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In the framework of the coupled mode theory we consider light trapping between two off-channel 
resonators which serve as self-adjusted Fano mirrors due to the Kerr effect. By inserting an auxiliary 
nonlinear resonator between the mirrors we achieve self-tuning of phase shift between the mirrors. That 
allows for the light trapping for arbitrary distance between the mirrors.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

One of the fundamental devices for trapping of light is a Fabry–
Perot resonator with two Fano mirrors [1–4]. The simplest way 
to realize a Fano mirror in a photonic waveguide is to set up 
a side-coupled resonator demonstrated in Fig. 1 (a). In what fol-
lows we will refer to such side-coupled resonators as off-channel 
resonators. Then two paths of light, through the waveguide, and 
through the resonator, can interfere resulting in a full reflection at 
some definite frequency of light ω = ω0 where ω0 is the eigenfre-
quency of the resonator. Two such side-coupled resonators can act 
as a pair of perfect mirrors that trap waves between them. Thus, 
the structure formed by two Fano mirrors is equivalent to a Fabry–
Perot resonator.

The light trapping is realized when the spacing L between the 
mirrors is tuned to make the round-trip phase shifts add up to an 
integer multiple of 2π to give rise to the Fabry–Perot bound state 
in the continuum (BSC) [5]. The BSCs in such structures were in-
dependently considered in application to different wave structures 
from quantum waveguide with two impurities [6], water waves 
between two obstacles [7], quantum transmission in temporally 
periodically driven potential wells [1], electron transport through 
double quantum dots [8–11] and photonic crystal structures [2–4,
12–17].

One important property of the BSC is resonant enhancement 
of the electromagnetic field as the resonance width tends to zero 
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Fig. 1. (a) The photonic crystal structure, which consists of a square lattice of dielec-
tric GaAs rods. Single row of rods is removed to form directional waveguide coupled 
to two off-channel single-mode resonators and (b) its coupled mode theory scheme.

[18–21]. Then nonlinear and optomechanical effects become im-
portant [22–28]. Remarkably, in this case the robust light trapping 
can be achieved without a necessity to tune material parameters 
of the system [23]. For the reader’s convenience we illustrate the 
basic ideas behind this phenomenon by the example of the Fabry–
Perot resonator composed of two identical nonlinear off-channel 
resonators side coupled with the linear waveguide [23] as depicted 
in Fig. 1.

In the linear case each off-channel resonator fully reflects light 
at the frequency ω = ω0. Then if k(ω0)L = πn, n = 1, 2, 3, . . . the 
condition for standing waves between the Fano mirrors is fulfilled 
[3]. Therefore one has to tune both the distance L and the res-
onant frequency of the resonator ω0 if the frequency of injected 
light is fixed. In the case of nonlinear resonators the resonant 
frequencies are shifted by the intensity of light in the resonator 
ω0 + λ|A j |2, j = 1, 2 due to the Kerr effect, where A j are the am-
plitudes of resonant mode of the resonators. Then the condition 
for the Fano mirror ω = ω0 + λ|A j |2 is satisfied without necessity 
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Fig. 2. The Fabry–Perot resonator with an auxiliary central nonlinear resonator side coupled with the waveguide (a) and (b) and the resonator in the waveguide (c) and (b).
to tune the material parameters or the frequency ω. However, we 
still have to adjust the distance between the mirrors.

In the present paper we show a possibility of stable light trap-
ping in the nonlinear Fabry–Perot resonator without necessity to 
tune the resonant frequency of the Fano mirrors and the distance 
between them by implementation of an auxiliary nonlinear res-
onator as shown in Fig. 2. Such system can easily be considered in 
the framework of coupled mode theory [29,30].

2. Coupled mode theory of light trapping

Assume that we can neglect the dispersion of the photonic 
crystal waveguide: k(ω) = const, and only a single eigenmode of 
each resonator resides in the propagation band of the waveguide. 
In general the auxiliary nonlinear resonator can be placed between 
the Fano mirrors non-symmetrically with different phase shifts be-
tween the left Fano mirror and the auxiliary resonator φ1 and the 
right Fano mirror and the auxiliary resonator φ2. We consider two 
cases for the auxiliary resonator: (a) side coupled with the waveg-
uide and (b) in the waveguide.

