the bandwidth) for
optimal electron concentrations n ∼ 0.8 − 0.9. According
to the estimation [11], the superconducting transition tem-

perature can reach desirable values T
d
x2−y2

c ≈ 100 K, which
are quite reasonable for optimally doped cuprates.

The important question concerning the role of the long-
range part of Coulomb interaction in nonphonon supercon-
ductivity was considered in the paper [12]. The authors
noted that previous investigations of the Kohn-Luttinger
superconductivity were limited to the inclusion of the only
short-range Coulomb interaction U having in mind the com-
putational difficulties connected with taking into account
the Fourier transform of the long-range Coulomb repulsion
Vq in the first- and second-order diagrams for the effec-
tive interaction [1]. The authors [12] choose the long-range
Coulomb interaction Vq in the form of the Fourier transform
of the Yukawa potential which has the standard form in the
3D case:

Vq = 4πe2

q2 + κ2
, (2)

where κ is the inverse screening length. It was concluded in
[12] that small and intermediate values of U in the presence
of the long-range part of Coulomb interaction do not induce
realization of the Cooper instability in 3D and 2D Fermi
systems in the p-wave and d-wave channels, irrespective of
the value of the screening length.

Fig. 1 Pairing strengths for the 2D Hubbard model at t2 = 0 as a
function of electron concentration

To clarify the role of the long-range Coulomb interaction
in the implementation of unconventional superconductivity,
the authors [13] analyzed the conditions for the occur-
rence of the Kohn-Luttinger pairing in the 3D and 2D
Shubin-Vonsovsky model (extended Hubbard model) [14]
with Coulomb repulsion of electrons at the neighboring sites
on the square lattice. In the momentum representation, the
Hamiltonian of the model has the form

Ĥ =
∑

pσ

(εp − μ)c†
pσ cpσ + U

∑

pp′q
c

†
p↑c

†
p′+q↓cp+q↓cp′↑

+1

2

∑

pp′qσσ ′
Vp−p′ c†

pσ c
†
p′+qσ ′cp+qσ ′cp′σ , (3)

where the Fourier transform of the Coulomb interaction of
electrons at the nearest sites (V1) and at the next-nearest sites
(V2) in the 2D case on the square lattice yields

Vq = 2V1(cos qx + cos qy) + 4V2 cos qx cos qy. (4)

Here and further on, we put the lattice constant a = 1. The
last term in the Hamiltonian (3) reflects the fact that the
screening radius in the systems may be by several times
larger than the unit cell parameter. It demonstrates an advan-
tage of the Shubin-Vonsovsky model, in which the intersite
Coulomb interaction is taken into account within several
coordination spheres.

In [13], instead of Yukawa potential used as the Fourier
transform of the intersite interaction, the case of extremely
strong Coulomb repulsion was considered. In this case, the
Shubin-Vonsovsky model becomes the most repulsive and
the most unbeneficial model for superconductivity. How-
ever, the previous results [3, 4] for the Kohn-Luttinger
superconducting p-wave pairing being attained both in the
2D and 3D Hubbard model and the same expressions for Tc,
as in the case of V1 = 0, were obtained [13]. An account for
V1 changes only the preexponential factor. Therefore, super-
conducting p-wave pairing can be always realized in the
Fermi systems with pure Coulomb repulsion in the absence
of electron-phonon interaction.

A similar analysis was carried out by the authors [9] for
the extended Hubbard model in the Born weak-coupling
approximation (W > U > V1). In the calculation [9] of
the effective interaction of electrons, the intersite Coulomb
interaction was taken into account only in the first order
of perturbation theory in the form (4) and the polarization
contributions included only the terms of the order U2. It
was shown that the long-range interaction has a tendency
to suppress unconventional pairing in some channels; nev-
ertheless, the Kohn-Luttinger superconductivity survives in
the whole range of electron densities 0 < n < 1 and for all
the relations between the model parameters.

