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1. Introduction

If waveguides are attached to a quantum dot (QD) the bound 
states of the QD residing in the propagation band become 
resonant states with finite resonant widths. There could be 
however an exception to this widely accepted rule [1, 2]. 
According to Friedrich and Wintgen [3, 4] if two resonances 
pass each other as a function of continuous parameter one of 
the states can acquire zero resonance width. Thus, this reso
nance state becomes a bound state in the continuum (BSC). 
The Friedrich–Wintgen mechanism of destructive interfer
ence of two resonances was explored in various QDs with 
variation of the finger gate electrostatic potential [5–10] to 
demonstrate the occurrence of the BSCs. An external magn
etic field piercing QDs or Aharonov–Bohm rings was con
sidered as an alternative physical parameter to achieve the 
BSCs [11–14]. An equivalent explication of the BSCs is that a 
degeneracy of the bound states of the same symmetry occurs 

under a variation of the QD parameter. Then the state super
posed from two degenerate QD states can be decoupled from 
the continuum [5, 10].

When we deal with electron ballistic transport in quantum 
wires the number of continua is doubled because of the elec
tron spin

µ σ= −µ σ
∗�

E
m

k g H
2

z

2
2

B 0z
 (1)

with the corresponding propagating states (continua)

( ) ( ) ψ ψ= =↑ ↓↑ ↓1
0

e , 0
1

e .k x k xi i (2)

However as long as the spin–orbit interaction is disregarded 
the Hamiltonian is decomposed into two decoupled blocks. 
Then the Friedrich–Wintgen mechanism for the BSC can be 
independently applied to each block giving rise to BSCs with 
definite spin projection due to the Zeeman term [15]. Account 
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of the spin–orbit interaction does not change the number 
of continua (2) however the spin dependent subsystems are 
coupled through the spin–orbit interaction. In that case the 
Friedrich–Wintgen mechanism of destructive interference of 
two resonances has to be reexamined with inclusion of all 
spin dependent continua whose number becomes equal to 
four when only the first propagation subband of both attached 
waveguides is open.

First, the problem of the BSC residing in a finite number of 
continua was considered by PavlovVerevkin and co authors 
[16, 17] in the framework of the Weisskopf–Wigner model 
[18, 19]. Rigorous statement about the BSCs was formulated 
as follows. The interference among N degenerate states which 
decay into K noninteracting continua generally leads to the 
formation of N  −  K BSCs. The equivalent point of view is 
that the linear superposition of the N degenerate eigenstates 

ψ∑ = an
N

n n1  can be achieved to have zero coupling with K dif
ferent continua in N  −  K ways by a variation of the N superpo
sition coefficients an. Respectively, these coefficients an define 
an expansion of the BSC over the eigenstates of the closed 
QD. Note, that the number of continua is growing because of 
many physical reasons, for example, a few non symmetrically 
attached waveguides, multiple propagation subbands in the 
waveguides, or two polarizations of the radiation continuum 
in case of electromagnetic BSCs. Each case puts the problem 
of constructing BSCs on the line of art [7, 20–23].

In this paper we apply the above consideration to the open 
Aharonov–Bohm ring in the presence of the Rashba spin–orbit 
interaction (RSOI). As seen from figure 1 we have two wave
guides and each of those have two spin dependent continua 
resulting in K  =  4. Nevertheless because of the symmetry 
relative to inversion →−x x it is sufficient to establish orthog
onality of the superposed state ψ∑ = an

N
n n1  with two spin polar

ized continua of only one waveguide. Therefore the number 
of continua is reduced effectively twice K  =  2 which requires 
a degeneracy of, at least, three eigenstates of the closed ring 
to realize BSCs. Thus, the BSC in the ring with the RSOI is 
a product of destructive interference of three resonant states. 
The threefold degeneracy of eigenstates can be achieved by 
continuous variation of two physical parameters, the magnetic 
flux and the RSOI strength. The last parameter is affected by 
external electric field [24]. The magnetic flux and the confine
ment potential which defines the size of the ring can be also 
chosen as an alternative pair of parameters.

Quantum rings made of semiconducting materials exhib
iting RSOI have attracted considerable attention due to fun
damental spindependent quantum interference phenomena 
that are observable in these systems. Since the strength 
of the RSOI can be tuned with external gate voltages [24], 
quantum rings or systems of them have possible spintronic 
applications. Aharonov–Bohm oscillations in the presence of 
SOI were observed in [25, 26] and systematic analysis of the 
conductance and polarization of transport electrons through 
the twodimensional rings with the RSOI was presented by 
Nowak et al [27]. The electron transfer through quantum rings 
involves both the spin precession due to the RSOI and the 
quantum interference effects related to Aharonov–Bohm and 

Aharonov–Casher (AC) effects [28, 29]. The latter spininter
ference effect [30, 31] results from the fact that the relative 
phase shifts for the wave function passing through both arms 
of the ring are spin dependent in the presence of RSOI. So far 
numerous theoretical works have mostly addressed 1d rings 
[32–40]. This approach allows to obtain analytical description 
of charge and spin transport through the ring as function of 
the electron Fermi energy and the RSOI strength. Theoretical 
studies concerning 2d channels show however that for an 
accurate description of transport through the RSOI ring, the 
finite width of the channels can not be neglected [31, 41]. This 
is mainly due to the fact that for a finitewidth ring the spin 
projection is no longer well defined [27, 41].

