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Abstract The s± and s++ models for the superconducting
state are subject of intense studies regarding Fe-based super-
conductors. Depending on the parameters, disorder may
leave intact or suppress Tc in these models. Here, we study
the special case of disorder with equal values of intra- and
interband impurity potentials in the two-band s± and s++
models. We show that this case can be considered as an iso-
lated point and Tc there has maximal damping for a wide
range of parameters.

Keywords Multiband superconductivity ·
Impurity scattering · Fe-based superconductors

1 Introduction

Fe-based materials—pnictides and chalcogenides—
represent a new class of unconventional superconductors
with high transition temperatures [1–8]. While the mech-
anism of superconductivity is still a mystery, the main
candidates are spin or orbital fluctuations. Except for the
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extreme hole and electron dopings, the Fermi surface con-
sists of two or three hole pockets around the � = (0, 0)
point and two electron pockets around the M = (π, π)

point in the 2-Fe Brillouin zone. Scattering between them
with the large wave vector results in the enhanced antifer-
romagnetic fluctuations, which promote the s± type of the
superconducting order parameter that change sign between
electron and hole pockets [2–8]. On the other hand, bands
near the Fermi level have mixed orbital content and orbital
fluctuations enhanced by the electron-phonon interaction
may lead to the sign-preserving s++ state [9, 10]. How-
ever, most experimental data including observation of a
spin-resonance peak in inelastic neutron scattering, the
quasiparticle interference in tunneling experiments, and
the NMR spin-lattice relaxation rate are in favor of the s±
scenario [2–8].

The s± and s++ states are expected to behave differ-
ently subject to the disorder [11–21]. In general, s++ (s±)
state should be stable (fragile) against a scattering on a
nonmagnetic impurities [11–15]. Detailed studies revealed
that Tc stays finite in the presence of nonmagnetic dis-
order in the following cases: (i) s++ state [16, 17], (ii)
s± → s++ transition for the sizeable intraband attraction
in the two-band s± model in the strong-coupling T -matrix
approximation [18] and via the numerical solutions of the
Bogoliubov-de Gennes equations [22, 23], and (iii) an uni-
tary limit [24]. Magnetic impurities leave Tc finite [21] in
the case of (1) s± superconductor with the purely inter-
band impurity scattering, (2) s++ state with the purely
interband scattering due to the s++ → s± transition, and
(3) the unitary limit for both s++ and s± states inde-
pendent on the exact form of the impurity potential. But
even if Tc is suppressed, its behavior may differ from the
Abrikosov-Gor’kov (AG) theory for the single-band super-
conductors [11, 12], which state that Tc is determined by
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the expression ln Tc0/Tc = �(1/2 + �/2πTc) − �(1/2),
where �(x) is the digamma function, � is the impurity scat-
tering rate, and Tc0 is the critical temperature in the absence
of impurities [11, 12].

The choice of the “proper” theory for disorder effects in
iron-based materials is severely complicated by the fact that
the exact form of the impurity potential is not known. In
such a situation, it is instructive to theoretically explore as
many situations as possible. Here, we focus on a special case
of a uniform impurity potential with equal intra- and inter-
band components. We consider two-band models for the
isotropic s± and s++ superconductors with either nonmag-
netic or magnetic impurities within the self-consistent T -
matrix approximation following approach from Refs. [18,
21].

2 General Equations and their Analysis

We employ the Eliashberg approach for multiband super-
conductors [25] and calculate the ξ -integrated Green’s func-

tions ĝ(ωn) = ∫
dξĜ(k, ωn) =

(
ĝan 0
0 ĝbn

)

, where ξα,k =
vα,F (k−kα,F ) is the linearized dispersion, kα,F is the Fermi
momentum, ĝαn = g0αnτ̂0⊗ σ̂0+g2αnτ̂2⊗ σ̂2, indices a and
b correspond to two distinct bands, index α = a, b denote
the band space, Pauli matrices define Nambu (τ̂i), and spin

(σ̂i) spaces, Ĝ(k, ωn) =
[
Ĝ−1

0 (k, ωn) − 
̂(ωn)
]−1

is the

matrix Green’s function for a quasiparticle with momentum
k and the Matsubara frequency ωn = (2n+1)πT defined in
the band space and in the combined Nambu and spin spaces,
Ĝ

αβ

0 (k, ωn) = [iωnτ̂0 ⊗ σ̂0 − ξαkτ̂3 ⊗ σ̂0]−1δαβ is the bare

Green’s function, 
̂(ωn) = ∑3
i=0 


(i)
αβ(ωn)τ̂i is the self-

energy matrix, g0αn and g2αn are the normal and anomalous
ξ -integrated Nambu Green’s functions,

g0αn = − iπNαω̃αn√
ω̃2

αn + φ̃2
αn

, g2αn = − πNαφ̃αn√
ω̃2

αn + φ̃2
αn

, (1)

depending on the density of states per spin of the cor-
responding band at the Fermi level Na,b and on renor-
malized (by the self-energy) order parameter φ̃αn and
frequency ω̃αn,

iω̃an = iωn − 
0a(ωn) − 

imp
0a (ωn), (2)

