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The phase transitions into flat and conical incommensurate magnetic structures are considered for a
ferrimagnet with the dominant nonfrustrated exchange between the spins in one crystallographic po-
sition, competing exchanges between the spins in another position and frustrated exchange between the
spins in different positions. The appearance conditions and the temperatures of the second order phase
transitions are analytically obtained in the mean field approximation. The first order phase transition
between these states is studied and the phase diagrams of temperature vs frustrated exchanges are
calculated by the numerical minimization of free energy.
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1. Introduction

The frustration of the exchange interactions is the main reason
for a great variety of magnetic structures. In ferrimagnets, systems
with magnetic ions in two and more nonequivalent crystal posi-
tions (magnetic subsystems), the type of magnetic ordering is
determined by the spin dimension, spatial distribution of the ex-
change bonds, type of the exchanges both within each position
and between them and their anisotropies. In this case the number
of parameters determining the state of the total magnetic system
(and the number of the problem variables) is increased as com-
pared with single-subsystem ferro- and antiferromagnets. As a
result, the number of possible magnetic states is increased. Dif-
ferent temperature dependences of subsystem contributions into
the total state lead to the phase transitions, depending on the
temperature and exchange parameters. The frustration (competi-
tion) of the exchange interaction results in the degeneracy of the
ground state with the collinear orientation of magnetic moments.
A classical example of such a ferrimagnet firstly considered by
Yafet and Kittel [1] is a two-subsystem ferrite structure with an-
tiferromagnetic exchanges within each subsystem and a frustrated
antiferromagnetic exchange between the spins in different sub-
systems. The authors show that in such a system a long range
magnetic order can be formed by means of successive phase
transitions through: (a) antiferromagnetic ordering in the sub-
system with a dominant exchange (AF phase); (b) noncollinear
triangular Yafet–Kittel structure (YK phase); (c) collinear ferri-
magnetic ordering (F phase); and (d) antiferromagnetic ordering
in both subsystems. In the latter case the ground state remains
degenerate relative to the mutual orientation of antiferromagnetic
systems and, therefore, such a state becomes unstable towards the
collinearity distortion of sublattices in the subsystems. In [2] it is
shown that under antiferromagnetic exchange between the spins
in each subsystem this instability is global – an incommensurate
flat helical structure with the locally orthogonal orientation of the
subsystem antiferromagnet vectors removes the degeneracy of the
ground state with the value of the frustrated intersubsystem ex-
change being arbitrarily small. The transition from the AF phase
into the antiferromagnetic flat helix (AFH) phase occurs with the
appearance of magnetization in the subsystem with a weak ex-
change as a second order phase transition. The ferromagnetic ex-
change within this subsystem leads either to the incommensurate
structure with the locally triangular spin orientation (triangular
helix) [3] or to the ferrimagnetic helix, depending on the fulfill-
ment of threshold conditions on the frustrated and competing
interactions. All the above-mentioned structures were calculated
assuming the flat spin arrangement. The incommensurate struc-
ture with the three-dimensional spin configuration – conical fer-
rimagnet – in the cubic spinel lattice was thoroughly considered
by Kaplan et al. [4,5] in another limit case of the dominant anti-
ferromagnetic intersubsystem and frustrated intrasubsystem ex-
changes. It was shown that the instability of the collinear magnetic
structure with respect to a small distortion of the helical type is a
result of the enhancement of the frustrated intrasubsystem anti-
ferromagnetic exchange. When the threshold condition on the
ratio between the exchanges is fulfilled, the ferrimagnetic cone
helix can appear from collinear ferrimagnetic state. The collinear
ferrimagnetic structure evolves into an incommensurate conical
one also in the case of dominating ferromagnetic (i.e.
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Fig. 1. (a) Scheme of the exchange interactions: solid lines – intrasubsystem ex-
changes between nearest neighbours; dashed lines – intersubsystem exchange; dot
lines – exchange between second magnetic neighbours in the B-subsystem.
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nonfrustrating) intrasubsystem exchange between the Cr2þ ions
in spinel FeCr S2 4 where the frustration originates from the com-
petition between nearest and next nearest exchanges coupling
Fe3þ ions in A-positions [6–8]. Increasing interest in in-
commensurate magnetic structures in the last decade is primarily
due to the discovery of their multiferroic properties. The conical
helixes with a low magnetic anisotropy are perspective from
practical view point for the low-magnetic-field control of electrical
polarization at the room temperature [9–11]. The definition of the
origin of spatial anisotropy at the conical ordering in the frame-
work of isotropic Heisenberg model with different frustrated in-
teractions is necessary for the correct mathematical description of
the effects observed. The possibility of conical incommensurate
magnetic ordering in the ferrimagnet with the dominant nonfru-
strated antiferromagnetic exchange in one subsystem and the
frustrated (competing) exchanges in another one and between the
subsystems has not been considered so far. The aims of the work
are to determine the conditions of the incommensurate structures
appearance in such a system and to study the type of possible
phase transition between them.
(b) Mutual orientation of the spins for the flat helix.
2. Model and approach

