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Problems of obtaining Green's function and using it for studying the structure of scalar electromagnetic
fields in a sinusoidal superlattice are considered. An analytical solution of equation in the k-space for
Green's function is found. Green's function in the r-space is obtained by both the numerical and the
approximate analytical Fourier transformation of that solution. It is shown, that from the experimental
study of Green's function in the k-space the position of the plane radiation source relative to the ex-
tremes of the dielectric permittivity ε ( )z can be determined. The relief map of Green's function in the r-
space shows that the structure of the field takes the form of chains of islets in the plane ωz , the number
of which increases with increasing the distance from a radiation source. This effect leads to different
frequency dependences of Green's function at different distances from the radiation source and can be
used to measure the distance to the internal source. The real component of Green's function and its
spatial decay in the forbidden zones in the near field is investigated. The local density of states, de-
pending on the position of the source in the superlattice, is calculated.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Photonic crystals, which are artificially created media with
periodic physical parameters, has recently been widely studied
(see, e.g., Refs. [1–6]). Knowledge of analytical expressions for
Green's function of waves propagating in such media, is necessary
when considering a number of problems, both theory and ex-
periment. Green's function in the coordinate space ω( )G r r, , 0 is
used as in dealing with problems related to the structure of wave
fields in periodic media and computing the most important
characteristics such as the local density of states (LDOS) [7–10].
Green's function in the wave vector space ω( )G k r, , 0 is needed in
the study of various aspects of theory, for example, the theory of
wave scattering by inhomogeneities [11,12]. The wave equation for
Green's function in one-dimensional superlattice, periodic along
the z-axis, is reduced to a one-dimensional equation by the Fourier
transformation in the ξ = −x x0 and ζ = −y y0 coordinates. This
work is devoted to finding and investigating Green's functions for
the scalar model of electromagnetic waves in one-dimensional
superlattice with a sinusoidal profile of modulation of the di-
electric permittivity ε ( )z . Real photonic crystals typically have a
modulation profile ε ( )z , nearly rectangular. A number of physical
phenomena occurring in the propagation of waves in periodic
henko).
media, are very sensitive to the shape of the profile of ε ( )z .
However, a number of phenomena, including the fundamental
nature, are qualitatively similar for all periodic profiles of ε ( )z . The
sinusoidal modulation of ε ( )z is the most suitable for the analytical
study of such phenomena. A homogeneous equation for a sinu-
soidal superlattice (Mathieu equation) is well studied (see, e.g.,
Ref. [13]). Green's function of waves in this superlattice is much
less studied. In Refs. [14–18], approximate expressions for Green's
function in the coordinate space ω( )G r r, , 0 have been found and
studied.

The objectives of this paper are: (i) obtaining an analytical re-
presentation of Green's function in k-space ω( )G k r, , 0 for scalar
waves in the one-dimensional sinusoidal superlattice; (ii) the
numerical and approximate analytical representation of this
function in the r-space ω( )G r r, , 0 ; (iii) investigation of the struc-
ture of the scalar fields of the plane radiation source using both
forms of Green's function, ω( )G k r, , 0 and ω( )G r r, , 0 .
2. Solution of Green's function equation

Green's function of scalar model of electromagnetic waves in a
sinusoidal superlattice satisfies the equation

ν η ψ δ∇ ( ) + + ( + ) ( ) = − ( − ) ( )⎡⎣ ⎤⎦G qz Gr r r r r r, 2 cos , , 12
0 0 0

where ν ε ω= ( )c/ 2, η ε ω= Δ ( )c2 / 2, π=q l2 / ; ω and c are the
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frequency and the speed of light in vacuum, respectively; ε and εΔ ,
respectively, are the mean value and the amplitude of modulation
of a dielectric permittivity, l and ψ are the spatial period and the
phase of the superlattice, respectively. Here and below, we do not
indicate explicitly the dependence of Green's functions on the
frequency if it does not lead to misunderstandings. In addition to
Eq. (1), Green's function must satisfy the standard conditions of
radiation. Equations for scalar models of elastic and spin waves
differ renaming parameters.

