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Abstract Cluster perturbation theory is used to calculate
band structure, spectral functions, Fermi surface, and spin
and charge susceptibilities for the two-orbital model of iron
pnictides with the on-site multiorbital Hubbard interactions.
Susceptibilities are calculated within the approximation
combining the cluster perturbation theory for the self-energy
corrections and the random-phase approximation (RPA) for
the vertex renormalizations. Calculations for the small val-
ues of Hubbard repulsion U ≤ 2 eV confirm that the rigid
band approximation and RPA for the spin and charge sus-
ceptibilities are suitable approaches for the case of weak
interactions.

Keywords Fe-based superconductors · Mutiorbital
models · Cluster perturbation theory

1 Introduction

Iron-based materials—pnictides and chalcogenides—
represent a new class of unconventional superconductors
with high transition temperatures [1–9]. While the mech-
anism of superconductivity is still a mystery, the main
candidates are spin and orbital fluctuations. Except for the
extreme hole and electron dopings, the Fermi surface (FS)
consists of two or three hole pockets around the Γ = (0, 0)
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point and two electron pockets around the X = (π, 0) and
Y = (0, π) point in the Brillouin zone, corresponding to
the one iron per unit cell. Different mechanisms of Cooper
pairs formation result in the distinct superconducting
gap symmetry and structure in Fe-based superconductors
(FeBS) [8]. For example, spin fluctuation approach leads
to the extended s± state (s-wave gap that changes sign
between hole and electron FSs) as the main instability [10–
15], while orbital fluctuations promote the order parameter
to have the sign-preserving s++ symmetry [16, 17].

Most approaches to the superconductivity theory in FeBS
including spin fluctuations in the random-phase approxima-
tion (RPA) are solidly justified in the case of a weak inter-
action between electrons. Agreement between the experi-
mental FS and the one theoretically obtained within density
functional theory (DFT) as well as the smallness of the mag-
netic moment in most FeBS and absence of Mott insulating
state even in the undoped materials assert that the inter-
action is weak. On the other hand, comparison of ARPES
(angle-resolved photoemission spectroscopy) results and
DFT bands shows the bandwidth reduction about two to
three times [18], and the redistribution of spectral wight
from the Drude peak to higher energies in optical con-
ductivity of LaFePO and BaFe2As2 points out to the at
least moderate electronic correlations [19]. While the use
of hybrid methods like LDA+DMFT (local density approx-
imation + dynamical mean-field theory) to treat electronic
correlations allows to describe some physical properties
of FeBS [20–23], nonlocal spin fluctuations are beyond
these approaches. Thus, it is hard to justify use of methods
like LDA+DMFT to build up a theory of superconductivity
where spin fluctuations are crucial [8]. Cluster extensions
of DMFT, e.g., CDMFT (cellular DMFT) [24] and DCA
(dynamical cluster approximation) [25–27], are numerically
very expensive for the multiorbital systems. Here, we use
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alternative approach called the cluster perturbation theory
(CPT) [28, 29]. It relays on the exact diagonalization of
the small cluster to calculate a cluster Green’s function.
Then the intercluster hoppings and interactions are treated
as perturbations. Such procedure allows to describe spin and
charge fluctuations within the cluster exactly.

Here, we use CPT to calculate spin and charge suscep-
tibilities for the simple two-orbital model of iron pnictides
[30] with the on-site multiorbital Hubbard interactions.
First, we calculate full Green’s functions via CPT. Then
susceptibilities are obtained within RPA with the bare polar-
ization bubble composed of full CPT Green’s functions.
Since the susceptibility is the central part of the spin/charge
fluctuation-driven Cooper pairing, this is the essential step
towards the theory of superconductivity in FeBS.

2 Model

To preserve orbital content of the bands and still gain
some simplicity, we study here the two-orbital tight-binding
model from Ref. [30] with Hamiltonian

H0 =
∑

kσ

∑

ll′
[tll′(k) + εlδll′] d

†
lkσ dl′kσ , (1)

where d
†
lkσ is the annihilation operator of a particle with

momentum k, spin σ , and orbital index l = 1, 2 enumerat-
ing dxz and dyz orbitals. Later, we use numerical values of
hopping matrix elements tll′(k) and one-electron energies
εl from Ref. [30]. This model produce the band struc-
ture shown in Fig. 1 and the FS composed of one hole
pocket around the Γ point and two electron pockets cen-
tered around X and Y points, see Fig. 2. The model can
be used to describe the two electronic components scenario
[31] where the bottom or the top of one of the bands is close
to the chemical potential [18]. Similar scenario with the