φ̃an = 
2a(ωn) + 

imp
2a (ωn). (3)

It is also convenient to introduce the renormalization fac-
tor Zαn = ω̃αn/ωn that enters the gap function �αn =

φ̃αn/Zαn. The self-energy due to the spin fluctuation inter-
action is then given by


0α(ωn) = T
∑

ω′
n,β

λz
αβ(n − n′)

g0βn

Nβ

, (4)


2α(ωn) = −T
∑

ω′
n,β

λ
φ
αβ(n − n′)

g2βn

Nβ

, (5)

The coupling functions λ
φ,z
αβ (n−n′) = 2λφ,z

αβ

∞∫

0

d��B(�)

(ωn−ωn′ )2+�2

depend on the normalized bosonic spectral function B(�)

used in Refs. [18, 19]. While the matrix elements λ
φ
αβ can

be positive (attractive) as well as negative (repulsive) due
to the interplay between spin fluctuations and electron-
phonon coupling [26, 27], the matrix elements λz

αβ are

always positive. For simplicity, we set λz
αβ = |λφ

αβ | ≡
|λαβ | and neglect possible k-space anisotropy in each order
parameter φ̃αn.

We use the T -matrix approximation to calculate the
average impurity self-energy 
̂imp:


̂imp(ωn) = nimpÛ + Ûĝ(ωn)
̂
imp(ωn), (6)

where nimp is the impurity concentration.

2.1 Nonmagnetic Impurities

First, we consider the nonmagnetic disorder. Impurity
potential matrix entering equation (6) is defined as Û =
U ⊗ τ̂3, where (U)αβ = Uαβ

Ri
with Ri = 0 is the impu-

rity site. For simplicity, we set intra- and interband parts
of the potential equal to v and u, respectively, so that
(U)αβ = (v − u)δαβ + u. The relation between the two will
be controlled by the parameter η: v = uη.

Apart from the general case, later we are going to exam-
ine the two important limiting cases: Born limit (weak
scattering) with πuNa,b � 1 and the opposite case of a very
strong impurity scattering (unitary limit) with πuNa,b � 1.

It is useful to introduce the generalized scattering
cross-section

σ = π2NaNbu
2

1 + π2NaNbu2
→

{
0,Born
1, unitary

(7)

and the impurity scattering rate

�a,b = 2nimpσ

πNa,b

→
{
2nimpπNb,au

2,Born
2nimp/

(
πNa,b

)
, unitary

(8)
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Then equations on frequency (2) and order parameter (3)
become

ω̃an = ωn + i
0a(ωn) (9)

+ �a

2D

[

σ
ω̃an

Qan

(1 − η2)2 + (1 − σ)

(
Naω̃an

NbQan

η2 + ω̃bn

Qbn

)]

,

φ̃an = 
2a(ωn) (10)

+ �a

2D

[

σ
φ̃an

Qan

(1 − η2)2 + (1 − σ)

(
Naφ̃an

NbQan

η2 + φ̃bn

Qbn

)]

.

where Qαn =
√

ω̃2
αn + φ̃2

αn, D = (1 − σ)2 + σ(1 −
σ)

(

2 ω̃anω̃bn+φ̃anφ̃bn

QanQbn
+ N2

a +N2
b

NaNb
η2

)

+ σ 2(1 − η2)2.

Let’s consider the main limits. Since in the Born approx-
imation σ → 0, then D = 1, �a = 2nimpπNbu

2,
and

ω̃an = ωn + i
0a(ωn) + γaa

2

ω̃an

Qan

+ γab

2

ω̃bn

Qbn

, (11)

φ̃an = 
2a(ωn) + γaa

2

φ̃an

Qan

+ γab

2

φ̃bn

Qbn

, (12)

where γaa = 2πnimpNau
2η2 and γab = 2πnimpNbu

2.
Obviously, for the finite interband scattering γab (i.e., finite
η), different bands are mixed in equations. This leads to the
AG-like suppression of Tc.

In the unitary limit σ → 1, �a = 2nimp/(πNa), and we
have to consider two cases.

I). Uniform impurity potential with η = 1:

ω̃an = ωn + i
0a(ωn)

+ nimp

πNaNbDuni

[

Na

ω̃an

Qan

+ Nb

ω̃bn

Qbn

]

,

φ̃an = 
2a(ωn)

+ nimp

πNaNbDuni

[

Na

φ̃an

Qan

+ Nb

φ̃bn

Qbn

]

,

where Duni = 2 ω̃anω̃bn+φ̃anφ̃bn

QanQbn
+ N2

a +N2
b

NaNb
. Again, dif-

ferent bands are mixed so we have a suppression of
Tc.

