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Abstract
A self-consistent approximation of a higher level than the standard self-con-
sistent approximation, known in various fields of physics as the Migdal,
Kraichnan or Born self-consistent approximation, is derived taking into
account both the first and second terms of the series for the vertex function. In
contrast to the standard approximation, the new self-consistent approximation
is described by a system of two coupled nonlinear integral equations for the
self-energy and the vertex function. In addition to all the diagrams with non-
intersecting lines of correlation/interaction taken into account by the standard
self-consistent approximation, the new approach takes into account in each
term of the Green’s function expansion a significant number of diagrams with
intersections of these lines. Because of this, the shape, linewidth, and ampl-
itude of the resonance peaks of the dynamic susceptibility calculated in this
approximation are much closer to the exact values of these characteristics. The
advantage of the new self-consistent approach is demonstrated by the example
of calculation of the dynamic susceptibility of waves in an inhomogeneous
medium.

Keywords: self-consistent approximation, Green’s functions, vertex correc-
tions, inhomogeneities, correlations, dynamic susceptibility
Mathematics Subject Classification: 34B27, 47N20, 47N30

(Some figures may appear in colour only in the online journal)

1. Introduction: standard self-consistent approximation

We briefly recall the main stages of the introduction of the self-consistent approximation
(SCA), widely used in physics for the approximate calculation of the Green’s functions. At
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the end of the 1950s to the beginning of the 1960s, this variant of SCA was introduced
independently in different fields of physics. It was proposed by Migdal in the study of
electron–phonon interaction [1], and then analyzed in detail in [2–5]. In those same years, a
similar version of the SCA was independently proposed by Kraichnan [6] to investigate the
effect of inhomogeneities on the dynamic susceptibility of waves in disordered media. A
similar version was proposed to study the scattering of electrons in disordered media, as a
generalization of the well known non-self-consistent Born approximation, and became known
as the self-consistent Born approximation (see, e. g., [7, 8]).

It is well known [9–13] that the averaged Green’s function G x x, 0( ) can be expressed
through the vertex function x x x, ;1 2 3( )G (we omit the frequency w from all expressions,
where this does not lead to misunderstandings). To do this, consider the integral equation for
the non-averaged Green’s function G x x, 0˜ ( )

G g g Gx x x x x x x x x x, , , , d , 10 0 0˜( ) ( ) ( ) ( ) ˜( ) ( )òg r¢ ¢ ¢ ¢= +

where x( )r ¢ is a centered ( 0⟨ ⟩ )r = and normalized ( 12⟨ ⟩ )r = random function, g is the rms
fluctuation, and g x x, 0( ) is the original Green’s function. A system of equations relating the
averaged Green’s function G x x, 0( ) and the vertex function derives from equation (1) by the
methods of functional variation analysis in the form

G g g Gx x x x x x x x x x x x, , , , , d d , 20 0 0( ) ( ) ( ) ( ) ( ) ( )ò ò ¢ ¢   ¢ = + S

K Gx x x x x x x x x x x, , , , ; d d , 32
2 1 1 2 1 2( ) ( ) ( ) ( ) ( )ò òg¢  ¢ ¢ S = G

K G

G

x x x x x x x x x x x x x x

x x x x x x x x x

, ; , , ; ,

, ; , d d d d ....

4

1 2 1 2 1
2

3 1 4 3 4 5

5 6 2 6 3 4 5 6

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( )

ò ò ò òd d g  



G = - - + G

´ G +

Here the Dyson equation (2) and the expression of the self-energy S in terms of the
vertex function ,G equation (3), are exact equations, and the expression for the vertex function

,G equation (4), is an infinite series.
The parameter g and the function K x x,i j( ) have different meanings for different physical

problems. In the theory of electron–phonon interaction the function K x x,i j( ) is usually
designated as D x x,i j( ) and the expression D x x,i j

2 ( )g is the operator of the electron–phonon
interaction, where 2g is proportional to the electron–phonon interaction parameter ,l and
D x x,i j( ) is a normalized function (D x x, 1 .i i( ) )= In the theory of scattering of waves or
electrons in heterogeneous media, g is the rms fluctuation of inhomogeneities and K x x,i j( ) is
the normalized correlation function of these inhomogeneities (K x x, 1 .( ) )¢ ¢ = In the case of
electron scattering the correlation function is the average sum of potentials of the interaction
between electrons and impurities.