2. One-dimensional ring

The Hamiltonian of the 2d ring has the following form

α σ

µ σ

= − ∇− − × − ∇−

+

∗
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2

B 0

( ) [ ( )]
→ → →

 
(3)

If radial modes of the 2d ring are neglected, one can use the 
onedimensional Hamiltonian written as follows in a dimen
sionless form [32–40]

ϕ
β
σ γ ν γσ= −

∂
∂
+ − +̂

⎛
⎝
⎜

⎞
⎠
⎟H i

2
r z

2

ˆ ˆ (4)

where γ = Φ
Φ0

 is the dimensionless flux piercing the 1d ring of 

radius R, /β α= ∗ �2 Rm 2 is the dimensionless RSOI constant, 
ˆ ˆ ˆσ ϕσ ϕσ= +cos sinr x y, /ν π= ∗ ∗g m m2 . /πΦ = Φ = �H R e,0

2
0  

and H0 is the external magnetic field. The Bohr magneton is 
absorbed by ν γ. The Zeeman contribution in (4) is usually 
small ν� 1 [35]. Therefore, at the first step we can disregard 
this contribution. Then the eigenenergies of the 1d closed ring 
are [34–36, 38, 39]

( )γ γ= + −σ
σE m ,m AC

2 (5)

where

( )γ σ β= − +σ 1

2
1 1AC

2 (6)

is the spin dependent Aharonov–Casher flux [35] with σ =±1. 
The corresponding eigenfunctions are

Figure 1. Aharonov–Bohm ring pierced by magnetic flux γ with 
two symmetrically attached waveguides. Shaded area indicates the 
region where the RSOI is present.
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The eigenenergies double degenerate in σ for β = 0 (dash 
blue lines in figure 2) are split in the presence of the RSOI 
(solid green lines for σ = 1) and (solid red lines for σ = −1).

As it was discussed in the Introduction BSCs occur at the 
degeneracy points in the spectrum of the closed ring. Let us 
show that not every degeneracy point corresponds to a BSC. 
The degeneracy occurs at the points: =σ σ′E Em n . First, we 
consider the case of the same spin projection σ σ= ′. Then the 
degeneracy points are given by

γ γ− =
+σ m n

2
.AC (8)

At these points we have from equation (5)

( )
= =

−
σ σE E

m n

4
.m n

2

 (9)

The necessary and sufficient condition for a BSC is that the 
coupling between the attached wires and the superposed 
degenerate states equals zero [14, 42]. That condition is 
achieved if the superposed state has nodal points at the points 
of wires attachment  ϕ π= 0, . As a result we obtain for the 
BSC in the 1d ring

( ) ( )
( / )

( / )
( ) /

⎛
⎝
⎜

⎞
⎠
⎟ϕ ϕ

θ
θ

Ψ = ϕ
ϕ+

+ ke sin
cos 2

e sin 2
,m n

BSC,
i 2
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( ) ( )
( / )
( / )

( ) /
⎛
⎝
⎜

⎞
⎠
⎟ϕ ϕ

θ
θ

Ψ =
−ϕ
ϕ−

+ ke sin
sin 2

e cos 2
,m n

BSC,
i 2

i (11)

where k  =  (m  −  n)/2 has to be integer. Thus the BSC occurs 
at crossing points of σEm,  and σEn,  where m  =  n  +  2k and 

equation (8) are both fulfilled. These BSC points are shown in 
figure 2 by closed circles. It is worthy noting that in the para
metric space of the RSOI strength and flux the BSCs belong to 
lines defined by equation (8). For →β 0 they limit to the BSC 
points at the integer values of the flux [14] shown in figure 2 
by open circles. One can see from figure 2 that the BSC points 
are split by the RSOI in σ [38]. Therefore an electron with 
a definite spin projection can be trapped in the 1d ring with 
RSOI at discrete values of the flux defined by equation (8).

At the discrete values of the RSOI strength and flux

  /β γ+ = = … = +

= ± ± …

m m n

n

1 2 , 1, 2, 3, , 1 2,

0, 1, 2,

2

 
(12)

 β γ+ = + =m n1 2 1, .n
2 (13)

the spin polarized BSCs become degenerate. As it will be 
shown below the BSCs with account of the Zeeman term in 
the ring are close to the points given by equation (12) while the 
points defined by equation (13) have no relevance because of 
different symmetry of the eigenstates relative to the →−x x.