Since the medium is periodically inhomogeneous along the
superlattice z-axis, Green's function depends not only on the dif-
ference −z z0, and the z-coordinate directly. In the xy plane,
Green's function depends only on the difference of the corre-
sponding coordinates, that allows us to carry out the two-di-
mensional Fourier transformation in the transverse coordinates
ξ = −x x0 and ζ = −y y0:

∫ ξ ζ( ) = ( ) ( + ) ( )ξ ζ ξ ζ⊥ ⎡⎣ ⎤⎦G G z z i k k dk dkr r k, , , exp . 20 0

The result is a one-dimensional equation in the form

η ψ

π
δ

( ) + ϰ + ( + ) ( )

= −
( )

( − )
( )

⊥ ⊥⎡⎣ ⎤⎦d
dz

G z z qz G z z

z z

k k, , 2 cos , ,

1
2

,
3

2

2 0 0

2 0

where νϰ = − ⊥k2 and = +ξ ζ⊥ k kk i j is a two-dimensional wave
vector. Eq. (3) was used in Refs. [16,18], where the approximate
expressions for Green's function in some limiting cases had been
obtained. In those studies, Eq. (3) was investigated in the co-
ordinate z-space. In that case, the solution of Eq. (3) was expressed
in terms of independent solutions of the corresponding homo-
geneous equation [13]. These cumbersome expressions are not
always convenient both in analytical and numerical calculations.

In this paper, we develop another method for studying the
solution of Eq. (3), which we briefly have described previously
[19]. First, we find the analytical solution of Eq. (3) in kz-space, and
then examine it numerically and analytically in r-space. Applying
the Fourier transformation to Eq. (3)

∫ ∫ ( )π
( ) = ( ) ( ) ( ) = ( ) ( − ) 4G z G k ik z dk G k G z ik z dexp ,

1
2

exp ,z z z z z z

we obtain

η

π

ϰ − ( ) + ( − ) + ( + )

= −
( )

−
( )

ψ ψ−⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

k G k e G k q e G k q

ik z
1

2
exp .

5

z z
i

z
i

z

z

2

3 0

To find the solution of Eq. (5), we use the methods of analysis of
systems of matrix equations [20,21]. Doing the corresponding
operations (see Appendix A), we obtain Green's function in k-
space in a compact expression containing the ascending and or-
dinary continued fractions

π
( ) = − ( − )

( )
+ +

( )⊥

+ −
G k z

ik z P P
L

k , ,
exp

2
1

.
6z

z
0

0
3

1 1

0

Here ±P1 are ascending continued fractions, determined by the
recursive formula

η ψ= − ( ± )
( ± ) +

( )
± +

±

∓P i
inqz P

L
exp

exp
,

7n
n

n

0 1

and L0 and ±Ln are ordinary continued fractions defined by the
formulas

η η= ϰ − − + = ϰ − ( ± ) −
( )+ −
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Continued fractions in Eq. (6) have fast convergence, so that ex-
pression is useful in the study of Green's function in k-space and
in the r-space. In some cases it is convenient to use also the ex-
pansion of Green's function in a Fourier series, which has the form

∑( ) = − ( − )
( )

⊥
=−∞

∞
⎡⎣ ⎤⎦G k z g i k nq zk , , exp .

9
z

n

n
zk0 0

Here the factors gn
k are determined by the expression

π
η ψ= −

( )
− ( ± ) ⋯

= … ( )

± ∓
−

∓⎡⎣ ⎤⎦g i L L L

n

1
2

exp ,

0, 1, 2, , 10

n n
n nk 3 1 0

where continued fractions designated by slash characters.
3. Field structures of a plane radiation source

In what follows, all graphs of Green's functions correspond to
the plane radiation source located in the plane xy. Green's function
of the source in the z-space defined by the equation

∫ ∫( ) = ( ) ( )G z z G dx dyr r, , . 110 0 0 0

Substituting Eq. (2) into Eq. (11) and integrating over x0 and y0, we
obtain

∫ ∫π δ δ

π

( ) = ( ) ( ) ( + ) ( ) ( )

= ( ) ( ) ( )

ξ ζ ξ ζ ξ ζ⊥

⊥ =⊥

⎡⎣ ⎤⎦G z z G z z i xk yk k k dk dk

G z z
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k

, 2 , , exp
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0

2
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It follows that Green's functions of a plane source ( )G k z,z 0 and
( )G z z, 0 related to the general expression for the spectral form of

Green's function, Eq. (6), by the following relations:

π( ) = ( ) ( ) ( )⊥ =⊥G k z G k zk, 2 , , , 13z z k0
2

0 0

∫π( ) = ( ) ( ) ( )
( )⊥

=⊥
G z z G k z ik z dkk, 2 , , exp .