2.1. Auxiliary resonator side-coupled with waveguide

The stationary CMT equations for the case of all three res-
onators side-coupled with the waveguide shown in Fig. 2 (a) 
and (b) take the following form [29,30]

(ω − ω1 + i�)A1 = i
√

�(S0 + σ1−),

(ω − ω2 + iγ )A2 = i
√

γ (σ1+eiφ1 + σ2−),

(ω − ω3 + i�)A3 = i
√

�σ2+eiφ2 ,

σ1+ = S0 − √
�A1,

S1− = σ1− − √
�A1,

σ1−e−iφ1 = σ2− − √
γ A2,

σ2+ = σ1+eiφ1 − √
γ A2,

t = σ2+eiφ2 − √
�A3,

σ2−e−iφ2 = −√
�A3. (1)

Here A j are the amplitudes of the resonant modes in resonators 
j = 1 and j = 3 and in the auxiliary resonator j = 2; σ j±, r, t and 
S0 are the amplitudes of waves in the sections of the waveguides 
as indicated in Fig. 2 (b); φ1, φ2 represent the phase shift incurred 
as the waveguide mode travels from the first Fano mirror to an 
auxiliary resonator and from the auxiliary resonator to the second 
Fano mirror; ω j are the resonance frequencies of the resonators
ω j = ω j0 + λ|A j|2, (2)
√

� is the coupling of the resonators 1 and 3 and √γ is the cou-
pling of the auxiliary resonator with the waveguide, respectively. 
After simple algebra we can rewrite these equations as follows

(ω − ω1 + i�)A1 + i
√

γ �eiφ1 A2 + i�ei(φ1+φ2) A3 = i
√

�S0,

i
√

γ �eiφ1 A1 + (ω − ω2 + iγ )A2 + i
√

γ �eiφ2 A3 = i
√

γ eiφ1 S0,

i�ei(φ1+φ2) A1 + i
√

γ �eiφ2 A2 + (ω − ω3 + i�)A3

= i
√

�ei(φ1+φ2) S0,

t = S0ei(φ1+φ2) − √
�ei(φ1+φ2) A1 − √

γ eiφ2 A2 − √
�A3,

r = S1− = −√
�A1 − √

γ eiφ1 A2 − √
�ei(φ1+φ2) A3. (3)

The first three equations for mode amplitudes A j , j = 1, 2, 3
can be written in the compact form

(ω − Ĥeff)A = � in (4)

and can be interpreted as the Lippmann–Schwinger equation [2,4]
with the non Hermitian Hamiltonian

Ĥeff =
⎛
⎝ ω1 − i� −i

√
γ �eiφ1 −i�ei(φ1+φ2)

−i
√

γ �eiφ1 ω2 − iγ −i
√

γ �eiφ2

−i�ei(φ1+φ2) −i
√

γ �eiφ2 ω3 − i�

⎞
⎠ , (5)

and

� in = i S0

⎛
⎝

√
�√

γ eiφ1√
�ei(φ1+φ2)

⎞
⎠ . (6)

The solution of Eq. (4) is given by the inverse of the matrix 
(ω − Ĥef f ). However, there could be a case that the inverse matrix 
does not exist, i.e., the determinant of the matrix equals zero. The 
condition for BSC is given by equation

||ωc − Ĥeff|| = 0, (7)

where ωc is the discrete eigenfrequency of the BSC. This equation 
with account of Eq. (2) gives the following equalities

ωc = ω10 + λ|A1c|2 = ω30 + λ|A3c|2, |A1c| = |A3c|,
ωc = ω2 + λ|A2c|2 − 2γ

cot φ1 + cot φ2
. (8)

The first equality in this equation defines the condition of the self-
adjusted Fano mirror [23] while the second equality gives us the 
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Fig. 3. Frequency dependence of the resonator amplitudes |A j | (a), transmittance 
|t|2 (b) and phase difference (c) calculated for the parameters � = 0.01, γ =
0.0025, φ1 = φ2 = 0.3π, λ = 0.01, ω10 = ω30 = 1, ω20 = 0.995, S0 = 0.007. The BSC 
point is marked by closed circle. The mode amplitudes A j are shown in (a) by 
blue dash ( j = 1), brown dash–dot ( j = 2), and red solid ( j = 3) lines. (d) The 
case of non-symmetrical position of the auxiliary in-channel resonator with φ1 =
0.3π, φ2 = 0.35π . Thin vertical line shows the BSC frequency (8). Thicker lines in 
the transmittance mark stable parts of the solutions. (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the web version of 
this article.)

condition for the self-tuning of phase shift between the Fano mir-
rors. Substitution of this equation into Eq. (4) for 	in = 0 gives 
additional equations for the BSC amplitudes

A1c sinφ1 = A3c sinφ2,

A2c = −
√

�

γ
(A1c cosφ1 + A3c cosφ2). (9)

Because the intensities at the Fano mirrors have to be equal we im-
mediately obtain that ω10 = ω30 and the auxiliary resonator has to 
be placed symmetrically between the mirrors: φ1 = φ2 = φ. Then 
we get the following equalities for the BSC intensities

λ|A1c|2 = λ|A3c|2 = ω20 − ω10 − γ tanφ

1 − 4�
γ cos2 φ

,

|A2c|2 = 4�

γ
cos2 φ|A1c|2. (10)

Numerical solutions of nonlinear equations (3) and (7) shown 
in Fig. 3 demonstrate two different solutions. The first solution 
inherited from the linear case shows a typical excitation of the 
resonators whose mode amplitudes shown in Fig. 3 (a) tends to 
zero when the injected amplitude S0 → 0. Respectively this solu-
tion gives transmission zeros as shown in Fig. 3 (b). Due to three 
resonators side coupled with the waveguide these zeros coalesce 
to give rise to wide domain in frequency 0.995 ≤ ω ≤ 1.005 where 
the system almost perfectly reflects light.