The results of [9] suggest to study the conditions for
the appearance of the Kohn-Luttinger instability taking
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into account all the second-order terms in the long-range
Coulomb interaction. In [10], we considered the effect of
the Coulomb interaction of electrons V1 and V2 on the
realization of the Cooper instability in the framework of
the Shubin-Vonsovsky model in the Born weak-coupling
approximation. Since the polarization effects are manifested
through the second-order contributions in V , to account
for the Kohn-Luttinger effects connected with the intersite
Coulomb repulsion, we used the complete expression for the
effective interaction

Ueff (p, q) = U
(I)
eff (p, q) + U

(U2)
eff (p, q)

+U
(UV )
eff (p, q) + U

(V 2)
eff (p, q). (5)

In this case, the polarization effects proportional to UV and
V 2 considerably modify and complicate the structure of the
superconducting phase diagram (Fig. 2a). With the increase
of the parameter V1 of the intersite Coulomb interaction,
only the three phases corresponding to the dxy-wave, p-
wave, and s-wave types of symmetry of the superconducting
order parameter are stabilized. Note that in the range of high
electron densities and for 0.25 < V1/|t1| < 0.5, the Kohn-
Luttinger polarization effects lead to the occurrence of the
unconventional s-wave pairing [5, 10, 18].

Despite their parametric smallness, the second-order
effects in V represent the decisive contribution to super-
conductivity in the Shubin-Vonsovsky model. To answer
the question why the first-order contributions in V do not
suppress the second-order contributions, it is necessary to
compare the different partial contributions to the total effec-
tive interaction. The histogram in Fig. 2b reflects the results
for a point of the phase diagram in which the superconduct-
ing phase with the s-wave symmetry of the order parameter
corresponds to the ground state. Matrix elements of the
effective interaction {Ueff }mn calculated for small m and
n are presented here in the histogram. The values of the
matrix elements for n,m > 2 are not given because of
their smallness. One can see from the histogram that, for
the chosen parameters, the first- and the second-order con-

tributions U
(I)
eff and U

(U2)
eff , respectively, give only positive

values of the matrix elements, and thus correspond to repul-
sion. It means that an account of only these processes would
not lead to the s-wave superconducting pairing. Similarly,
the second-order contributions U

(UV )
eff also would not give

rise to superconductivity, and only the second-order con-

tributions U
(V 2)
eff provide the negative values of the matrix

elements {Ueff }mn (and as a result, the negative eigenvalues
of the coupling constant λ) leading to the realization of the
superconducting s-wave pairing.

Thus, the long-range Coulomb repulsion in the lattice
models usually contribute only to the certain pairing chan-
nels and does not affect the other channels. At the same
time, the polarization contributions described by the Kohn-

(b)

(a)

Fig. 2 Phase diagram of the Shubin-Vonsovsky model, constructed
taking into account the second-order contributions in V for the set of
parameters t2 = t3 = 0, U = 1 (blue curves show the lines of constant
values of |λ|) (a) and the values of the matrix element for partial con-

tributions U
(I)
eff , U

(U2)
eff , U

(UV )
eff , U

(V 2)
eff as well as the resulting effective

interaction {Ueff }mn for V1 = 0.5 and n = 0.95 (b)

Luttinger diagrams possess the components in all the chan-
nels, and more than one of them usually plays in favor
of attraction. In such a situation, the long-range Coulomb
repulsion probably either does not affect at all the main
component of the effective interaction, which leads to the
pairing, or it suppresses the principal component without
affecting the secondary ones [9, 10].
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The same scenario of superconductivity is also observed
in the p-wave channel in the phase diagram (Fig. 2a).

In [10], the effect of the distant electron hoppings t2 and
t3 on the superconducting phase diagram was analyzed. It
is known that an account for these hoppings can consider-
ably modify the density of states (DOS) and shift the Van
Hove singularity (VHS) away from the half-filling to the
region of the lower (or higher) electron densities. Figure 3
shows the modification of the phase diagram of the Shubin-
Vonsovsky model, which is observed upon an increase in
U . It can be seen that in the range of low electron densi-
ties, as well as in the range of densities close to the VHS,
the dx2−y2 -wave pairing is achieved with quite large values
of |λ| ∼ 0.1 − 0.2. This result is important for analyz-
ing the possibility of the realization of the Kohn-Luttinger
mechanism in high-Tc superconductors. It should be noted
that for |λ| ∼ 0.2, the superconducting transition tempera-

tures can reach the values T
d
x2−y2

c ∼ 100 K which are quite
reasonable for cuprates.