14z z z
k

0
2

0
0

Examples of relief maps of the imaginary part of Green's
function ω″( )G k, z in kz-space calculated by Eqs. (6) and (13) are
shown in Fig. 1 for the three phase values: ψ = 0 (a), π/2 (b), and π
(c). For the expressiveness of maps, the dimensionless factor ω ω/ r

is added to the normalization of Green's functions, where ωr

corresponds to the middle frequency of the first forbidden Bril-
louin zone of the superlattice. Without such a leveling factor, the
amplitudes of the relief in the high-Brillouin zones are too small.
In the calculations, it is assumed that the source coordinate =z 00

and the location of the source relative to the superlattice is gov-
erned by the spatial phase of the superlattice ψ. Phase ψ = 0
corresponds to the source position in one of the maxima of the
function qzcos , i.e., in a center of the layer with a large value of ε,
the phase ψ π= /2 corresponds to the source position at the
boundary between the layers, and the phase ψ π= corresponds to
the source position in a center of the layer with a lower value of ε
(see the image of a superlattice in the bottom of Fig. 2). In the color
version of Fig. 1, available online, one can see that the phase
change leads to radical restructuring the relief of the function

ω″( )G k, z . At the sites of some positive for ψ = 0 peaks of this
function, the negative peaks occur at ψ π= , the character of the
sequence of peak sights changes as along the kz coordinate, and
along the ω coordinate. Especially peculiar pattern corresponds to
the phase ψ π= /2, when instead of peaks the curves having both
positive and negative components occur.

The spatial structure of the electromagnetic field in the su-
perlattice along the z-axis describes by Green's function ω( )G z, .
This function is determined by the Fourier transformation in the



(a) (b) (c) 

Fig. 1. Relief maps of the imaginary part of the normalized Green's function π ω ω ω( ) ( )q G k2 / ,r z
2 for various values of the superlattice phase ψ = 0 (a), π/2 (b) and π (c). The

relative modulation of the dielectric permittivity ε εΔ =/ 0.8. The attenuation ω ω″ =/ 0.01r was introduced in the calculations. The source is at =z 00 as here and in all
following figures. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

(a) (b) (c) 

Fig. 2. Relief maps of the real (top) and the imaginary (bottom) parts of the normalized Green's function ω ω ω( ) ( )qG z/ ,r for various values of the superlattice phase ψ = 0
(a), π/2 (b) and π (c). At the bottom of each of the drawings (a), (b) and (c), the position of the superlattice corresponding to this phase is shown. ε εΔ =/ 0.8, ω ω″ =/ 0.01r . (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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Fig. 3. Frequency dependences of the normalized imaginary part of Green's func-
tion ω ω ω( ) ( )qG z/ ,r in the second Brillouin zone at different fixed distances from
the source z¼2l (dashed curve, the red), 3l (dot-dashed curve, blue), and 4l (solid
curve, black). ε εΔ =/ 0.8, ω ω″ = −/ 10r

4 . (For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this paper.)
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projection of the wave vector kz of the spectral representation of
Green's function ω″( )G k, z , Eqs. (6) and (14). This transformation
can not be done analytically because of the very complex depen-
dence of expressions ±P1 , L0, and Ln on kz. Therefore, the Fourier
transformation in Eq. (14) was carried out numerically. When
performing this transformation should take into account the ra-
diation conditions.

Relief maps of the real and imaginary parts of Green's function
ω( )G z, are shown in Fig. 2 for the three phase values: ψ = 0 (a), π/2

(b), and π (c). In the normalization of Green's functions, as well as
in Fig. 1, the factor ω ω/ r added to increase the intensity of am-
plitudes in high-frequency areas of the spectrum. The source is at

=z 00 . At the bottom of each of the drawings a, b and c, the po-
sition of the superlattice corresponding to this phase is shown. It is
seen that for ψ = 0 and π the relief is symmetric with respect to
the position of the source, and when ψ π= /2 it has a pronounced
asymmetry. The part of the relief of Green's function ω( )G z, , si-
tuated lower of the first gap, is compared with the relief calculated
by the approximate analytical expression obtained for this case
early [16]. Both reliefs in this area are in good agreement with each
other.

Fig. 2 shows the dramatic change in the electromagnetic field in
the superlattice with increasing the distance from the source. The
character of this change is the same for both imaginary and real
part of Green's function. Lines of zeros of the function at some
points come nearer to each other and the chains of islets on the
relief map of the function ω( )G z, are formed in the plane ωz . With
z increasing the size of the islands decreases, the number of them
increases and chains tilt to the z-axis.

Cardinal restructuring of the electromagnetic field occurs when
the superlattice phase changes relative to the position of the
source. In the color version of Fig. 2, available on-line, can be seen
as with changing the phase, the maxima in the function ω( )G z,
appear in places of minima and vice versa. The imaginary part of
Green's function ω″( )G z, in the band gap is completely absent as
for far and near field (present on the graphs of small amplitude is
due to attenuation introduced in the calculations). The amplitudes
of the real part of Green's function are present in the band gap
only in the near field. As the distance from the source increases,
these amplitudes decay.