Consider now the degeneracy of the eigenstates (7) with 
the opposite spin projections. At the degeneracy point the 
superposed wave function has the following form

( / )
( / )

( / )
( / )

θ
θ

θ
θ

Ψ = Ψ + Ψ = +
−

ϕ
ϕ

ϕ
ϕ+ −

⎛
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⎛
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⎞
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⎟A B A Be
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e
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, ,

i
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i
i

 

(14)

One can instantly see that the condition ( ) ( )πΨ = Ψ =0 0 for 
the BSCs is never fulfilled.

The BSC point is the singular point where the unit conduct
ance coalesces with the zero conductance [5, 14], i.e. a col
lapse of the Fano resonance occurs [46]. This has been already 
observed by Citro et al [39, 40]. It is also interesting to resolve 
the features of the spin polarization given by the relation

=
+ − −
+ + +

↑↑ ↑↓ ↓↑ ↓↓

↑↑ ↑↓ ↓↑ ↓↓
P

T T T T

T T T T
. (15)

where µ νT ,  are the spin resolved transmission amplitudes. In 
the basis of the ring eigenstates (10) and (11) µ νT ,  becomes 
diagonal [35, 39]

σ
=
∑
∑
σ σ

σ σ
P

T

T
 (16)

where the diagonal components of the transmission ampl
itudes were derived in [35]

[ ( )]
[ ( )]

π γ γ π

π π π γ γ
=

−

− + + −
σ

σ

σT
kR

kR kR

8i cos sin

1 5 cos 2 4i sin 2 4 cos
.AC

AC
 (17)

Figure 3 shows the transmission amplitudes and polari
zation versus the Fermi wave number k and magnetic flux 
γ for both BSCs at β = 1 outlined by red oval in figure  2. 
Figures  3(a) and (b) show spin resolved transmission prob
abilities which demonstrate a collapse of the Fano resonance 
at the corresponding spin polarized BSCs marked by open 

Figure 2. Eigenenergies =σ σk Em m, ,  of closed 1d ring versus 
magnetic flux γ for ν = 0. Dash lines corresponding to β = 0 are 
split when β = 1 (solid lines). The BSC points are marked by open 
circles at β = 0 and spin polarized BSCs are marked by closed 
circles.
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circles. Respectively, the total transmission in figure  3(c) 
accumulates these features at both BSCs. Figure  3(d) dem
onstrates that in the vicinity of each spin polarized BSCs the 
spin polarization (15) of transmitted electrons attains its max
imal value. In figure 4 shows the behavior of the poles of the 
transmission amplitudes (17). The points where the imaginary 
parts of the poles turn to zero exactly correspond to BSCs.

3. The effect of the Zeeman term

The Zeeman term in (4) modifies the eigenenergies and eigen
functions of the 1d ring as follows [34, 36]

β
γ σ

θ

θ
ν γσ
θ

= + − + −

+ − +

σ

⎡
⎣
⎢
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where

/
/

θ β
γ

γ νγ
= −

− +
− + −
m

m
tan

1 2

1 2
.m (20)

The eigenenergies (18) are shown in figure  5(a). There are 
multiple degeneracy points for m  −  n  =  2k. In order to find 
out whether they correspond to BSC with the superposed 
degenerate eigenfunctions (19) σm,  and σ′n,  having nodal 
points at φ π= 0,  we obtain the following equation

θ θ
σ σ= = ≠′ m ntan

2
tan

2
, ,m n   (21)

or

θ θ
σ σ= − = − ′tan

2
tan

2
1, .m n (22)

These equations are not compatible with the degeneracy con
dition =σ σ′E Em n . That result is in a full agreement with the 
arguments put forward in the Introduction that no BSC occurs 
in the AharonovBorm ring in the presence of the RSOI as 
a result of the twofold degeneracy for ν≠ 0. However there 
could be BSCs resulting from threefold degeneracy of eigen
states of the same symmetry (18) as shown in figure 5(a). Then 
a linear superposition of three degenerate eigenfunctions sat
isfies the condition for the nodal points at φ π= 0, .

Table 1 lists the values of the parameters at which three
fold degeneracy occurs for ν = 0.2. Effective electron 
gfactor g*varies in a wide interval roughly from  −10 to 10 
as dependent on doping of the semiconductor material and 
the potential well which contains 2DEG [43, 44]. The effec
tive electron mass can be of order of 0.1 m [44]. Respectively, 
the Zeeman term factor /ν π= ∗ ∗g m m2  can vary from very 
small values to unit. Although in what follows we have 
chosen ν = 0.2 this choice is not principal for the spin polar
ized BSCs. Note that we presented only those values of the 
parameters where the states of the same symmetry relative 

Figure 3. Spin resolved transmission probabilities T+ (a) and T− (b), total transmission (c) , and spin polarization (16) (d) versus flux and 
the Fermi wave number in the vicinity of the spin polarized BSCs outlined by oval in figure 2 for β = 1. The BSC points are marked by 
open circles.