Besides there is a solution for the resonator mode amplitudes 
A j which has a shape of closed loops in Fig. 3 (a) which shrink 
to the BSC points given by Eqs. (8), (9) and (10) when S0 → 0. In 
what follows we term this solution as the BSC originated solution 
although the BSC is corrupted with the growth of injected power 
[23]. This solution contributes into the transmittance in the form 
of a butterfly shape resonance as shown in Fig. 3 (b). Again as the 
injected power is decreased the width of the resonance tends to 
zero.

Fig. 3 (c) demonstrates the behavior of the phase difference 

φ = arg(σR) − arg(σL) between the waveguide modes ingoing 
and outgoing to the auxiliary resonator. Here σR = σ2+, σL =
σ1+eiφ1 . The phase shift incurred as the waveguide mode trav-
els from the first Fano mirror to the second mirror was chosen 
0.6π . As Fig. 3 (c) demonstrates the auxiliary resonator provides 
the phase shift 0.4π at the BSC point to give rise to the total phase 
shift π . Thus one can see that nonlinearity of the off-channel aux-
iliary resonator lifts the necessity to adjust the distance between 
the mirrors provided that the phase φ belongs to the domain 
where the intensities |A jc|2 defined by Eq. (10) remains positive.

The stability of the solutions was inspected by standard meth-
ods of small perturbations [31]. The stability domains are marked 
by lines thicker in the transmittance (Fig. 3 (b)). It is surprising 
that fingerprints of the BSC are seen even when the auxiliary res-
onator is placed between the Fano mirrors non-symmetrically, i.e., 
when φ1 �= φ2 as shown in Fig. 3 (d).

2.2. Auxiliary resonator in the waveguide

The case is shown in Fig. 2 (c) and (d). The coupled mode the-
ory equations coincide with Eqs. (1) except the equations for light 
flows through the auxiliary in waveguide resonator for φ1 = φ2 [29,
30]:

σ1−e−iφ = −σ1+eiφ + √
γ A2,

σ2+ = −σ2− + √
γ A2. (11)

As a result we have the following equations for the amplitudes A j :

[ω − ω1 + i�(1 − e2iφ)]A1 − i
√

γ �eiφ A2 = i
√

�S0(1 − e2iφ),

i
√

γ �eiφ A1 + (ω − ω2 + iγ )A2 + i
√

γ �eiφ A3 = i
√

γ eiφ S0,

−i
√

γ �eiφ A2 + [ω − ω3 + i�(1 − e2iφ)]A3 = 0,

t = √
�(e2iφ − 1)A3 + √

γ eiφ A2,

r = S1− = −S0e2iφ + √
�(e2iφ − 1)A1 + √

γ eiφ A2. (12)

Repeating calculations described in subsection A we obtain equa-
tions similar to Eqs. (8)–(10) except that φ → φ + π/2:

λ|A1c|2 = λ|A3c|2 = ω20 − ω10 + γ cot φ

1 − 4�
γ sin2 φ

,

|A2c|2 = 4�

γ
|A1c|2 sin2 φ. (13)

with the BSC frequency

ωc = ω10 + λ|A1c|2. (14)

As seen from Fig. 4 the frequency dependence of the BSC orig-
inated solution induced butterfly type resonance is very similar 
to the previous case of auxiliary resonator side coupled with the 
waveguide shown in Fig. 3.

3. Light storage in Fabry–Perot BSC

Following Ref. [27] we consider the trapping of a Gaussian pulse 
by a Fabry–Perot BSC, i.e. the effect of light storage. The mech-
anism of the light storage by the BSCs is the following. Assume 
for a moment that the amplitude of the injected wave is so small 
that we can neglect the nonlinearity. Because the BSC is completely 
decoupled from the continuum in a linear system it can not be 
probed by the incoming wave. However, with the increase of the 
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Fig. 4. Frequency dependence of the amplitudes |A j | (a) and transmittance |t|2 (b) 
for the case of auxiliary nonlinear resonator in the waveguide with the parameters 
� = 0.01, γ = 0.02, φ = 0.55π, λ = 0.01, ω10 = ω30 = 1, ω20 = 0.995, S0 = 0.012. 
The BSC point given by Eqs. (13) and (14) is marked by closed circle. Thicker lines 
in the transmittance mark stable parts of the solutions.