II). All other cases with η 	= 1:

ω̃an = ωn + i
0a(ωn) + nimp

πNa

ω̃an

Qan

, (13)

φ̃an = 
2a(ωn) + nimp

πNa

φ̃an

Qan

. (14)

We get the same result, as for the intraband impuri-
ties since the other band (b) does not contribute to the
equations. Surprisingly, but here the Anderson theo-
rem works independent of the gap signs in different
bands. Thus, Tc should be finite for arbitrary impurity
concentration.

Here, we conclude that there is a special case of Tc

suppression in the unitary limit for the uniform impurity
potential η = 1. Such situation arise due to the structure
of the denominator D in equations (9)–(10). It vanishes for
η = σ = 1 and one has to accurately take the limit η → 1
first and only then put σ → 1. It is the η = 1 case, that was
considered in Ref. [10]. For all other values of η (even for
a slight difference between intra- and interband potentials),
impurities are not going to affect the critical temperature.

2.2 Magnetic Impurities

Now, we switch to the magnetic disorder. Impurity poten-
tial for the non-correlated impurities can be written as Û =
V⊗ Ŝ, where Ŝ = diag

[
σ̂ · S, −(σ̂ · S)T

]
is the 4×4 matrix

with (...)T being the matrix transpose and S = (
Sx, Sy, Sz

)

being the spin vector [28]. The vector σ̂ is composed of τ

matrices, σ̂ = (
τ̂1, τ̂2, τ̂3

)
. The potential strength is deter-

mined by (V)αβ = V
αβ

Ri=0. For simplicity, intraband and
interband parts of the potential are set equal to I and J ,
respectively, such that (V)αβ = (I − J )δαβ + J . Compo-
nents of the impurity potential matrix Û is then Ûaa,bb = IŜ

and Ûab,ba = J Ŝ. We introduce the parameter η to con-
trol the ratio of intra- and interband scattering potentials, so
that I = J η. Coupled T -matrix equations for aa and ba

components of the self-energy become


̂
imp
aa = nimpÛaa + Ûaaĝa
̂

imp
aa + Ûabĝb
̂

imp
ba , (15)


̂
imp
ba = nimpÛba + Ûbaĝa
̂

imp
aa + Ûbbĝb
̂

imp
ba . (16)

Renormalizations of frequencies and gaps come

from 

imp
0a = 1

4Tr
[

̂

imp
aa · (

τ̂0 ⊗ σ̂0
)]

and 

imp
2a =

1
4Tr

[

̂

imp
aa · (

τ̂2 ⊗ σ̂2
)]
.

Expressions for 

imp
0α and 


imp
2α are proportional to the

effective impurity scattering rate �a,b and as in the case
of nonmagnetic impurities contain the generalized cross-
section parameter σ that helps to control the approximation
for the impurity strength ranging from Born (weak scat-
tering, πJNa,b � 1) to the unitary (strong scattering,
πJNa,b � 1) limits,

�a,b = 2nimpσ

πNa,b

→
{
2πJ 2s2nimpNb,a,Born
2nimp
πNa,b

, unitary
(17)

σ = π2J 2s2NaNb

1 + π2J 2s2NaNb

→
{
0,Born
1, unitary

(18)

We assume that spins are not polarized and s2 = 〈S2〉 =
S(S + 1). Since s enters all equations only in conjunc-
tion with I or J , without loosing generality we set s = 1
assuming that I and J are both renormalized by s.
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For the uniform impurity potential η = 1 in the Born
limit σ = 0, we find

ω̃an = ωn + i
0a(ωn) + πJ 2nimp

(

Na

ω̃an

Qan

+ Nb

ω̃bn

Qbn

)

,

φ̃an = 
2a(ωn) − πJ 2nimp

(

Na

φ̃an

Qan

+ Nb

φ̃bn

Qbn

)

.

Here, the contribution from both a and b bands is mixed so
we expect a suppression of Tc by disorder.

In the unitary limit (σ = 1) at T → Tc, we have ω̃an =
ωn + i
0a(ωn)+ �a

2 sgn (ωn) and φ̃an = 
2a(ωn)+ �a

2
φ̃an

|ω̃an|
for any value of η including the case of intraband-only
impurities, 1/η = 0. This form is the same as for non-
magnetic impurities and thus analogously to the Anderson
theorem there is no impurity contribution to the Tc equa-
tion. The only exception here is the special case of uniform
impurities, η = 1, when

ω̃an = ωn + i
0a(ωn) + nimp

π (Na + Nb)
sgn (ωn) ,

φ̃an = 
2a(ωn)+ nimp

π (Na + Nb)
2

(

Na

φ̃an

|ω̃an| + Nb

φ̃bn

|ω̃bn|

)

.