Figure 4. The resonant poles versus full flux γ γ− σ
AC in accordance 

to (17). Dash lines show Re(k) and solid lines show Im(k).
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to →−x x are triply degenerate to give rise to BSCs in the 

vicinity of β+ =1 22  and /γ = 1 2. There are also BSCs 
in the vicinity of points β+ = = …m m1 2 , 1, 2, 3,2  and 

/γ = + = ± ± ± …n n1 2 , 0, 1, 2, 3, . Moreover in the three 
dimensional space of the flux, RSOI strength and giromagn
etic ratio ν there are multiple lines with threefold degeneracy 
as shown in figure 5(c). These lines originate from the points 

given by equation (12) where the 1d ring has a fourfold degen
eracy and respectively we have BSCs degenerate in spin when 
ν = 0. With ν≠ 0 each line corresponds to a spin polarized 
BSC. It is important to note that there is a number of points 
of threefold degeneracy with different symmetry relative to 

→−x x. However as it was discussed in the Introduction only 
the states with the same symmetry give rise to a BSC at the 
point of threefold degeneracy. Table 2 lists only the points of 
threefold degeneracy with either all even or all odd azimuthal 
quantum numbers.

The above results for the BSC points fully agree with 
the behavior of the poles of the scattering matrix derived by 
Yi et al [32] in the presence of the Zeeman term by use of 
Shapiro matrix [45]

=
− −′

′
′

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
⎛

⎝
⎜

⎞

⎠
⎟

ε ε
ε
ε

a
b
c

f g
f g
g f

a
b
c

, (23)

which links the outgoing ′ ′ ′a b c, ,(     ) and ingoing ampl

itudes (     )a b c, , . Here ( )/=± − −εf 1 2 1 2, and 

( )/=± − +εg 1 2 1 2 with ⩽ /ε 1 2 and ε as phenomenolog

ical parameter which depends on the way of connection of 
waveguides to ring.

Figure 6(a) shows the poles behavior under the effect 
of giromagnetic ratio ν when other parameters are tuned to 
the point /β γ= =3 , 1 2 which is degenerate over spin 
according to equation  (12) for ν = 0. One can see that the 
Zeeman term split degenerate resonances linearly over ν. 
However what is more important these BSCs become quasi
BSCs with extremely small resonant widths  ∼ν4. In the 
second case we tuned the parameters to BSC 3 and BSC 5 
from table 1. As shown in figure 6(b) the resonant positions 
are split almost in the same linear way in the giromagnetic 
ratio ν as for the first case in figure 6(a). However the resonant 
width turns to zero at ν = 0.2 demonstrating occurrence of 
true BSCs. Figures 6(c) and (d) demonstrate that the resonant 
widths turn to zero under variation of the relevant physical 
parameters. Figure 6(d) show also that there are the BSCs in 

vicinity of β = −4 12  which are not listed in table 1.
The BSC 1 and BSC 2 from table  1 occur at slightly 

different points in the parametric space and are shown in 
figures 7(a) and (b) respectively. Although they are indistin
guishable in the angular behavior of the spinor components as 
shown in figures 7(a) and (b) they have opposite spin textures 
given by mean spin ( ) ⟨ ( ) ( )⟩σ φ φ σ φ= Ψ | |Ψ→ → . Here ( )φΨ  is the 
scattering wave function within the ring. Figure 8 shows the 
BSC 5 in accordance to table 1.

In the Friedrich–Wintgen scenario for the BSC emerging 
from double degeneracy of the eigenstates of a closed QD 
the conductance undergoes so called Fano resonance col
lapse in the vicinity of the singular BSC point [5, 14, 46]. 
It is interesting to follow these features in the present sce
nario of the full destructive interference of three resonances. 
Figure 9(a) demonstrates the same features of the Fano reso
nance collapse as in figure 3(a) in the absence of the Zeeman 
term related to singularity of the inverse of matrix −H Eeff  

Figure 5. (a) Eigenenergies =σ σk Em m  of 1d ring versus the 
magnetic flux γ for ν β= =0.2, 1.812 (a). The open circles show 
the points indexed by 1 and 3 in table 1. (b) Lines of the threefold 
degeneracy in the space of physical parameters: flux, the RSOI 
strength and the Zeeman term factor ν in 1d ring with σkm  near by 
unit.

Table 1. Parameters of threefold degeneracy in the 1d ring with 
account of the Zeeman term ν = 0.2.

Number of 
the BSC k β γ m σ

1 0.965 1.812 0.526 0 −1
2 +1
−2 −1

2 1.035 1.651 0.526 0 1
2 +1
−2 −1

3 1.987 1.760 0.512 3 1
−3 −1

1 −1
4 1.987 1.702 0.487 1 −1

−1 +1
−3 −1

5 2.012 1.759 0.488 −1 1
3 1
1 −1

6 2.013 1.701 0.513 −1 1

−3 −1
3 1

7 2.992 1.751 0.508 2 −1
4 1
−4 −1

8 2.992 1.712 0.492 2 −1
−2 1

−4 −1
9 3.008 1.750 0.492 2 −1

−2 1
4 1
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however with duplication of Fano features. It is important that 
each BSC point displays a singularity not only in the conduct
ance but in the spin polarization which is maximal as shown 
in figure 9(b).