3 The Kohn-Luttinger Superconductivity
in Idealized Monolayer and Bilayer Graphene

At the present time, the possible development of supercon-
ductivity in the framework of the Kohn-Luttinger mecha-
nism in graphene under appropriate experimental conditions
is widely discussed. Despite the fact that the intrinsic super-
conductivity so far has not been observed in graphene, the
stability of the Kohn-Luttinger superconducting phase has
been investigated and the symmetry of the order parameter
on the hexagonal lattice was identified. It was found [15]

Fig. 3 Phase diagram of the Shubin-Vonsovsky model calculated for
the parameters t2 = 0.15, t3 = 0.1, U = 2, and V2/V1 = 0.5 (all the
parameters are in units of |t1|). Blue curves are the lines of the constant
value of |λ|

that the chiral superconductivity [16] with the d + id-
wave symmetry of the order parameter prevails in a large
domain near the VHS in the DOS [17]. The competition
between the superconducting phases with different symme-
try types in the wide electron density range 1 < n ≤ nV H ,
where nV H is the Van Hove filling, in graphene monolayer
was studied in papers [18, 19]. It was demonstrated that
at intermediate electron densities, the Coulomb interaction
of electrons located on the nearest carbon atoms facili-
tates the implementation of superconductivity with the f -
wave symmetry of the order parameter, while at approach-
ing the VHS, the superconducting d + id-wave pairing
evolves [18, 19].

Using the Shubin-Vonsovsky model in the Born weak-
coupling approximation, we investigated the role of the
Coulomb repulsion of electrons located at the next-nearest
neighboring carbon atoms for the development of the Kohn-
Luttinger superconductivity in an idealized graphene mono-
layer disregarding the effect of the Van der Waals poten-
tial of the substrate and both magnetic and non-magnetic
impurities. Figure 4a shows the calculated phase diagram
of the Kohn-Luttinger superconducting state in graphene

(b)

(a)

Fig. 4 Phase diagram of the superconducting state of an idealized
graphene monolayer at U = 1.5|t1| for a V2 = 0 and b V2 = 0.5V1.
Blue curves show the lines of the constant values of |λ|
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monolayer as a function of the carrier concentration n and
V1 for the set of parameters U = 1.5|t1|, and V2 = 0. It
can be seen that the phase diagram consists of three regions.
At low electron densities n, the ground state of the system
corresponds to the chiral superconductivity with the d + id-
wave symmetry of the order parameter [17]. At the interme-
diate electron densities, the superconducting f -wave pair-
ing is implemented. At the large values of n, the domain of
the superconducting d + id-wave pairing occurs [15]. With
the increase of the parameter V1 of the intersite Coulomb
interaction, in the region of small values of n, the d + id-
wave pairing is suppressed and the pairing with the f -wave
symmetry of the order parameter is implemented. Thin blue
lines in Fig. 4 are the lines of the equal values of the effec-
tive coupling constant |λ|. It can be seen that in this case in
the vicinity of nV H , the effective coupling constant reaches
the values of |λ| = 0.1.

Let us consider the modification of the phase diagram
for graphene monolayer with respect to the Coulomb inter-
action V2 between the electrons located at the next-nearest
carbon atoms. It can be seen in Fig. 4b for the fixed ratio
between the parameters of the long-range Coulomb interac-
tions V2 = 0.5V1 that when V2 is taken into account, the
phase diagram changes qualitatively. These changes involve
the suppression of a large region of the f -wave pairing at
the intermediate electron densities and the implementation
of the chiral superconducting p + ip-wave pairing. In addi-
tion, when V2 is taken into account, the effective coupling
constant increases to the values of |λ| = 0.3. Consequently,
it leads to a significant increase in Tc in idealized doped
graphene. Note that here, we do not analyze the account for
the electron hoppings to the next-nearest carbon atoms t2,
since an account for these hoppings for graphene monolayer
does not significantly modify the DOS in the carrier con-
centration regions between the Dirac point and both VHS
points nV H [18].

It should be noted also that the Kohn-Luttinger supercon-
ductivity in graphene never develops near the Dirac points.
The calculations show that in the vicinity of these points,
where the linear approximation for the energy spectrum of
graphene monolayer works pretty well, the DOS is very low
and the effective coupling constant |λ| < 10−2. The higher
values of |λ|, which are indicative of the development of the
Cooper instability at reasonable temperatures, arise at the
electron densities n > 1.15. However, at such densities, the
energy spectrum of the monolayer along the direction KM

of the Brillouin zone (Fig. 5) already significantly differs
from the Dirac approximation.