Fig. 3 shows in more detail the change in the frequency de-
pendence of the imaginary part of Green's function ω″( )G z, when
observing it at different fixed distances from the source z¼2l, 3l
and 4l. Green's functions are shown in the frequency range cor-
responding to the width of the second Brillouin zone and at the
location of the source in the minimum of the function ε ( )z (i.e., for
ψ π= ). It is seen that with increasing the distance z for one period,
radical restructuring the depending of the function ω″( )G z, on ω
occurs: the number of extrema and the number of zeros of this
function increase for a unit. Even small compared with the period
of the superlattice the change in z leads to a rather pronounced
changes in the frequency dependence of the function ω″( )G z, .
Thus, the observation of the depending of the function ω′( )G z, or

ω″( )G z, on the frequency allows you to measure the distance be-
tween the planar source and the plane of observation with an
accuracy of a fraction of a wavelength. One more method of
measuring the thickness of one-dimensional photonic crystals can
be developed on this principle.

The experimentally often quantities are studied that are not
proportional to the intensity G, but the radiation power | |G2 . The
distribution coefficient of the radiation power in the superlattice is
characterized by

ω ω ω( ) = | ( )| | ( )| ( )K z G z G z, , / , , 152
0

2

where ω( )G z,0 is the Green's function of free space. In Fig. 4 a relief
of the function ω( )K z, is shown that we calculated for the same
parameters of the superlattice, which in Fig. 2 shows the relief
maps of the real ω′( )G z, and imaginary ω″( )G z, parts of Green's
function. Comparison of these figures with each other shows a
dramatic qualitative difference the structure of the spectra both

ω′( )G z, and ω″( )G z, , on the one hand and the structure of the
spectrum of ω( )K z, , on the other hand. For the functions ω′( )G z,
and ω″( )G z, are characteristic the structure of chains of islets that
with increasing z increasingly tilted to the z-axis. For ω( )K z, , the
repetitive structure of cells, oriented perpendicular to the z-axis is
observed. Fig. 5 illustrates how such a dramatic transformation of
the structure and symmetry of the fields takes place. Eq. (15) can
be written as

ω ω
ω

ω
ω

( ) = | ′( )|
| ( )|

+ | ″( )|
| ( )| ( )
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,
,
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,
,

.
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Fig. 5 shows the frequency dependence of squares of the ima-
ginary ω″( )G z, (dashed lines, red) and real ω′( )G z, (dot-dashed
lines, green) parts of Green's function for the values of the co-
ordinates z¼2l, 3l and 4l. These squares, as well as themselves
functions ω″( )G z, and ω′( )G z, (see Fig. 3), have the form of curves
with different number of maxima along theω axis for the different
fixed values of z. However, the maxima and minima of squares of
the functions ω′( )G z, and ω″( )G z, in the summation are mutually
compensated and their sums (solid lines, black) have the form of
smooth curves with a single maximum, the shape of which is
practically independent of z. Thus, an islet structure of the field,
discovered in this study is a phase effect: the effect disappears in
the calculation (or measurement) of the module of Green's func-
tion. The measurement of ω( )K z, instead of ω′( )G z, or ω″( )G z,
results in a significant loss of information. In particular, it is im-
possible to measure the distance to the radiation source from the
frequency dependence of ω( )K z, at a fixed z.

The most important characteristic of inhomogeneous media is
the LDOS [7–10]:

ρ ω ω
π

ω( ) = ( ) ( )
⎡⎣ ⎤⎦

c
Gr r r,

2
Im , , . 17l 0 2 0 0



(a) (b) (c) 

Fig. 4. The relief map of the normalized radiation power ω( )K z, for various values of the superlattice phase ψ = 0 (a), π/2 (b) and π (c). ε εΔ =/ 0.8, ω ω″ = −/ 10r
4.

Fig. 5. Frequency dependencies of normalized squares of the imaginary (dashed
lines, red) and the real (dotted curves, blue) parts of Green's function, and their
sum K (solid lines, black) at distances from the source z¼2l, 3l and 4l. ε εΔ =/ 0.8,
ω ω″ = −/ 10r

4. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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The function of the LDOS for a plane source in a sinusoidal su-
perlattice has calculated by us in the coordinates ω and ψ (Fig. 6).
It is assumed, as in the relief map of Green's function (Figs. 1 and
2), that the plane source is located at the point =z z0, and its
position relative to the superlattice is characterized by the super-
lattice phase ψ. Thus, ψ = 0 corresponds to the position of the
source in the maximum value of the function ε ( )z and ψ π= and
ψ π= − correspond to the minimum of the function. Relief map of
the normalized function ρ ρ/l 0, where ρ0 is the LDOS for a plane
source in vacuum, are shown in Fig. 6a for four Brillouin zones.
Dependences of the function ρ ρ/l 0 on ψ at fixed frequencies are
shown in Fig. 6b for three Brillouin zones (n¼1, 2 and 3). Solid
lines at n¼2 and 3 correspond to the frequencies near the lower
edge of the corresponding band, and at n¼1 to the middle of the
first zone. Dashed curves in all three figures correspond to fre-
quencies near the upper edge of each zone. The LDOS for a
superlattice with the rectangular profile of the function ε ( )z was
calculated in Ref. [7] for the third Brillouin zone. That function
differs from the function in Fig. 6b, n¼3, by the presence of sharp
jumps at points corresponding to the interfaces between layers of
the superlattice. A possible cause of these jumps is a large differ-
ence in the steepness of the slopes of the function ε ( )z for the
sinusoidal and rectangular profiles of the function. However, it
clearly cannot be argued, as LDOS in Ref. [7], in contrast to our
work, was calculated for a superlattice with different thicknesses
from each other adjacent layers. The latter fact could also lead to
sharp differences of LDOS for the superlattices considered in these
studies.
4. Approximate analytical representations of Green's function

In this section, an approximate expressions for the Green's
function ( )⊥G k zk , ,z 0 and ( )⊥G z zk , , 0 , which are valid in the first
and second Brillouin zones of the superlattice, and the band gap
between these zones, derived from the exact formula (6). The
structure of the fields in these areas, in many cases, is of particular
interest. In the frequency range from zero to the second gap, Eq.
(6) can be approximately represented as
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Transition in z-space, we perform by the method of the residue
theory. The poles of the expression (Eq. (18)) are described by the
biquadratic cubic equation, analytical solutions of which are
cumbersome expressions. Our objective is to obtain the relatively
simple analytical formulas. Eq. (18) comprises six poles. Only four
of them, leading to the splitting of the dispersion curves on the
boundary of the first Brillouin zone, should be taken into account:
the two “non-resonant” poles should be discarded according to the
approximations used in Eq. (18). This corresponds to a known
provision that in a periodically inhomogeneous medium with
shallow depth of modulation, the normal waves can be con-
structed up to the second band gap of four traveling waves with
the coordinate factors of the form [22,23]



(a) (b)

Fig. 6. Relief map of the normalized LDOS ρ ρ/l 0, where ρ0 is the LDOS for a plane source in vacuum (a). Dependences of the function ρ ρ/l 0 on the superlattice phase ψ for the
frequencies ω ω =/ 0.5r (solid curve) and 0.838 (dashed curve) in the first Brillouin zone (n¼1), ω ω =/ 1.264r (solid curve ) and 1.946 (dashed curve) in the second Brillouin
zone (n¼2), and ω ω =/ 2.304r (solid curve) and 3.036 (dashed curve) in the third Brillouin zone (n¼3) (b). ε εΔ =/ 0.8, ω ω″ = −/ 10r

3.

(a)

(b)

Fig. 7. Comparison of the imaginary parts of the approximate (a), Eq. (18), and
modeling (b), Eq. (20), representations of Green's function π ω ω ω( ) ( )q G k2 / ,r z

2 .
ε εΔ =/ 0.8, ω ω″ =/ 0.01r .
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Based on the above comments, we propose to use for finding the
poles a model function of the form
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where θ ( )kz is the Heaviside function
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Fig. 7 shows relief maps of the imaginary parts of Green's function
corresponding to the approximate formula, Eq. (18), and the
modeling formula, Eq. (20) for =⊥k 0, i.e., for a plane source. One
can see a good agreement for both functions together. To notice
the differences, the relief depth scale is reduced by one order of
magnitude compared with Fig. 1. It can be seen that there is a
small jump in the imaginary part of the modeling function at
kz¼0, which is absent in the map of Eq. (18). This jump is most
pronounced at the phase ψ π= /2 and equals to zero for ψ π= .

The modeling formula, Eq. (20), in contrast to Eq. (18), has eight
instead of six poles. However, four of them are the non-resonant
type that we do not count, leaving only four resonance poles (cf.
Eq. (19))

η= ± ± ϰ + − ϰ +
( )±

±k
q q

q
2 4

.
22

2
2

Unaccounted poles correspond to a change sign from minus to
plus before the inner radical in the expression (22).

Next, we perform the inverse Fourier transformation of the
function ( )⊥G z zk , , 0 , Eq. (20), by the method of the residue theory
taking into account these four poles. As a result, we obtain ap-
proximate analytical expressions for Green's function ( )⊥G z zk , , 0 in
the form
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with the sign (�) for >z 0, ηϰ < −q /42 and (þ) for <z 0,
ηϰ ≥ −q /42 ;
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with the sign (þ) for <z 0, ηϰ < −q /42 and (�) for >z 0,
ηϰ ≥ −q /42 . Second subscript at ±±

±k in Eqs. (23) and (24) shows a
sign before the inner radical in Eq. (22).