The spin textures in figures 7 and 8 show the evolution of 
the spin direction as the ring is encircled in φ similar to con
siderations in [31, 38, 41, 47–49, 51]. The textures are related 
to the geometric phase [51, 52]

( ) ( )∫φ
π

φ
φ
φ φ= Ψ

∂
∂
Ψ

π
+i

d ,g
0

2

 (24)

where ( )φΨ  is the scattering wave function within the 1d 
ring. Such phase factors can be observed via interference 
of waves traversing different paths and were experimentally 
demonstrated in semiconductor quantum rings with RSOI 
[50, 53].

Figure 6. The poles versus ν for (a) γ β= =0.5, 3  and (b) for the parameters tuned to the BSC 3 in table 1. Resonant widths versus (c) 
flux γ for β = 1.76 and (d) RSOI strength β for γ = 0.512. Open and closed circles mark the BSCs 3 and 4 spin polarized up and down, 
respectively.

Figure 7. Profiles of the spinor components of BSCs 1 and 2 in accordance to table 1 marked in figure 6 by circles.  
(a) ( )ψ φ ψ ψ ψ= − + +− − − +1.0726 0.3660, 2, 2,  and (b) ( )ψ φ ψ ψ ψ= − − ++ − +1.06 0.3790, 2, 2, . (c) and (d) the corresponding spin textures.
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Because the BSCs originate from the points of threefold 
degeneracy in closed ring with account of the Zeeman term 
we also considered the variation of the geometric phase encir
cling the BSC point in the parametric space of flux γ and RSOI 
strength β. Following [14] we introduce the winding angle α

 γ γ α β β α= + = +r rcos , sinBSC BSC (25)

with the other parameters =k kBSC and ν = 0.2 tuned to the 
BSC point. Let us take BSC 1 in accordance to table  1. In 
figure 10(a) we show the evolution of transmission probability 
σ=T 1 and the spin texture within the ring for some selected 

values of angle α. One can see that the most noticeable transfor
mations of the spin texture occurs close to the points φ =±0 or 
φ π= ± 0, where wires are attached to the ring. Respectively 
figure  10(b) presents the evolution of the mean spin close 
to these points. The most remarkable features are seen in  
figures 10(c) and (d) for the geometrical phase (24). One can 
see that the spin polarization (15) correlates with the geometric 
phase whose sharp changes evidence in favor of topological 
transitions as it was observed by Saarikoski et al [52].

4. Two-dimensional rings

The BSCs in 2d rings without RSOI were shown to exist in 
the vicinity of twofold degeneracy of the ring eigenstates 
with − = = …m n k k2 , 1, 2, 3,  for integer values of the flux 
γ = ± ± …0, 1, 2,  where m, n are the azimuthal quantum 
numbers [14]. We show in this section that the BSCs occur in 
the 2d ring in the presence of the RSOI and the Zeeman term 
due to threefold degeneracy similar to the 1d ring. At first we 
present results of numerical computations of the conductance 
which evidence that spin polarized BSCs exist in 2d rings. 

Similar to the 1d ring in the presence of the Zeeman term 
these BSCs with different energies occur for the magnetic flux 

/γ≈ + n1 2  and the RSOI strength β around the quantized 

values ( ) −m2 12 , where = …m 1, 2, 3, . In what follows we 
consider a 2d ring of mean radius ( )/= + =R R R d2 2.51 2  (see 
figure 1) where d is the width of the waveguides.

An unambiguous tool for analysis of BSCs is the effec
tive non Hermitian Hamiltonian [3–5, 16] obtained by the 
Feshbach projection of the total Hamiltonian onto the inner 
states of the QD [18]. In the approximation of infinite propa
gation band the effective Hamiltonian takes the Wigner–
Weisskopf form [16, 54–56]

= − +��� �H H WWieff B (26)

where the �W  is ×N M coupling matrix between M propa
gating channels of waveguides and N eigenstates of the ring. 
The matrix elements of �W  are given by overlapping integrals 
[57, 58]

( ) ( )∫ ψ ψ=
∂
∂ =

W y
x

x y x yd , ,b p
C

d

b p
x x

,
0

C

 (27)

where xC defines the position of the ringwaveguide interface 
(see the geometry of the open ring in figure 1), b enumerates 
the eigenstates which are coupled with the continua enumer
ated by index p of the Cth waveguide. In our case we have 
to account for the following. (i) Waveguides of finite width d 
with the Zeeman term have the following subbands

( / )π γνµ= + − = …µE k R pR d p, 1, 2, 3,pF
2 2 2 (28)

where the dimensionless Fermi energy is measured in terms 
of /= ∗�E m R20

2 2. In what follows we assume that the elec
tron propagates in the first subband. (ii) The indexes of the 
effective Hamiltonian and the coupling matrix besides the azi
muthal quantum number also include the spin variable σ = ±. 
Therefore we have the spin dependent effective Hamiltonian 
[57, 59]