E
n
e
r
g
y
 (

e
V

)

k

-8

-6

-4

-2

 0

 2

 4

Γ=(0,0) X=(π,0) M=(π,π) Γ=(0,0)

Fig. 1 Band structure of model (1). Position of the chemical potential
is marked by the black horizontal line
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Fig. 2 Fermi surface of model (1). Different colors indicate major
orbital contribution (red - dxz, green - dyz)

proximity to a Lifshitz transition has been proposed earlier
for cuprates [32].

The general two-particle on-site interaction is given by
the Hamiltonian [11, 12, 34, 35]:

Hint = U
∑

f,m

nf m↑nf m↓ + U ′ ∑

f,m<l

nf lnf m

+J
∑

f,m<l

∑

σ,σ ′
d
†
f lσ d

†
f mσ ′df lσ ′df mσ

+J ′ ∑

f,m �=l

d
†
f l↑d

†
f l↓df m↓df m↑. (2)

where nf m = nf m↑ + nf m↓, nf mσ = d
†
f mσ df mσ is the

number of particles operator at the site f , U , and U ′ are the
intra- and interorbital Hubbard repulsion, J is the Hund’s
exchange, and J ′ is the so-called pair hopping. We restrict
the number of interaction parameters by obeying the spin-
rotational invariance: U ′ = U − 2J and J ′ = J .

In principle, the phase separation can appear in the two-
band Hubbard model as has been shown in Ref. [33].
However, here we do not consider it.

3 Cluster Perturbation Theory

To study the interacting system with the Hamiltonian H =
H0 + Hint, we use the cluster perturbation theory [28, 29].
First step is the exact diagonalization of the small cluster.
Here, we choose 2 × 2 cluster of iron sites. Each site has
two iron orbitals. The initial lattice is tiled by identical 2×2
clusters. Thus, the lattice transforms into a superlattice of
clusters with a new translational order of an artificial origin.
To avoid artificial splitting of energy bands, here, we use the
averaging over two different tiling patterns that is discussed
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in the framework of the norm-conserving cluster pertur-
bation theory (NC-CPT) [36–38]. We treat the intercluster
hoppings and interactions as perturbations.

As the first step, we calculate the cluster Green’s func-
tion G

(c)
il,jm(ω) by the Lanczos algorithm. Here, i and j are

intracluster site indices, l and m are orbital indices. The next
step is to determine the full matrix Green’s function,

Ĝ−1(K, ω) = Ĝ(c)−1(ω) − V̂ (K), (3)

where K is a wave vector in the reduced Brillouin zone (the
Brillouin zone of the superlattice) and V̂ (K) is the matrix of
the intercluster hoppings defined as

Vil,jm(K) =
∑

h

thil,jmeiKrh . (4)

Here, rh = rg − rg′ with rg being the radius vector of the
neighboring clusters labelled g.

To restore the full translation symmetry of the lattice, we
perform a residual Fourier transform and obtain a momen-
tum dependent Green’s function in orbital basis,

Glm(k, ω) = 1

Nc

Nc∑

i,j=1

Gil,jm(k, ω)e−ik(ri−rj ), (5)

where ri is the radius vector of the site i within the cluster,
Nc is the number of sites in the cluster (which is four in our
case), and k is a wave vector in the Brillouin zone of the
initial lattice. Here, we used a translational invariance of the
intercluster hoppings matrix, V̂ (K) = V̂ (k).

4 Susceptibility Calculation

Transverse component of the bare spin susceptibility that is
a tensor in orbital indices l, l′, m, m′ have the following
form [15],

χ
(0)
ll′,mm′(q, iΩ)

= −T
∑

p,ωn

G
(0)
ml↑(p, iωn)G

(0)
l′m′↓(p + q, iΩ + iωn). (6)

Here, Ω and ωn are Matsubara frequencies, and
G

(0)
lm↑(p, iωn) is the Green’s function of the noninteracting

system (1).
We can now make a replacement G

(0)
lm↑(p, iωn) →

Glm↑(p, iωn), and instead of χ
(0)
ll′,mm′ we will have χcluster

ll′,mm′
with the Green’s functions obtained via CPT. Thus we retain
intracluster self-energy corrections but loose the long tail
of intercluster effective interaction. To overcome this draw-
back, we use RPA series with the “cluster” susceptibility
χcluster

ll′,mm′ replacing the bare electron-hole bubble, see Fig. 3.
There is no double-counting problem here since the clus-
ter susceptibility includes only self-energy corrections and
RPA is the vertex renormalization.