We use analytical expressions, Eqs. (23) and (24), for the ap-
proximate description of the real part of Green's function in the
near-field in the gap. At a small amplitude of the superlattice
modulation ε εΔ ⪡/ 1, in the center of the band gap at ϰ = q /42 , we
obtain a simple expression for the real part of Green's function (in
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Fig. 8. The normalized Green's function ω ω ω( ) ( )qG z/ ,r in the middle of the first gap (ν = q /42 ) for various values of the superlattice phase ψ = 0 (a), π/2 (b) and π (c): exact
values (solid curves, green) and practically coinciding with them the graphs of the approximate equation, Eq. (25) (dashed curves, blue). The graphs of the exponential factor,
Eq. (26) (dashed curves, black) are also shown. ε εΔ =/ 0.4, ω ω″ = −/ 10r

5. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)
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where the characteristic decay length

π
ε
ε

≈
Δ ( )l
l4

. 26s

For the superlattice with a rectangular modulation of the dielectric
permittivity ε ( )z (one-dimensional photonic crystal), the char-
acteristic decay length of the field oscillations in the bandgap was
obtained in Ref. [5] as

≈
( ) ( )

l
l

n nlog /
,

27
d

h l

where nh and nl are the refractive indices of adjacent layers of the
crystal and >n nh l. At small depth of modulation, the ratio n n/h l

can be expressed by the average value ε and the value of mod-
ulation εΔ of the permittivity as

ε ε
ε ε

ε
ε

= + Δ
− Δ

≈ + Δ
( )

⎜ ⎟⎛
⎝

⎞
⎠

n
n

1 .
28

h

l

1/2

In this case, an expression for ld from Eq. (27) follows, which dif-
fers from Eq. (26) only by a numerical factor of π/4 (note that this
factor is the same as the coefficient of the first harmonic of the
rectangular modulation expansion in Fourier series):

ε
ε

≈
Δ ( )l
l

. 29d

Thus, for any of the considered profiles of the function ε ( )z , the
decay length of the oscillations in the band gap is inversely pro-
portional to the relative depth of modulation of the permittivity

ε εΔ / .
The graphs of Eq. (25) are shown in Fig. 8 for various values of

the superlattice phase ψ (dashed curves, blue). This figure also
shows the results obtained by the numerical inverse Fourier
transform of the precision expression, Eq. (6), (solid curves, green).
One can see a good agreement between both these graphs. Fur-
thermore, in Fig. 8 is a graph of the exponential factor in Eq. (25),
providing spatial decay of the field (dashed lines, black). It is seen
the sharp asymmetry of the intensity of the field at ψ = 0, when
the point z¼0 corresponds to the inflection of the function ε ( )z ,
i.e., simulates the center of the interface.
5. Conclusion

We found an analytical solution of the equation in k-space for
Green's function of the scalar model of electromagnetic waves in a
sinusoidal superlattice. It allowed us to get the Green's function in
k-space, ω( )G k r, , 0 , a compact expression in the form of quickly
converging continued fractions. Green's function in r-space,

ω( )G r r, , 0 , has been found by the Fourier transformation of Green's
function ω( )G k r, , 0 performed by both numerical and approximate
analytical methods.

Next, we investigated in detail Green's functions of a plane
radiation source, located in the plane xy, ω( )G k z, ,z 0 and

ω( )G z z, , 0 , i.e., the integrals over the x0 and y0 of the found func-
tions ω( )G k r, , 0 and ω( )G r r, , 0 . It is shown that the relief map of
Green's function in k-space ω( )G k z, ,z 0 dramatically changes with
the position of the plane source z0 relative to the extremes of si-
nusoidal modulation of the dielectric permittivity ε ( )z . Therefore,
from the experimental study of the shape of the peaks of Green's
function ω( )G k z, ,z 0 , it can be determined whether the source is at
the minimum, maximum or inflection of the function ε ( )z (or at
intermediate points).

From the analysis of Green's function in r-space ω( )G z z, , 0 it
showed that radical restructuring of the electromagnetic field in
the superlattice occurs with increasing the distance from a plane
source | − |z z0 . The lines of zeros of Green's function ω( )G z z, , 0 at
some points come nearer to each other and chains of islets formed
on the relief map of this function in the plane ωz . With increasing
the distance | − |z z0 , the sizes of islands decrease, their number
increases. As a result, the dependencies of Green's function

ω( )G z z, , 0 on the frequency ω greatly differ at different distances
from the radiation source. This effect can be used to measure as
the distance to the internal source and the thicknesses of one-
dimensional photonic crystals from the frequency dependence of
Green's function at the observation point. It is shown that this is a
phase effect which disappears when computing Green's function
module (or, respectively, when the radiation power and not the
intensity is measured). Green's function in r-space ω( )G z z, , 0 was
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used also to investigate the changes of the LDOS depending on the
position of the radiation source relative to the extremes of sinu-
soidal modulation of the dielectric permittivity ε ( )z .