The number of the variables describing a certain state depends
firstly on the spin dimensionality and on the number of magnetic
positions with various local distributions of neighbours. The latter
is determined both by the crystal structure and by the type of the
considered magnetic order. For example, in the cubic spinel AB O2 4

with two crystallographic positions of the magnetic A- and B-ions
the incommensurate magnetic ordering with the magnetic struc-
ture wave vector along the [110] crystal direction results in two
positions of the B-ions which are nonequivalent relative to the
orientation of the neighboring spins. As a result, the helix struc-
ture consists of three spin cones with various angles [5,12]. In the
present work consideration is given to the model of a ferrimagnet
with the coincident direction of the frustrated and competing
exchanges and equivalent position of the spins within both sub-
systems in relation to this direction. In this case, with the con-
tributions from different mechanisms of incommensurability in
the total state being changed with the temperature, the direction
of the vector of the magnetic structure modulation k is not varied
and the number of nonequivalent magnetic positions coincides
with the number of subsystems in all the considered phases. The
scheme of the exchange interactions and the variation of the
mutual orientation of the spins at the spatial displacement in the
direction of the frustrating and competing exchanges (along the
vector of the magnetic structure modulation k) is shown in Fig. 1.

A similar model was used for describing dynamical properties
and incommensurate ordering in the two-subsystem tetragonal
magnet CuB O2 4 [13–16]. As will be shown later, the model has both
flat and conical solutions. The model Hamiltonian is
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Here i and j are the indexes of the spins in the A and B subsystems,
respectively, and zαβ are the numbers of the neighboring spins for
the corresponding exchange Jαβ within the subsystems and be-
tween them. In the mean field approximation (MFA) the Ha-
miltonian is additive with respect to the spins
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where S S,a i b j, , are the vectors of the average spins in the A and B
subsystems, respectively. The necessary condition of the existence
of stationary states in MFA is the collinearity of the average spins
and the corresponding total fields [17]. This requirement is
equivalent to the constraints imposed on the effective fields acting
on the spins: the transverse components of the fields must be
equal to zero. In the case of two nonequivalent magnetic positions
the fields on the spins hi j, are the function of four spin orientation
angles a b,θ and a b,φ – a polar angle and an azimuthal one in the
local spherical coordinates of the corresponding spins and of two
average values Sa and Sb. Four constraints of collinearity and two
self-consistent equations for the average values of the spins in
MFA form a full system of nonlinear equations for the problem
variables
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where ha b,
,θ φ are the transverse fields along the unit vectors ei j,

θ and

ei j,
φ of the local coordinate systems, ha b, are the longitudinal fields

and B x
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0 ( ) is the Brillouin function for the spins Sa b,
0 . In the local

coordinate systems all S 0a b, > and h 0a b, < .
The system of equations (3) and (4) determines all the solutions

with two nonequivalent positions. To find a solution with the
minimal free energy
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where Za b, are the partition functions for the single spins, the
energy is varied over the problem variables
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Here, Na and Nb are the numbers of the spins in the subsystems.
We introduce the dimensionless exchange parameters of the

model and fields normalized with regard to the total exchange
interaction between the A-spins, as well as the parameter of the
exchange frustration in the B-subsystem R and temperature nor-
malized with regard to the Neel one in the A-subsystem
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In these notations the self-consistent equations (4) take the form
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3. Antiferromagnetic flat helix (AFH)