We use the Fourier transformation in the form used in solid state theory:

f fx k k2 e d , 5kxd i( ) ( ) ( ) ( )òp= -

f fk x xe d , 6kxi( ) ( ) ( )ò= -

where d is the dimensionality of space. In stochastic radio physics [12–18] and a number of
other branches of science, the factor 1 2 d( )p is usually transferred from equation (5) into
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equation (6). This transfer leads to the appearance of this factor in the expressions for the
Green’s functions and Dyson equation and changes its degree in other terms in the
momentum space.

The system of equations (2)–(4) in k-space takes the form

G g g Gk k k k k k k k k k k k, , 2 , , , d d , 70 0
2d

1 1 2 2 0 1 2( ) ( ) ( ) ( ) ( ) ( ) ( )ò òp= + S - --

S Gk k k q q q q q k q q q q, 2 , , , ; d d d , 81 2
2 3d

1 2 1 2 3 3 2 1 1 2 3∭( ) ( ) ( ) ( ) ( ) ( )g pS - = - - G - --

S

G G d d d d d

q k q k q q k p p

q p p p p p p q p p p p p p p

, ; 2 2 ,

, ; , , ; , ,
9

d d
3 2 1 2 1 3

2 5
2 5 1

3 2 1 2 3 3 4 1 4 5 1 2 3 4 5

∭∬( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

p d g pG - - = - - + -

´G - - - G - - -

-

where S k k,1 2( ) is the Fourier transform of the correlation function K x x,1 2( ).
In the case of a spatially invariant medium, the transition from the two-point to the

single-point functions and from the three-point to the two-point functions is performed using
the formulas

G Gk k k k, 2 , 10k1 2
d

1 22
( ) ( ) ( ) ( )p d= +

k k k k k k, ; 2 . 11k k1 2 3
d

, 1 2 32 3
( ) ( ) ( ) ( )p dG = G + +

The resulting system of equations (7)–(9) after a replacement of the integration variables
can be reduced to the form

G g g G , 12k k k k k ( )= + S

S G k2 d , 13k k k k k k k
2 d

, 11 1 1
( ) ( )òg pS = G-

- -

S G G k1 2 d . 14k k k k k k k k k k k k k k k k k,
2 d

, , 21 1 2 2 1 2 2 1 2 1 2 1
( ) ( )òg pG » + G G-

-
- - + - - + -

The Migdal, Kraichnan, and Born SCA corresponds to taking into account in
equation (14) only the first term of the expansion, i.e., 1.G = Equations (12) and (13) form a
closed system of equations in this case. The SCA corresponding to this system is applied in
two different forms. The first form involves the exact representation ofGk in terms of the self-
energy ,kS resulting from the Dyson equation (12)

G
g

1
, 15k

k k
1

( )=
- S-

and for kS the approximate self-consistent equation is derived from equations (13) and (15)

S

g

k
2

d
, 16k

k k

k k

2 d 1
1

1

1 1

( ) ( )òg pS »
- S

- -
-

where Sk is the Fourier transform of the normalized correlation function K x x, ,( )¢  the
normalized interaction function D x x,( )¢  or the average potential of the interaction between
electrons and impurities.

To obtain the second form of the SCA, equation (13) is substituted into equation (12).
This leads to the approximate nonlinear integral self-consistent equation for the Green’s
function Gk
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G
g S G k

1

2 d
. 17k

k k k k
1 2 d

11 1
( )

( )
òg p

»
-- -

-

The Migdal approximation, the Kraichnan approximation, and the self-consistent Born
approximation were proposed for different physical problems. There are also mathematical
differences between them: for example, the Born approximation, in contrast to the Migdal
approximations and Kraichnan, takes into account both Gaussian and non-Gaussian com-
ponents of the random field. At the same time, all these variants of the self-consistent
approach have one common cardinal property: the expansion of the Green’s function obtained
by these methods contains all diagrams appearing in the exact expression for G x x, 0( ) except
for the diagrams with intersecting interaction/correlation lines between different points. For
the purposes of this work, this variant will be called below the standard self-consistent
approximation. Lack of diagrams with intersecting line correlations, which the majority of the
exact expression for G x x, 0( ), imposes restrictions on the range of applicability of the
standard approximation and the accuracy of the results obtained with its help.