〈 〉 ( )∑ ∑ ∑σ σ δ δ| | = −′ σ σσ
µ

σ
µ

σ
µ

=

∗
′ ′

µm H n E W W e ,m mn
p C L R

m
Cp

n
Cp k a

eff
,

i p 0

 (29)
which provides a tool for numerical analysis of the BSCs and 
conductance in the 2d open rings. Here the exponential factors 

( )k aexp i p 0  are a result of a finite subband width in the finite 
difference method with dispersion relation

[ ( / )]/π= − − +E k a p N a4 2 cos 2 cos 1 ,p WF 0 0
2

where /=a d NW0  is the lattice unit in the discretized lat
tice with NW points along the cross section of the waveguide  
[57, 59].

The conductance is given by the trace of the transmission 
amplitudes G  =  Sp(T T+ ) given by the inverse of the effective 
Hamiltonian (29) [57]

∑ σ σ= |
−
| ′µµ

σσ
σ
µ

σ
µ∗

′
′

′
′

̂
T W m

H E
n W

1

mn
m
L

n
R

,

1

eff

1( ) 〈 〉 (30)

for propagation in the first channel p  =  1. The results of 
calcul ations are collected in figure  11. Figure  11(a) shows 

Figure 8. (a) Profiles of the spinor components of BSC 5 in 
accordance to table 1 ( )ψ φ ψ ψ ψ= − − +− + − +1.0007 0.0281, 1, 3, . 
(b) Spin texture.

Figure 9. Conductance (a) and spin polarization (b) of the 1d 
ring versus flux and Fermi wave vector in the vicinity of two spin 
polarized BSCs (3 and 5 in table 1). The BSC points are marked by 
open and closed circles respectively.
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the conductance versus the flux and the Fermi wave number 
π= −k EF

2.
The conductance demonstrates a mass of narrow Fano 

resonant features similar to those calculated by Nowak 
et  al [27]. When the parameters are tuned to BSC point 
β ν= =1.761, 0.2 given in table 2 these features are doubled 
as shown in the insets in figures 11(b) and (c). Figure 11(d) 
demonstrates that in the vicinity of each pair of the BSCs 
the electron flows have opposite spin polarizations. The third 
inset in figure 11(c) precisely shows that one of the features 
transforms into the collapse of Fano resonance. This is a 
result of the BSC when the inverse of the matrix −�H Eeff  does 

not exists for =E EBSC giving rise to a singular behavior of 
the transmission amplitudes as seen from equation  (30) [5]. 
Therefore the BSC point marked by open circle in figure 11(a) 
can be observed in the conductance. Zoomed figures  11(b) 
and (d) show that there are two BSCs split due to the Zeeman 
term. But only the BSC marked by open circle is true BSC 
3 from table  2 while the second point marked by star cor
responds to a quasiBSC which becomes true BSC 4 if the 
RSOI constant is slightly adjusted according to table 2 simi
larly to the 1d ring. The radial spin σr is not preserved [41]. 
Therefore we specify the split BSCs by mean spin projection 
⟨ ⟩σz . Figure 11(e) shows that spin polarization can be switched 

Figure 11. (a) and (b) Conductance of the 2d ring versus flux and Fermi wave vector of injecting electron. (c) The conductance versus 
Fermi wave number k. (d) Spin polarization versus k and γ. In all cases the parameters β ν= =4.0598, 0.2 are tuned to the 3th BSC point 
in accordance to table 2. (e) Spin polarization versus γ and β at k  =  6.4206 in the vicinity of the pair of BSCs 1 and 2.

Figure 10. (a) Transmission probability σ=T 1 and spin textures of 1d ring and (b) ( )σ φ =→ 0.1  (upper green arrows) and ( )σ φ = −→ 0.1  
(bottom brown arrows) for encircling BSC 1 in the plane of parameters γ and β given by equation (25) with r  =  0.02. Geometric phase and 
spin polarization (24) versus the angle of encircling (c) the BSC 1 point and (d) the BSC 2 point.

J. Phys.: Condens. Matter 28 (2016) 265301
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by minor variation of magnetic field (flux γ) or electric field 
(the RSOI constant β). That that could have applications in 
spintronics.