For the antiferromagnetic flat helix with the symmetrical or-
ientation of the neighboring spins in each subsystem (see Fig. 1b))
the condition of equality to zero for the transverse fields (3) is
always fulfilled. The longitudinal fields on the spins have the form
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All the AFH-solutions of the model are parametrized by one in-
dependent problem variable – the pitch of helix φ. After sub-
stituting the variable

y cos
2
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one obtains the equation of the free energy minimization
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where n N N z z/ / .a b ab ba= = In the vicinity of the transition from the
AF – phase t 1< the linearization of self-consistent equation (8) for
small values Sb and y leads to the following relation:
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So, the appearance of the average spins Sb is caused by the inter-
subsystem exchange field from the canting antiferromagnetic
sublattices of the A-spins. Eq. (9) which is accurate up to the linear
terms over y takes the form
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The left part of Eq. (13) corresponds to the derivative of the first
term in the thermodynamic potential expansion in the Landau
theory of the second order phase transition [18]. It changes the
sign at the transition temperature. At t 1< the derivative of the
Brillouin function in C(t) decreases faster than t and at t 1⪡ it tends
to zero exponentially [19]. In this limit case
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where the temperature of the transition into the AFH phase has
the form
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The second multiplier of the first term of the free energy expan-
sion t t2( − ) is positive in the vicinity of the transition temperature.
This provides the local minimum of the free energy for t tAFH> and
maximum for t tAFH< at the zero value of the order parameter. The
transition temperature (15) is independent of the sign of the in-
tersubsystem interaction Jab and exceeds the temperature of col-
linear ordering in the B-subsystem in the absence of this interac-
tion t B R1B = ( − ). As is firstly shown by numerical minimization of
the free energy [16], AFH can appear even without any exchange
interaction between the B-spins (the case of the paramagnetic
“weak” subsystem). In this case the transition temperature is de-
termined by the intersubsystem exchange only

t A
3
2

.AFH =

4. Antiferromagnetic conical helix (ACH)

The conical structure having a three-dimensional orientation of
the magnetic moments and retaining the number of none-
quivalent magnetic positions equal to two is a structure with two
cones in one subsystem located symmetrically relative to the plane
of the spins in the second subsystem (Fig. 2). For the symmetrical
distribution of the A-spin projections on the B-spin plane (see
Figs. 2 and 1b) the condition of equality to zero for two transverse
field components on the spins Sb j, and for the component ha

φ on
the spins Sa i, is fulfilled. The requirement of equality to zero for the
component ha

θ imposes an additional constraint on the angles and
average spins



Fig. 2. Spin orientation in the symmetrical (antiferromagnetic) conical helix.

Fig. 3. Boundary between areas of exchange parameters (14) and (17) when either
the AFH or ACH phase arise from the AF state. A B j j j z z J z z J J/ /2 /2ab ba b ab ba ab b a b a

2
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resulting in the following three solutions:

1. cos /2 0φ( ) = – the antiferromagnetic cross-type ordering in
both subsystems [1] with the ground state which is degenerate
relative to the mutual orientation of the subsystems antiferro-
magnetic vectors. As mentioned in Introduction, this state is
globally unstable at the antiferromagnetic exchanges of the
model (1).

2. cos 0θ = – the antiferromagnetic flat helix, calculated in Section
3.

3. The antiferromagnetic helix with the cone angle
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For the ACH solution the longitudinal fields on the spins have
the form
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Substituting Eq. (17) into the latter expressions allows one to
exclude the angle θ from the number of independent variables:
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In the conical phase the decrease of the exchange field on the
A-spins due to their noncollinearity is exactly compensated by the
field from the B-spins. As a result, its value remains equal to the
field at the antiparallel orientation of the antiferromagnetic
A-sublattices and is dependent neither on the average value Sb
nor on the helix pitch φ. For the B-subsystem the interaction with
the A-spins leads to an additional effective exchange between the
B-spins. So, the free energy minimization (6) is reduced to the
variation of the longitudinal field hACHb (19) over the helix pitch
which gives a standard expression for R 1/4>

Rcos 4 . 201φ = − ( ) ( )−

At R 1/4< , φ π= and the solution of (17) for the finite Sb is absent.
Upon substituting (20) into (17) and (19) one has

⎛
⎝⎜

⎞
⎠⎟

j S
S R

sin 2
1

2 21
ab b

a

1/2

Θ = −
( )

−

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟h

S
j R

R
j j

2
1

8 2
.