injected power the Kerr effect of the resonators becomes impor-
tant killing two birds with one stone. First, there is no necessity 
for tuning material parameters because the Kerr effect in the res-
onators results in occurrence of self-induced BSCs as was shown in 
previous sections. Second, the nonlinearity couples the BSC with 
the continuum so that the injected wave excites the BSC trans-
forming it into a quasi-BSC [22,23]. Once the pulse has passed by 
the Fabry–Perot resonator the quasi-BSC is again decoupled from 
the waveguide and becomes a true BSC. As a result some amount 
of light is trapped in the true BSC opening an opportunity for 
light storage. Finally, the application of a secondary pulse again 
transforms the true BSC into a quasi-BSC with finite life-time and 
completely releases the light. In this section we apply these ideas 
on the present Fabry–Perot resonator.

The time dependent coupled mode theory equations for off-
channel resonator have the following form [2,3]

iȦ(t) = ĤeffA(t) + � in(t)e−iωt (15)

where Ĥeff is effective Hamiltonian (5), � in is incoming wave (6)
with

S0(t) = E0 exp(−t2/2σ 2). (16)

For a monochromatic wave φ = k(ω)L. However for a light pulse 
which is an expansion over monochromatic waves these equations 
(15) are not valid. Therefore we have to modify Eqs. (15) taking 
into consideration the delay time τ = φ/ω for travelling from one 
resonator to another [27]

i Ȧ1 = (ω10 + λ|A1|2 − i�)A1(t) − i
√

γ �A2(t − τ )

−i�A3(t − 2τ ) + i
√

�S0(t)e−iωt,

i Ȧ2 = (ω20 + λ|A2|2 − iγ )A2(t) − i
√

γ �A1(t − τ )

−i�A3(t − τ ) + i
√

γ S0(t − τ )e−iω(t−τ ),

i Ȧ3 = (ω30 + λ|A3|2 − i�)A3(t) − i
√

γ �A2(t − τ )

−i�A1(t − 2τ ) + i
√

�S0(t − 2τ )e−iω(t−2τ ). (17)

Numerical integration give us solution of these equations pre-
sented in Fig. 5.

In Fig. 5 (a) one can see that the effect of light trapping is 
achieved without tuning the parameters. One can also see from 
Fig. 5 (b) that the injection of a secondary pulse can release the 
trapped light from the BSC paving a way for self-adjusting all-
optical light storage devices.

4. Conclusions

In the framework of the stationary coupled mode theory we 
revealed two important conceptual aspects of light trapping in 
Fig. 5. (Color online.) Time evolution by Eqs. (17) of mode amplitudes |A1| (blue 
dashed line), |A2| (brown dash–dot line) and |A3| (red solid line) after the injection 
of a first gaussian pulse shown by thick green solid line with σ = 4000, E0 = 0.7
(a) and a secondary pulse with σ = 1000, E0 = 0.1. The parameters of the system 
is given in Fig. 3 caption. Horizontal black dash lines show the BSC amplitude given 
by Eqs. (10).

Fabry–Perot systems with account of the Kerr effect. The first as-
pect is related to a self-adjusted Fano mirror based on the off-
channel resonator with the eigenfrequency ω0 [32]. For any fre-
quency ω of injected light such mirror is capable for perfect re-
flection due to the Kerr shift of the eigenfrequency of the res-
onator ω = ω0 + λ|A|2 where A is the amplitude of eigenmode. 
Thus, exploiting two identical nonlinear Fano mirrors one can de-
sign a Fabry–Perot resonator which can support self-induced BSCs 
[23]. However, the distance between the mirrors L has to be ad-
justed for holding an integer number of half wavelengths φ = kL =
πn, n = 1, 2, 3, . . .. The second aspect is related to a self-tuning of 
phase shift between the Fano mirrors due to nonlinear response 
of an auxiliary resonator placed between the mirrors. That relaxes 
the necessity to tune a distance between the mirrors. The third 
aspect important with experimental view of point is the effect of 
light absorption. The light absorption quantitatively given by the 
quality factor Q transforms the true BSC into the quasi-BSC with 
the life time proportional to Q . Respectively the amplitudes A j in 
Fig. 5 will decay after this time. We analyzed the stability of the 
solutions to reveal that only fragments of the BSC originated solu-
tion are stable while the solution inherited from the linear case is 
stable for all frequencies. Nevertheless we speculate it is sufficient 
to observe the trapped BSC solution as a response, for example, to 
injected laser pulses.
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jačić, Observation of trapped light within the radiation continuum, Nature 
499 (7457) (2013) 188–191, http://dx.doi.org/10.1038/nature12289.

[16] B. Zhen, C.W. Hsu, L. Lu, A.D. Stone, M. Soljačić, Topological nature of opti-
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