Rigorously speaking we have K  =  4 continua labelled 
as ↑ ↑ ↓L R L, , , and ↓R . However the inversion symmetry 
reduces the number of continua twice. So that for an arbitrary 
eigenstate we have

( )
( )

( ) ( )
( )

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟= −

−
− −

a
b

a
b

x
x

x
x

1 .m (31)

The coupling matrix elements are specified by two group of 
indexes, the indexes given by eigenstates of the closed ring 
σ σ = ±m, ,  and propagating modes of the waveguides given 

by µ= =↑↓p 1, . With account of the symmetry rules (31) the 
fragment of the coupling matrix including four eigenstates of 
the ring ±m,  and ±n,  and four continua µ= =↑ ↓C L R, , ,  can 
be written as follows

( ) ( )

( ) ( )

( ) ( )

( ) ( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

=

− −

− −

− −

− −

σ σ σ σ

σ σ σ σ

σ σ σ σ

σ σ σ σ

↑ ↑ ↓ + ↓

↑ ↑ ↓ + ↓

↑ ↑ ↓ + ↓

↑ ↑ ↓ + ↓

�W

W W W W

W W W W

W W W W

W W W W

1 1

1 1

1 1

1 1

.

m
L m

m
L

m
L m

m
L

m
L m

m
L

m
L m

m
L

m
L m

m
L

m
L m

m
L

m
L m

m
L

m
L m

m
L

1

1

1

1

1 1
1

1 1 1 1
1

1 1

2 2
2

2 2 2 2
2

2 2

3 3
3

3 3 3 3
3

3 3

4 4
4

4 4 4 4
4

4 4

 (32)

The rank of the matrix (32) equals two if all mj are either 
even or odd only. It may appear that similar to the 1d ring 
the BSCs in the 2d case are a result of the threefold degen
eracy of the eigenstates of the closed ring. However there is 
important difference between the cases. First, as seen from 
equation  (29) there are two contributions from the coupling 
with the continua, the antiHermitian part similar to equa
tion (26) and the Hermitian part which gives rise to radiation 
shifts of eigenenergies of the closed 2d ring. Second, there are 
evanescent contrib utions to the Hermitian part of the effective 
Hamiltonian from the propagating subbands with p  >  1:

∑∑∑=
µ µ

σ
µ

σ
µ

>

−| |
′

µ�T W W e .
p

m
Cp

n
Cp k a

1

p 0

 (33)

Assume now that there is a null eigenvector O of the cou

pling matrix with the open channel ==
+�W O 0p 1  . Then the 

necessary and sufficient condition for the BSC is

( ( ))= + =�� �H O H T E O E O.eff B BSC BSC

If there were no contribution ( )�T E , the BSC would have 
occurred at the points of threefold degeneracy as it was in the 

1d ring. In the 2d ring due to the exponentially small contrib
ution of the closed channels ( )�T E  the BSC points are slightly 
shifted relative to the points of the exact threefold degeneracy. 
That effect is similar to the 2d ring without RSOI where the 
BSC points were shifted relative to the points of twofold 
degeneracy [14]. Moreover the evanescent modes give rise to 
an exponentially small extension of the BSCs into the wave
guides as seen from figure 13.

Because of the energy dependence of the effective 
Hamiltonian the positions and widths of the resonance 
states are defined by the following nonlinear fixed point 
equations [56]

( ( ))   ( ( ))= Γ = −λ λ λ λ λ λE z E z ERe , 2 Im . (34)

Here λz  are the complex eigenvalues of the effective 
Hamiltonian (29) ) )λ λ| = |λ�H zeff  with right eigenstates 

)λ| . The eigenfunction of the effective Hamiltonian (29) in the 
case Im(z)  =  0 gives the shape of the spinpolarized BSCs.

Figure 12 shows typical evolution of one of the solutions 
of equation (34) with the variation of the flux γ while other 
parameters of the ring were fixed at BSCs 3 and 4 according 
to table  2. The inset in figure  shows that only one of these 
solutions with ⟨ ⟩σ = 0.15z  is a true BSC when the parameters 
are tuned to BSC 3 while the second solution is a quasiBSC 
with extremely small resonant width. Respectively, if the 
parameters are tuned to BSC 4 with negative spin polariza
tion ⟨ ⟩σ = −0.15z  the first solution becomes a quasiBSC. 
Figures 12(b) and (c) evidence the existence of BSCs in the 
vicinity of the quantized values of the RSOI strength defined 
by equation (12) derived for the 1d ring.

The shapes of BSCs 3 and 4 are shown in figure 13.

5. Summary and discussion

In the absence of the RSOI the Hamiltonian of the Aharonov–
Bohm ring is decomposed into two uncoupled subblocks. The 
number of continua in each subsystem equals the number of 
waveguides. Nevertheless for symmetrically attached iden
tical waveguides as shown in figure 1 the number of continua 
effectively equals one provided that the Fermi energy of con
ducting electrons resides in the first propagating subband. Then 
spin dependent BSCs can occur by the Friedrich–Wintgen 
mech anism [3–5] of avoided crossing of two neighboring 
resonances originated from two degenerate eigenstates of the 
closed ring. If the Zeeman term is neglected the BSCs are 
degenerate in spin projection while the Zeeman term lifts the 
degeneracy. To switch spin polarization of the BSCs it is nec
essary to invert the external magnetic field.