22
b
ACH b

b
ab ba= − + +

( )

Thus, when the threshold condition is fulfilled, the conical phase
arises from the AF phase at the appearance of magnetization on
the B-sites. At further temperature decrease the cone angle grows
continuously – the A-spins tend to the B-plane. The temperature of
the second order phase transition AF ACH⇒ is determined by the
linearization of the self-consistent equation for Sb (8) taking into
account Eq. (22):
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where A and B are determined in Eqs. (14).
To determine the appearance order of the incommensurate

states from the AF phase for different values of the model ex-
change parameters a comparison is made of the temperatures of
the AFH and ACH phase transitions (Eqs. (15) and (23)). In Fig. 3
the boundary of exchange parameters (14) and (7) is shown when
either the AFH or ACH phase arises from the AF state. In the area of
small R with the temperature decreases a flat helix is first to arise
and the intersubsystem exchange frustration is partially lifted. The
phase separation boundary at A B/ 0→ tends to the value R¼1/4
asymptotically. At R 1/4> and small intersubsystem exchange a
conical helix with the finite pitch (20) (wave vector) is the first to
arise. The pitch remains constant at further lowering the tem-
perature. The mechanism of the helix appearance is the lift of the
competing exchange frustration in the B-subsystem.



Fig. 5. Temperature dependences of the cone angle θ and pitch of the helixes φ at
the succession of the phase transitions AF ACH AFH→ → . The change of the cone
angle from /2π up to θc and the pitch jump at temperature tc are shown by the solid
and dashed arrows, respectively.

Fig. 6. Phase diagram of temperature vs intersubsystem exchange at the fixed
exchanges in the B-subsystem. The area P corresponds to the paramagnetic phase
with the average spins being absent in both subsystem.
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5. Numerical minimization of the free energy

The exchange energy of the frustrated interactions resulting in
the considered incommensurate structures has different de-
pendences on the subsystem average spins Sa and Sb:

E AS S

E BS

,

.
AFH a b

ACH b
2

∝ −

∝ −

Different temperature dependences of the subsystem magnetiza-
tions lead to different temperature dependences of the free energy
in the AFH and ACH states. At t 1⪡ the spins Sa are close to sa-
turation and in the case when AFH is the first to arise at further
temperature lowering a faster decrease of the ACH free energy can
lead to the change of the incommensurate ordering type. To study
the peculiarities of such a phase transition the numerical mini-
mization of the free energy (5) is carried out for the particular case
S S 1/2a b

0 0= = and n¼1 with the fixed parameters j j R, ,ab b . To
clarify the role of the collinearity condition imposed on the fields
hi and spins Sa i, in the ACH state the minimization is carried out
both with constraint (16) and without it. In the second case the
fields on the spins (18) are used and the minimization is carried
out over four variables S , ,a b, θ φ. In both cases the self-consistent
conditions (8) are imposed. In Fig. 4 the free energy temperature
dependencies are given for the AFH and ACH states. The energy is
normalized over the number of spins Na and total exchange be-
tween the neighboring A-spins z Ja a. When the collinearity condi-
tion is taken into account at tc, the type of the incommensurate
ordering is changed and the angle θ is changed from /2π up to θc
by jump (Fig. 5). The helix pitch and subsystem magnetizations are
changed by jump, too. Further temperature lowering leads to the
increase of the angle θ while the helix pitch remains constant.

The phase diagrams of temperature vs frustrated interactions
are shown in Figs. 6 and 7. The triple points in the diagrams cor-
respond to the phase boundary of the helix phase appearance in
Fig. 3. At large values of the intersubsystem exchange j 1ab ≥ the
flat helix phase arises from the paramagnetic phase (P) at t 1≥
(Fig. 6). The high-temperature area of the AFH state also arises at
large values of jb and R. For these cases of the dominant inter-
subsystem exchange or exchanges in the B-subsystem the ex-
pression for the temperature of the AFH phase transition (15) is
irrelevant. The long range order simultaneously appears in both
subsystems and it is necessary to consider the free energy ex-
pansion over the smallness of both Sb and Sa. The study of the
phase transitions in this area of the exchange parameters is out-
side the framework of the above stated problem.
Fig. 4. Temperature dependences of the normalized free energy in the AFH and
ACH states (solid lines). The dashed line shows the dependence of the ACH free
energy without taking into account constraint (16).