Both gaps are mixed in equation for φ̃an, thus they tend to
zero with increasing amount of disorder. That’s also true
away from the unitary limit and that’s why there is a special

case of uniform potential of the impurity scattering, I = J ,
when the strongest Tc suppression occurs.

3 Numerical Results

Following results were obtained by solving self-consistently
frequency and gap equations (2)–(3) for both finite tem-
perature and at Tc with the impurity self-energy as in
(9)–(10) for the nonmagnetic disorder or from the solution
of (15)–(16) for the magnetic impurities. For definiteness,
we choose Nb/Na = 2 and coupling constants to be
(λaa, λab, λba, λbb) = (3, 0.2, 0.1, 0.5) for the s++ state
and (3, −0.2, −0.1, 0.5) for the s± state with 〈λ〉 < 0.

Typical results [18, 21] of the dependence on the impurity
scattering rate �a for the critical temperature Tc and gaps
�a,bn for the first Matsubara frequency ωn = 1 = 3πT are
shown in Fig. 1 (nonmagnetic) and in Fig. 2 (magnetic dis-
order). Scattering on magnetic impurities suppress both s±
and s++ states due to the finite interband scattering compo-
nent. The s++ state initially transforms to the s± state, but
then follows its fate with increasing �a . The only exception
is the unitary limit. On the other hand, both states survive
the nonmagnetic disorder but for different reasons: the s++
due to the Anderson theorem, while the s± state transforms
to the s++. The unitary limit, again, gives constant result.

Fig. 1 Tc (a and c) and
Matsubara gap �αn = 1 (b and
d) dependence on the
nonmagnetic scattering rate �a

for the s± (a and b) and the s++
(c and d) superconductors with
η = 1/2
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Fig. 2 Tc (a and c) and
Matsubara gap �αn = 1 (b and
d) dependence on the magnetic
scattering rate �a for the s± (a
and b) and the s++ (c and d)
superconductors with η = 1/2

 0

 5

 10

 15

 20

 25

 30

s±, I=J/2

(a)

T
c
 (
c
m
-
1
)

σ=0
σ=0.5
σ=1.0

-20

 0

 20

 40

 60

 80

 0  150  300  450  600  750

s±, I=J/2

(b)

Δ α
,n
=
1
 (
c
m
-
1
)

Γ
a
 (cm

-1
)

σ=0, Δ
a

σ=0, Δ
b

σ=0.5, Δ
a

σ=0.5, Δ
b

σ=1.0, Δ
a

σ=1.0, Δ
b

s
++
, I=J/2

(c)

σ=0
σ=0.5
σ=1.0

 0  100  200  300  400  500  600  700

s
++
, I=J/2

(d)

Γ
a
 (cm

-1
)

σ=0, Δ
a

σ=0, Δ
b

σ=0.5, Δ
a

σ=0.5, Δ
b

σ=1.0, Δ
a

σ=1.0, Δ
b

Fig. 3 Uniform nonmagnetic
impurity potential η = 1: Tc (a
and c) and Matsubara gap
�αn = 1 (b and d) dependence
on the scattering rate �a for the
s± (a and b) and the s++ (c and
d) superconductors
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Fig. 4 Uniform magnetic
impurity potential η = 1: Tc (a
and c) and Matsubara gap
�αn = 1 (b and d) dependence
on the scattering rate �a for the
s± (a and b) and the s++ (c and
d) superconductors
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For the uniform impurity potentials, the situation, how-
ever, becomes different. Results for Tc and�αn = 1 is shown
in Fig. 3 for the nonmagnetic disorder and in Fig. 4 for the
magnetic one. While the behavior in the Born and interme-
diate scattering (σ = 0.5) limits is in general similar to
those for η 	= 1, critical temperature and gaps in the unitary
limit are not independent on disorder any more. Following
the analytical results in the previous section, Tc gradually
decrease with increasing �a . There is even a s± → s++
transition for the magnetic impurities in the unitary limit,
which is not seen for η 	= 1. On the other hand, there is
no transition to the s± state for σ = 0.5, which appeared
for s++ state with unequal intra- and interband impurity
potentials.

4 Conclusions

We have studied the case of uniform impurity potential,
that is, the equal strength of intra- and interband scattering,
u = v and I = J (η = 1). It appears to be quali-
tatively different from the other cases. This is particulary
demonstrated in the unitary limit where for η 	= 1 there is
an independence of gaps and Tc on the values of both non-
magnetic and magnetic scattering. On the contrary, for the

uniform impurity potential, there is a suppression of gaps
and critical temperature due to the disorder.
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