Approximate expressions for Green's functions ω( )G k r, , 0 and
ω( )G r r, , 0 , just in the first and second Brillouin zones of the su-

perlattice and the band gap between the bands were derived. The
structure of the fields in these areas, in many cases, is of particular
interest and relatively simple approximate analytical formulas al-
low to analyze the characteristics of this structure. We have stu-
died the features of the spatial decay of the real component of the
function ω( )G z z, , 0 in the first bandgap depending on the position
of the radiation source relative to the extremes of sinusoidal
modulation of the dielectric permittivity ε ( )z . It is shown that the
near-field Green's function has a sharp asymmetry for the radia-
tion source located at the points of inflection of the function ε ( )z .

The effects have been found and studied theoretically in this
paper, it can be detected and studied experimentally by the
methods of the intensively developing currently nanooptics. Op-
tical and electron-optical methods for the experimental study of
nano-emitting sources in heterogeneous structures are intensively
developed at present [24–30]. The emission of the particles in the
doped material excited by an external laser pulses is studied in
these works. In most cases the LDOS is studied, which is propor-
tional to the imaginary part of Green's function in the point of the
radiation source. We hope that the results of our work will sti-
mulate further development of experimental methods for study-
ing the structure of electromagnetic fields as well beyond the
points of emission.
Appendix A

To investigate Eq. (5), we make the substitution

→ + = ± ± … ( )k k pq p, 0, 1, 2, . A.1z z

Then the problem reduces to the solution of an infinite system of
linear equations for the Fourier components of Green's function
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where the notation = ( + )G G k pqp z is introduce. We introduce
notations for the matrix elements of this system
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Then the system of equations (Eq. (A.2)) takes the form:

+ + = ( )− +cG a G bG f . A.4p p p p p1 1

The idea is to express −Gp 1 and +Gp 1 through Gp and the elements
of the matrix elements Eq. (A.3). For this we write the equation for

−Gp 1 in the next form:

+ = − ( )− − −cG a G f bG , A.5p p p p p2 1 1

The following system of equations for the semi-infinite matrices
corresponds to Eq. (A.5):
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The solution −Gp 1 can be represented in the form of ascending
continued fractions whose partial denominators are ordinary
continued fractions [20,21]. For this a finite system of linear
equations is considered
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According to the Cramer formula
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where Δ∥ ∥n is the determinant of the matrix Eq. (A.7) and ∥ ∥Dn is
the same determinant with the replacement of the n-th column by
the right-hand side of Eq. (A.7). First, we find an expression for the
determinant Δ∥ ∥n . We subtract the first column multiplied by
b a/1 1 from the second column, and expand the resulting determi-
nant on the elements of the first row. Continuing this process, we
obtain
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where each of the factors is the continued fraction, composed of
the elements of the determinant (we denote a continued fraction
with a vertical bar). Next, we calculate the determinant ∥ ∥Dn . We
subtract the first row of the determinant multiplied by c a/2 1 from
the second row and expand the resulting determinant on the
elements of the first column. Continuing this process, we obtain
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where =A a1 1, = − − −A a b c A/i i i i i1 1, and = …i n2, 3, , . Note, that
the expansions (Eqs. (A.9) and (A.10)), differ only in the last factors.
Substituting Eqs. (A.9) and (A.10) into Eq. (A.8), we obtain the
following result:
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Doing similar calculations, we find
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where Bn¼an, = − + + +B a b c B/i i i i i1 1 1, and = − − …i n n1, 2, , 1. In
our case, =c ci and =b bi . In accordance with the representations
Eqs. (A.11) and (A.12), the functions −Gp 1 and +Gp 1 take the form:
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where Ap and Bp now have the form = − −A a bc A/p p p 1 and
= − +B a bc B/p p p 1. Substituting Eqs. (A.13) and (A.14) into Eq. (A.4),

we obtain Gp in the form:
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Without loss of generality, we can set p¼0 and write the general
expression for the spectral form of Green's function in a compact
form of Eq. (6).
References

[1] K. Sakoda, Optical Properties of Photonic Crystals, 2nd ed., Springer-Verlag,
Germany, 2004.

[2] J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals:
Molding the Flow of Light, 2nd ed., Princeton University Press, USA, 2008.

[3] P. Markos, C.M. Soukoulis, Wave Propagation: From Electrons to Photonic
Crystals and Left-Handed Materials, Princeton University Press, USA, 2008.