The role of the standard SCA is different when considering various physical problems.
Thus, the accuracy of the standard SCA is sufficient for the study of many aspects of wave
scattering by inhomogeneities [14–18]. However, calculation of the shape and width of the
resonance line going beyond the standard SCA is required even in this problem. The scope of
application of the standard SCA in the theory of electron–phonon interaction is much nar-
rower: it can be used to calculate the self-energy only to the first order in λ. To calculate the
temperature of the superconducting transition (especially for high-temperature super-
conductors) requires knowledge of the self-energy, at least in terms of second order.
Therefore, intensive studies of amendments to the self-energy due to taking into account the
next term in the expansion of the vertex function (vertex corrections) are carried out [19–28].
To take into account the vertex corrections, is developed a number of approaches that use the
ladder approximation, the Ward identity, a simplified representation of the operator of the
electron–phonon interaction, etc. A sequential overview of the main works carried out in this
area, until 2000, is given in [26]. In [19–28] significant progress in the study of the vertex
corrections has been achieved. However, the discrepancy between the results of the different
approaches still remains significant.

Creating a new SCA, which takes into account both the first and second terms in the
expansion of the vertex function, would contribute to the development of methods such as the
scattering theory of waves and electrons, and the theory of electron–phonon interaction. This
SCA would contain in the expression for the self-energy, in addition to all diagrams with non-
intersecting lines of interaction/correlation, a significant number of diagrams with intersec-
tions of these lines. The derivation of this SCA is the purpose of this work.

2. Derivation of the new SCA

The idea of deriving self-consistency equations, which will be developed by us below, has
been applied to the system of equations (2)–(4) and did not lead to the goal, for reasons which
will be described below. Therefore, the first step in realization of this idea is to derive an
alternative system of equations to (2)–(4). To do this in the original integral equation for the
Green’s function (1) we swap the functions g and G̃ in the integrand and write this equation in
the form
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G g G gx x x x x x x x x x, , , , d . 180 0 0˜( ) ( ) ˜( ) ( ) ( ) ( )òg r¢ ¢ ¢ ¢= +

Equations (1) and (18) are equivalent to each other because by an iterative process they
lead to the same series of the Green’s function. Then we carry out with equation (18) the same
functional operations that were carried out in [9–13] with equation (1) (see appendix A). The
result is that the system of equations, an alternative to system (2)–(4), has the form

G g G gx x x x x x x x x x x x, , , , , d d , 190 0 0( ) ( ) ( ) ( ) ( ) ( )ò ò ¢ ¢   ¢ = + S

K Gx x x x x x x x x x x, , ; , , d d , 202
1 2 2 1 1 2( ) ( ) ( ) ( ) ( )ò òg¢  ¢  S = G

K G

G

x x x x x x x x x x x x x x

x x x x x x x x x

, ; , , ; ,

, ; , d d d d .

21

1 2 2 1
2

1 4 3 4 3 5

5 6 2 6 1 3 4 5 6

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( )

ò ò ò òd d g¢ ¢ ¢ ¢G » - - + G

´G

Performing the Fourier transformation of these equations, and then transferring via
equations (10) and (11) to a spatially invariant medium, we obtain

G g g G , 22k k k k k ( )= + S

S G k2 d , 23k k k k k k k
2 d

, 11 1 1 1
( ) ( )òg pS = G-

- -

S G G q1 2 d . 24k k k k q q q k k q k q q k k k k,
2 d

, ,1 1 1 1 1
( ) ( )òg pG » + G G-

-
- - + - - + -

Next, we transform the system of equations (22)–(24) by substituting equation (24) into
equation (23) and redesignating variables of integration in the last term of this equation,
q k ,1 k q1 

S G S S G G Gk

k q

2 d 2

d d .

25

k k k k k k k q k q k k q k k k

k k q k q

app
2 d

1
4 2d

,

, 1

1 1 1 1 1 1 1

1

( ) ( )

( )

ò ò òg p g pS » + G

´ G

-
-

-
- - - + -

- + -

We still have a system of three equations, but instead of equation (24) therein, along with
the exact equations (22) and (23), equation (25) appears as an approximation. Let us change
the variable of integration in the last term of equation (25), q k k k ,1 2= - + q kd d .2= As a
result, equation (25) takes the form

S G S G G k

k

2 1 2 d

d .
26

k k k k k k k k k k k k k k k kapp
2 d 2 d

, , 2

1

1 1 1 1 1 2 2 1 2 2 1 2
( ) ( )

( )