Fig. 3 Diagrammatic representation of the RPA equation for the
susceptibility χ(q, ω) (top) and the renormalization of the Green’s
function forming the bare polarization bubble χ(0)(q, ω) by the CPT
Green’s functions (bottom). Wavy line represents two-body interac-
tion (2)

Therefore, RPA susceptibility χll,mm(q, iΩ) is obtained
by solving the equation that is shown graphically in Fig. 3
with the interaction represented by matrix Us for spin and
Uc for charge susceptibility. Exact form of these matrices
for Hamiltonian (2) is given in Ref. [11]. To use matrix nota-
tions, we introduce the correspondence between matrix (ı,
j ) and orbital indices: ı = l + l′nO and j = m + m′nO ,
where nO = 2 is the number of orbitals.

Here, we use the continuation of cluster Green’s func-
tions to Matsubara frequencies via spectral representation,

Glm(k, iωn) =
+∞∫

−∞
dω′ Alm(k, ω′)

iωn − ω′ , (7)

where Alm(k, ω) = − 1
π
ImGlm(k, ω) is the spectral

function.
After substitution of (7) into (6) and summation over ωn,

we obtain the cluster susceptibility,

χcluster
ll′,mm′(q, iΩ) = −

∑

p

+∞∫∫

−∞
dω′dω′′Aml(p, ω′) ×

×Al′m′(p + q, ω′′)f (ω′) − f (ω′′)
ω′ − ω′′ + iΩ

, (8)

where f (ω) = 1/
[
1 + e(ω−μ)/T

]
is the Fermi function.

After the calculation, we make the analytical continuation
to real frequencies, iωn → ω + iδ with δ → +0.

Physical spin susceptibility is given by the trace over
orbital indices, χ(q, ω) = 1

2

∑
l,m χll,mm(q, ω).

5 Numerical Results

Here, we present results of the numerical calculations for
Hubbard repulsion U ≤ 2 eV and Hund’s exchange J =
U/4. Results for larger U will be published elsewhere.
Other parameters of calculations are the following: grid in
momentum space (kx , ky) is 100 × 100, frequency step is
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Fig. 4 FS (on the left), spectral
intensity for each orbital A(k, ω)

(in the middle), and DOS (on the
right) for the two-orbital model
with zero and finite U are in the
top and bottom row, respectively

h = 0.05, and artificial broadening of spectral functions
is δ = 0.1. Plots of FS, spectral intensity for each orbital
All(k, ω), and density of states (DOS) for two values of
U are shown in Fig. 4. Spectral functions become a little
broader away from the Fermi level with the increasing inter-
action. Apart from that changes to the band structure and the
FS are small. This is similar to the results of the variational
cluster approximation (VCA) for the two-orbital model with
the small U [39, 40].

Calculated spin and charge susceptibilities are shown
in Fig. 5. With increasing U , the overall magnitude of
Reχs(q, ω) also increases, while the overall magnitude of
Reχc(q, ω) decreases. Such behaviour is easily understand-
able if one recalls that RPA expressions for susceptibili-
ties in a single-band case are χs = χ0/ (1 − Uχ0) and
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Fig. 5 Momentum dependence of the real part of physical spin
and charge susceptibilities at zero frequency for different values of
the Hubbard repulsion U . Solid line denotes the spin susceptibility
χs(q, ω) and dashed line denotes the charge susceptibility χc(q, ω)

χc = χ0/ (1 + Uχ0). In the multiband case, these equations
should be treated as matrix expressions but obviously the
overall trend with changing U will be similar.

6 Conclusions

We developed an approximation for calculating spin and
charge susceptibilities of a multiband system with the on-
site two-body interaction. It combines cluster perturbation
theory for the self-energy corrections and RPA for the ver-
tex renormalizations. Calculations for the small values of
Hubbard repulsion U ≤ 2 eV revealed negligible changes
in the band structure, FS, DOS, and susceptibilities. This
essentially confirms that the rigid band approximation and
the RPA for the spin and charge susceptibilities are suitable
approaches in the case of weak interactions.
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