Since the electronic properties of graphene depend
on the number of carbon layers [20], we analyzed the
possibility of the implementation of the Kohn-Luttinger

Fig. 5 Energy spectra of graphene monolayer (blue and green solid
lines) and energy spectra obtained in the framework of the Dirac
approximation (black dashed line). Subplot depicts the path around the
Brillouin zone

superconductivity and constructed the phase diagram (Fig. 6)
in idealized graphene bilayer [21, 29, 30]. The calculation
shows that the separate increase of the parameters of the
interlayer Coulomb repulsion G3 and G4 suppresses the d+
id-wave pairing and, at the same time, broadens the f -wave
pairing region at small electron densities. The superconduct-
ing d + id-wave phase is suppressed the most effectively
by enhancing the parameter G4 of the interlayer Coulomb
interaction. When the interactions G3 and G4 are simulta-
neously taken into account, then along with the intensive
suppression of the superconducting d + id-wave pairing
at small electron densities and the implementation of the
superconductivity with the f -wave symmetry of the order

Fig. 6 Phase diagram of the superconducting state of graphene bilayer
shown as a function of the variables “n − V1” at t2 = 0.1, γ1 =
0.12, γ3 = 0.1, U = 1.5, V2 = 0.5V1, G1 = 0.4V1, G3 = G4 =
0.3V1 (all the parameters are in units of |t1|). G1, G3, and G4 are
the parameters of the interlayer Coulomb repulsion, γ1 and γ3 are the
interlayer hoppings. Blue curves are the lines of the constant values
of |λ|
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parameter, the growth of the absolute values of effective
coupling constant λ is also observed.

4 The Kohn-Luttinger Superconductivity in Real
Graphene

Our calculation showed that the Kohn-Luttinger mechanism
can lead to the superconducting transition temperatures
Tc ∼ 10 ÷ 20 K in an idealized graphene monolayer and
Tc ∼ 20÷40 K in an idealized graphene bilayer. Contrary to
these rather optimistic estimations, in real graphene, super-
conductivity has not been found yet. This material is only
close to superconductivity.

The reason for that is probably connected with the effects
of structural disorder and the presence of the nonmagnetic
impurities in real graphene (or graphite). Note that for exotic
(p-, d- and f -wave) as well as for the s-wave superconduct-
ing pairing with nodal points on the 2D lattice in hexagonal
case, (�s(φ) ∼ cos 6nφ, �sext (φ) ∼ sin 6nφ, n ≥ 1), the
Anderson theorem [22] for nonmagnetic impurities is vio-
lated and anomalous superconductivity can be suppressed
for γ ≥ kBT clean

c [23–25, 31], where γ = �/(2τ) is an elec-
tron damping due to the scattering on impurities. In another
words, kBT clean

c ≤ �pF /ml, where the Fermi-momentum
pF is connected with a 2D electron density n2D in graphene
(pF ∼ �

√
2πn2D , if we assume the circular Fermi-surface

for simplicity). At the same time, l is an effective mean-free
path extracted both from transport and Hall measurements
and thus taking into account both the effects of the structural
disorder and the presence of the nonmagnetic impurities.

To our best knowledge, the record experimental param-
eters available nowadays correspond to max(l) ∼ 2 · 103Å
and max(n2D) ∼ 1013 cm−2 in real graphene monolayers. It
means that the maximal values of the mean-free path today
still correspond to the moderately clean case. The corre-
sponding amount of disorder for the high electron density
n2D ∼ 1013 cm−2 is sufficient to suppress totally anoma-
lous Tc of the order of 10 K. Thus experimental challenge
for the discovery of superconductivity in real graphene is
to further increase the 2D electron density or to prepare the
ultraclean graphene monolayer or bilayer. Another possibil-
ity for getting closer to realization of superconductivity in
real graphene is to perform the experiments on quasi 1D
epitaxial graphene nanoribbons [26]. In this case, however,
the competition between superconductivity and the Peierls-
type of instabilities is highly possible, at least on the level
of theoretical considerations in the framework of parquet
diagrammatic approximation [27]
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