⎡
⎣⎢

⎤
⎦⎥ò òg p g pS » + G G

´

-
-

-
- - - + -

Equations (23) and (26) in diagram form are shown in figure 1(a). Figure 1(b) shows for
comparison diagrammatic equations that would be obtained if we used the usual form of the
original equations (2)–(4). It is seen that in the latter case the functions G (circles) have
different internal structures of the wave vector combinations. In figure 1(a) the structure of all
functions G is uniform. This allows us to take the final step to obtain a system of self-
consistent equations. Equation (23) includes an exact value of the vertex function .k k k,1 1G - In
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equation (26) the expression in brackets corresponds to the approximate value of the same
function. Equating these two expressions to each other, we obtain an approximate equation

S G S G G

d

k

k

1 2 d

0.
27k k k k k k k k k k k k k k k k k k,

2 d
, , 2

1

1 1 1 1 1 1 1 2 2 1 2 2 1 2{ }( ) ( )
⎡
⎣⎢

⎤
⎦⎥ò òg pG - + G G

´ »

- -
-

- - - + -

Under the integral sign in k1 in equation (27) is the difference of two functions that
depend on the same parameter k. Since the difference of the integrals of these functions must
be zero for all values of this parameter and the product of S G 0,k k k1 1 ¹- the vanishing of the
expression in curly brackets is implied from equation (27). From this expression we obtain a
self-consistent equation for the vertex function ,k k k,1 1G - which is conveniently written in the
form

S G G k

1

1 2 d
. 28k k k

k k k k k k k k k

,
2 d

, 2
1 1

1 2 2 1 2 2 1 2
( )

( )
òg p

G »
- G

-
-

- - + -

Replacing in equations (23) and (28) the Green’s functions of their representations
through the self-energies from the Dyson equation (22), we obtain the general form of a
system of two integral equations of the new self-consistent approximation

S

g

k
2

d
, 29k

k k k k k

k k

2 d , 1
1

1 1 1

1 1

( ) ( )òg pS =
G

- S
- - -

-

Figure 1. Diagram representations for kS and kappS which follow from equations (23)
and (26) (a) and from equations (12) and (14) (b).
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S

g g

k
1

1 2
d

. 30k k k
k k k k k

k k k k k k k k

,
2 d , 2

1 1

1 1
1 2 2 1 2

2 2 1 2 1 2

( )
[ ][ ]

( )

òg p
G »

-
G

- S - S

-
- - -

-
- +
-

- +

From this system, the self-energy kS and the vertex function k k k,1 1G - can be expressed in
terms of the original Green’s function gk and the spectral density of inhomogeneities S .k

Depending on the task type the function Sk (together with the parameter 2)g describes the
correlations of inhomogeneities or interaction forces. Equations of the new SCA can be
rewritten also in another form. For this, we substitute equation (23) into equation (22), and
use equation (28) as the second equation. Then the system of integral equations of the new
SCA takes the form

G
g S G k

1

2 d
, 31k

k k k k k k k
1 2 d

, 11 1 1 1
( )

( )
òg p

=
- G- -

- -

S G G k

1

1 2 d
. 32k k k

k k k k k k k k k

,
2 d

, 2
1 1

1 2 2 1 2 2 1 2
( )

( )
òg p

G »
- G

-
-

- - + -

For various tasks, the first, equations (29) and (30), or the second, equations (31) and
(32), system may be preferred. In both cases, the self-consistency equations can be repre-
sented as a system of two coupled continued fractions with integral terms (or, respectively, as
a system of two recurrence formulas for n

k
( )S and ,m

k k k,1 1

( )G - or G ,n
k
( ) and m

k k k,1 1

( )G -

n m, 1, 2, 3, ... ,( )= in the same way as done for n
k
( )S in the case of a standard

approach [17, 18].

3. Investigation of the new SCA

Next we investigate the system of equations of the new approach and illustrate its advantages.
This SCA contains all the lower-level approximations. Neglecting in the denominator of
equation (30) or equation (32) a term of the order 2g we would get 1.k k k,1 1G º- Substituting
this value in equation (29) or equation (31) turns each of them into the equation of the
standard SCA, equation (16) or equation (17), respectively. If in equation (29) we set kS in
the denominator equal to zero, along with 1,k k k,1 1G º- we obtain the equation (not self-
consistent) of the Bourret approximation [29, 30].