The RSOI couples the spin dependent subsystems and 
therefore the total number of continua in the open ring becomes 
equal two. Then as it was discussed in the Introduction the 
number of resonances participating in the full destructive 
interference has to be increased, at least, to three. That in turn 
implies a threefold degeneracy of eigenstates of the closed 1d 
ring classified by the azimuthal quantum number m and spin 
σ given by equations (7). Patterns of such BSCs and their spin 
textures are shown in figures 7 and 8. The most remarkable 

Table 2. Parameters of threefold degeneracy of the eigenstates of 
the 2d ring with the mean radius R/d  =  2.5 and the Zeeman term 
ν = 0.2 occurs.

Number of the 
BSC kR β γ ⟨ ⟩σz

1 2.9249 1.7611 0.5102 0.47
2 2.9524 1.7159 0.4905 −0.496
3 6.4169 4.0598 1.501 0.161
4 6.4292 4.0662 1.514 −0.16
5 6.9112 1.7095 1.5221 0.475
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feature of these BSCs is that they occur in pairs with oppo
site spin projections as illustrated in figures  7(a) and (b). 
Some examples of the 2d BSCs are presented in figure  13. 
Noticeably they are located in the parametric space very close 
to each other. That paves a way for manipulation of spin in 
the Aharonov–Bohm ring with the RSOI. The points of three
fold degeneracy can be easily found in the parametric space 
of the flux and the RSOI strength for the specific semicon
ductor interface with specific giromagnetic ratio ν. In three 
dimensional space of γ β,  and ν there are multiple lines of the 
threefold degeneracy which originate from the points of four
fold degeneracy of the 1d ring without Zeeman term defined 
by equation (12). It is also important to note that the BSCs in 
the Aharonov–Bohm ring in the presence of the RSOI occur 
at halfinteger flux in contrast to the rings without the RSOI.

Surprisingly, in the 1d ring in the presence of the RSOI but 
without of the Zeeman term the BSCs occur at the points of 

twofold degeneracy where the Weisskopf–Wigner model (26) 
is exact. Substitution of the ring states (7) into the coupling 
matrix (32) gives us

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

θ θ θ θ

θ θ θ θ
=

π π

π π

�W
cos

2
e cos

2
sin

2
e sin

2

cos
2

e cos
2

sin
2

e sin
2

.

m m

n n

i i

i i
 (35)

If  − = = …m n k k2 , 1, 2, 3,  then we obtain from (35) that

( )=+��WW 2 1 1
1 1

. (36)

One can see that in this case the rank of matrix �W  and respec
tively 

+��WW  equals unit. Therefore according to [17] the two
fold degeneracy of the closed system gives rise to a BSC. If 
the Zeeman term is included the coupling matrix modifies as 
follows according to equation (19)

Figure 12. (a) Evolution of the resonance width ( )− z2Im  and resonance position Re(z) with the flux γ at β = 4.0598 (BSC 3 in table 2, red 
open circles) and β = 4.0662 (BSC 4, blue closed circles). (b) Evolution of the resonance width ( )− z2Im  with β at γ = 0.5102 (1th BSC, 
the blue closed circles) and γ = 0.4905 (2th BSC, the red open circles). (c) The same as in (b) but γ = 1.501 (3th BSC, the blue closed 
circles).

4

Figure 13. Shapes of BSC 1 (a) and BSC 2 (b) in accordance to table 2.
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⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

θ θ θ θ

θ θ θ θ
=

π π

π π

�W
cos

2
e cos

2
sin

2
e sin

2

cos
2

e cos
2

sin
2

e sin
2

m m m m m m

n n n n n n

i i

i i
 (37)

with the rank equal to two. Therefore it is necessary to have a 
threefold degeneracy of the eigenstates of the closed system to 
realize a BSC in the open system.

Numerics for the 2d Aharonov–Bohm ring has shown BSCs 
similar to those predicted for the 1d case. Although there are 
two points which make a difference between the cases: (i) 
exponential tails of BSCs in the attached waveguides due to 
coupling to the evanescent modes. (ii) the BSCs are positioned 
in the points of the parametric space β and γ slightly different 
from the points of threefold degeneracy of the closed 2d ring. 
Experimentally the BSC points can be achieved by tuning 
external fields: magnetic field which pierces the ring and elec
tric field which affects the RSOI constant [24]. Importantly, 
the spin polarization of localized electron can be switched by 
a slight variation of the electric or magnetic field. A possibility 
to capture in the BSCs a conducting electron with a definite 
spin polarization opens new perspectives in spintronics.

Because the BSCs originate from the points of threefold 
degeneracy in the closed ring we also considered the geo
metric phase encircling the BSC point in the parametric space 
of flux γ and RSOI strength β. Figure 10(a) demonstrates that 
the spin texture is sensitive to the encircling angle alpha in 
the close vicinity of the points where waveguides are attached 
to the ring as demonstrated in figure 10(b). Respectively one 
could expect the sudden changes in spin textures for small 
radius of encircling similar to those observed by Saarikoski 
et al [52]. Indeed consideration of the geometric phase versus 
the angle of encircling around the BSC point in space of flux 
and the RSOI strength for small radius of encircling r in equa
tion (25) shows sharp changes.
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