Fig. 7. Phase diagram of temperature vs ratio of the competing exchanges in the
B-subsystem at the fixed intersubsystem exchange jab and exchange jb.
6. Summary and conclusion

In the considered model of the ferrimagnet with the dominant
nonfrustrated exchange in one magnetic subsystem the frustration
of the intersubsystem exchange and the competition of the ex-
changes in the second subsystem lead to different incommensurate
structures – antiferromagnetic flat and antiferromagnetic conical
helixes, respectively. The helix arises at temperature lowering from
the AF phase where only the subsystem with the dominant ex-
change is ordered with the magnetization appearance in the second
subsystem and its type depends on the relation between the values
of the intersubsystem and competing exchanges. In the flat helix
phase the canting of the antiferromagnetic sublattices in the
A-subsystem reduces the effective field on the spins Sa i, . The free
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energy of the total system is decreased by ordering in the B-sub-
system. At the fulfillment of the threshold condition on the com-
peting exchanges further temperature lowering leads to the first
order phase transition from the flat helix phase into the conical
helix one. Here, the helix pitch is increased by jump. Nevertheless,
the A-spins reorientation in the symmetrical cones decreases the
canting angle between the spins and the effective field is restored
up to the field of the collinear A-sublattices. Despite the reduction
of the exchange field on the B-spins (and, consequently, the average
value of Sb) the system free energy is lowered due to faster decrease
of the A-spins energy. Upon further lowering the temperature the
magnetic structure wave vector remains constant but the cone
angle increases monotonically remaining intermediate even at zero
temperature 0 /20θ π< < .

The considered model (1) is an isotropic one. Depending on the
relation between the frustrated exchanges (Fig. 3) the transition
into the conical helix phase can occur either from the AF phase by
the continuous increase of the cone angle from the zero value (by
the second order phase transition) or through the intermediate flat
helix phase with the common spin polarization plane. In the sec-
ond case the cone angle appears by jump from /2π down to the
finite value θc (the first order phase transition). The exchange
energy lowering in the subsystem with competing interactions
plays the role of effective easy-plane anisotropy in this subsystem
[18]. An equilibrium cone angle of the A-spins is determined by
the relation between the fields of intersubsystem (A–B) and the
dominant (A–A) exchanges. The latter promotes collinear ordering
of A-spins and leads to an effective anisotropy with an easy axis
which is normal to a helix plane. The temperature variation of the
cone angle is determined by the temperature dependence of the
subsystem magnetizations. In the considered model the main
contribution in this variation is made by the change of B-magne-
tization as contrasted to the hexagonal ferrimagnet DyMn Ge6 6
[20], where the easy-axis R-subsystem moments provide such a
contribution. As a result, in our case the cone angle has the inverse
temperature dependence as compared with the similar one in
DyMn Ge6 6.

Taking into consideration of the single ion (or exchange) easy-
plane anisotropy of the A-spins can change the phase space con-
siderably up to the appearance of the partially disordered states
instead of the conical phase in the limit case of XY-model [21]. The
finite anisotropy of this type changes the character of the AF–ACH
phase transition. The anisotropy field would act on the spins Sa
similarly to the field from the B-spins retaining the spins within
the easy plane and stabilizing the flat phase. The transition into
the conical phase would occur at the finite exchange energy of the
interaction between B-spins (and, consequently, the finite value of
Sb), which is comparable with the anisotropy energy. As a result,
the transition from the AF phase becomes the first order phase
transition similarly to the transition from the AFH phase.

In the framework of the isotropic model the external magnetic
field applied in any direction should rotate the polarization plane
of the incommensurate structures and orientate it orthogonally
relative to the field direction. The symmetry relative to the po-
larization plane of the B-spins is broken and the projection of the
A-spins from the upper and lower cones on the plane becomes
different. It leads to the appearance of the alternate helix pitch
similarly to the case of the triangular helix [3]. As in the case with
easy-plane anisotropy of the A-spins the phase transition into the
ACH phase becomes the first order one.

In conclusion, comparison is made on the result of the nu-
merical free energy minimization taking into account the colli-
nearity condition for the average spins and effective fields (the
solid line in Fig. 4) and without the constraint (the dashed line).
For the selected values of the exchange parameters the
noncollinear solution has a lower energy of the conical state in
comparison with the flat helix energy at any temperatures. So,
ignoring the collinearity condition leads to a significant distortion
of the phase space. The mean field approach allows one to clearly
consider different magnetic states from the physical viewpoint and
to describe the phase transitions both of the first and second order
from the unified position. Within this approach using the colli-
nearity condition in the explicit form reduces the number of
variables and excludes nonphysical states arising in the numerical
calculations.
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