We carry out a comparison of the results of the new and standard SCAs on the simplest
model of the wave equation in a randomly inhomogeneous medium

x 0. 332 [ ( )] ( )j n gr j + + =

Both parameters, n and ,g included in equation (33) are normalized to the dimensionality
of a square of a wave number. For scalar models of electromagnetic or elastic waves

s ,2( )n w= where w is the frequency, s is the velocity of corresponding waves in the
medium; for spin waves g M,0( )n w w a= - 0w is the frequency of the uniform ferro-
magnetic resonance, g is the gyromagnetic ratio, a is the exchange parameter, and M is the
magnetization. In all cases, g is the rms fluctuation of the corresponding inhomogeneities. We
consider the case of one-dimensional inhomogeneities and model the stochastic properties of
the random function x( )r by exponential correlations:
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K r S
k

k k
e ,

2
, 34k x x

k
c

c
2 2

c( ) ( )| |= =
+

- - ¢

where kc is the correlation wave number (r kc c
1= - is the correlation radius of the

inhomogeneities). The original Green’s function in this case is

g
k

1
. 35k 2

( )
n

=
-

3.1. The limit of infinite correlation radius (kc=0)

Analytical study of self-consistent equations for this problem is possible in the limiting case,
which corresponds to k 0c  and, correspondingly, S k k2 .k k 11 ( )pd -- In this case the
series for the Green’s functions can be summed up exactly (Keldysh model, see book [8]) and
the imaginary part of the Green’s function is

G k k, e 2 , . 362 1 2 22 2( ) ( ) ( )n p p g x n = = -x g-

Integral equations of the standard SCA, equations (16) or (17), in the case k 0c  also to
be solved exactly [17]:

G k,
2 2 , 2 ,

0, 2 .
37sta

2 2 1 2 2
( ) [( ) ] | |

| |
( )

⎧⎨⎩
n g x g x g

x g
 = -

>

Equations of the system (29) and (30) or (31) and (32) in the case k 0c  are reduced to
a system of algebraic equations. After exclusion of the function kG of this system, we obtain
the quadratic equation for kS (or G ,k) from which we find

G k,
8 2 , 2.8 ,

0, 2.8 .
38new

2 2 1 2 2 2
( ) [ ] ( ) | |

| |
( )

⎧⎨⎩
n g x x g x g

x g
 = - +

>

Earlier [17], we compared equations (36) and (37) with each other. Let us compare all
three equations, (36), (37), and (38). The corresponding curves G k,( )n are shown in

Figure 2. The imaginary part of the Green’s function at k 0c = for the cases of the
standard SCA, equation (37) (green dotted curve), the new SCA, equation (38) (red
dashed curve), and the exact summation of all diagrams, equation (36) (solid black
curve).
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figure 2. It is seen that the new approach much better reflects the shape, linewidth, and
amplitude of the resonance curve.

In the limiting case k 0c = the number of diagrams in the expansion of the Green’s
function for each SCA version can also be found analytically. It is known that the exact
representation of the Green’s function in this case has the form (see, e.g., [7, 8])

G g B z , 39
n

n
n

0

( )å=
=

¥

where n2 1 ,nВ ( ) !!= - z g ,2 2g= n 0, 1, 2, 3...= .
Consider the Green function G ,sta as determined by equation (17) for the standard SCA.

The solution of a quadratic equation, that follows from equation (17) for the limiting case
k 0,c  is

G gW , 40sta ( )=

where

W
z

z

1 1 4

2
. 41( )=

- -

Expanding the generating function (41) in the binomial series [31], we obtain

G g C z , 42
n

n
n

sta
0

( )å=
=

¥

where Cn
n

n n

2

1

( ) !
! ( ) !

=
+

are Catalan numbers.
Now consider the function G ,new for which the system of equations (31) and (32) at

k 0c  is also reduced to a quadratic equation. Its solution can be represented in the form

G gX, 43new ( )=

where

X
z

z

3 1 8

2 1
. 44

( )
( )=

- -
+

We rewrite the generating function (44) in the form

X
x

x
3

2
1 1

8

9
, 45( )

⎡
⎣⎢

⎤
⎦⎥= - -

where x z1 .= + Expanding the square root in the binomial series

X
x

x
m

3

2
1

8

9
1 2 , 46

m

m

0
( ) ( )⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥å= - -

=

¥

and using the formula

m m

m

m
1 2 1

2 1 4

2
, 47

m

m

1

2( ) ( )
( )

( )!
[ !]

( )=
-
-

-

we obtain

X
x

x

m

m

m

3

2
1

2

3 2 1

2
. 48

m

m m

m
0

2 2( )
( )!
[ !]