[4] J.-M. Lourtioz, H. Benisty, V. Berger, J.-M. Gerard, D. Maystre, A. Tchelnokov,
Photonic Crystals, Second ed., Springer-Verlag, Germany, 2008.

[5] M. Skorobogatiy, J. Yang, Fundamentals of Photonic Crystal Guiding, Cam-
bridge University Press, USA, 2009.

[6] V.F. Shabanov, S.Ya. Vetrov, A.V. Shabanov, Optika Real'nykh Fotonnykh Kris-
tallov, Izdatel'stvo SO RAN, Russia, 2005.

[7] A. Moroz, Europhys. Lett. 46 (1999) 419.
[8] M. Wubs, A. Lagendijk, Phys. Rev. E 65 (2002) 046612.
[9] E. Yeganegi, A. Lagendijk, A.P. Mosk, W.L. Vos, Phys. Rev. B 89 (2014) 045123.
[10] A. David, H. Benisty, C. Weisbuch, Rep. Prog. Phys. 75 (2012) 126501.
[11] V.A. Ignatchenko, Y.I. Mankov, D.S. Tsikalov, Zh. Eksp. Teor. Fiz. 134 (2008) 706

[JETP 107 (2008) 603].
[12] V.A. Ignatchenko, D.S. Tsikalov, Zh. Eksp. Teor. Fiz. 140 (2011) 268 [JETP 113

(2011) 232].
[13] P.M. Morse, H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, USA,

1953.
[14] M.A. Peterson, Phys. Rev. A 27 (1983) 520.
[15] N.A. Nicorovici, R.C. McPhedran, Phys. Rev. E 49 (1994) 4563.
[16] A.Yu. Val'kov, V.P. Romanov, A.N. Shalaginov, Akust. Zh. 37 (1991) 636.
[17] E.V. Aksenova, V.P. Romanov, A.Yu. Val'kov, Phys. Rev. E 59 (1999) 1184.
[18] E.V. Aksenova, A.Yu. Val'kov, V.P. Romanov, Opt. Spektrosk. 104 (2008) 440

[Opt. Spectrosc. 104 (2008) 391].
[19] V.A. Ignatchenko, D.S. Tsikalov, Solid State Phenom. 233–234 (2015) 47.
[20] V.Y. Skorobogat'ko, Theory of Branching Continued Fractions and Its Appli-

cations in Computational Mathematics, Nauka, Russia, 1983.
[21] P.K. Korneev, Vestn. Stavrop. State Univ. 38 (2004) 69.
[22] H. Kogelnik, Bell Syst. Tech. J. 48 (1969) 2909.
[23] S.G. Rautian, Opt. Spektrosk. 104 (2008) 122 [Optics and Spectroscopy 104

(2008) 112].
[24] J.P. Dowling, C.M. Bowden, Phys. Rev. A 46 (1992) 612.
[25] M. Scalora, J.P. Dowling, M. Tocci, M.J. Bloemer, C.M. Bowden, J.W. Haus, Appl.

Phys. B 60 (1995) 57.
[26] M.D. Tocci, M. Scalora, M.J. Bloemer, J.P. Dowling, C.M. Bowden, Phys. Rev. A 53

(1996) 2799.
[27] J.M. Bendickson, J.P. Dowling, M. Scalora, Phys. Rev. E 53 (1996) 4107.
[28] F.J. Garcia de Abajo, M. Kociak, Phys. Rev. Lett. 100 (2008) 106804.
[29] M.D. Birowosuto, S.E. Skipetrov, W.L. Vos, A.P. Mosk, Phys. Rev. Lett. 105 (2010)

013904.
[30] L. Novotny, B. Hecht, Principles of Nano-Optics, Second ed., Cambridge Uni-

versity Press, USA, 2012.

http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref1
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref1
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref2
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref2
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref3
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref3
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref4
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref4
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref5
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref5
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref6
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref6
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref7
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref8
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref9
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref10
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref11
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref11
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref12
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref12
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref13
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref13
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref14
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref15
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref16
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref17
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref18
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref18
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref19
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref20
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref20
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref21
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref22
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref23
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref23
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref24
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref25
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref25
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref26
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref26
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref27
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref28
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref29
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref29
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref30
http://refhub.elsevier.com/S0921-4526(16)30006-0/sbref30

	Green's functions of the scalar model of electromagnetic fields in sinusoidal superlattices
	Introduction
	Solution of Green's function equation
	Field structures of a plane radiation source
	Approximate analytical representations of Green's function
	Conclusion
	References