( )
⎡
⎣⎢

⎤
⎦⎥å= +

-=

¥
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Transform the expression (48):

X
x

m

m

m

x

m

m

m

x

m

m m

2

3 2 1

2 2

3 2 1

2 2

1

2

3

2

1
. 49

m

m m

m
m

m m

m
m

m m

m
1

1 1

2 1 2
0

2 1 2
0

1

2 1( )
( )!
( !) ( )

( )!
[( )!]

( )!
( ) ! !

( )

å å å=
-

=
+

+
+

=

´
+

=

¥ - -

-
=

¥

+
=

¥ +

+

Expand xm in the binomial series:

x z
m

m n n
z1 . 50m m

n

n

0

( ) !
( ) ! !

( )å= + =
-=

¥

Substituting (50) into (49) and (49) into (43), we obtain

G g S z , 51
n

n
n

new
0

( )å=
=

¥

where S ,n m
m

m m n n0
2 2

3 1

m

m

1

2 1

( ) !
( ) ! ( ) ! !

= å =
¥

+ -

+

+ m 0, 1, 2, 3...= .
Coefficients before zn in sums included in expressions for the Green’s functions (39),

(42), (51) are a number of diagrams in each order n of the expansion of Green’s functions in
series. Table 1 shows the values of these numbers up to sixth order. The table shows that for
n 1> the new approach takes into account in every order n of the expansion of the Green
function more diagrams than the standard SCA. Hence, the advantage of the new over the
standard approach increases with increasing n. However, the number of diagrams in the exact
expression (39) increases more rapidly. So, it is interesting to compare the relative con-
tributions of both standard and new approximations to the total number of accurate diagrams
in each order n of the expansion of G. Charts of such contributions are shown in figure 3,
which shows relative portions (as percentages) of the number of exact diagrams taken into
account by the new and the standard SCA. It is evident that, if the standard SCA accurately
takes into account only the first order, the new accurately takes into account both the first and
second order. In the following orders of the expansion the new SCA is also much closer to the
exact value than the standard SCA. For example, at n 5,= the new SCA accounts for 40.3%
of diagrams of the exact expression (39), and the standard SCA only 4.4%.

Let us calculate in the limiting case k 0c = also the number of diagrams in the expansion
of the self-energy for the standard and the new SCA. The self-energy staS for the standard
SCA is given by equation (16), that in the limiting case k 0c  reduces to a quadratic
equation, the solution of which is as follows:

gW , 52sta
2 ( )gS =

where W is the generating function (41) and its expansion in a binomial series has formally
the same form as in the expression (42). However, the index of summation in this series does
not correspond to the order of the self-energy expansion in powers of ,2g since expression

Table 1. Number of diagrams in each order n of the expansion of the Green’s function
for the first six orders, taken into account in the standard SCA (G ,sta) in the new SCA
(G ,new) and in the exact expression for the Green’s function (G).

n 1 2 3 4 5 6

Gsta 1 2 5 14 42 132
Gnew 1 3 13 67 381 2307
G 1 3 15 105 945 10 395
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(52) differs from expression (40) by a factor .2g In order to retain for the index n the sense of
the order of expansion, the expression (52) should be written in the form

g C z , 53
n

n
n

sta
2

1
1

1 ( )ågS =
=

¥

-
-

where Cn
n

n n1
2 2

1

( ) !
( ) ! ( ) !

=-
-

-
are Catalan numbers, n 1, 2, 3...= .

Consider the self-energy for the new SCA. The function newS is determined by the
system of equations (29) and (30), which reduces to a quadratic equation when k 0.c  Its
solution has the form

g z z1 1 8 4 . 54new
2 [ ] ( ) ( )gS = - -

Expanding the square root in the binomial series, and using (47), we obtain

g P z , 55
n

n
n

new
2

1
1

1 ( )ågS =
=

¥

-
-

where Pn
n

n n1
2 2 2

1

n 1( ) !
( ) ! !

=-
-

-

-
.

Figure 3. The relative proportions of the exact number of diagrams (in percent)
accounted for in the standard (circles) and the new (asterisks) SCA in each term n of the
expansion of the Green’s function.

Table 2. Number of diagrams in each order n of expansion of the self-energy for the
first six orders, taken into account in the standard ( n 1С )- and the new (Pn 1)- SCAs, and
number of diagrams with intersecting correlations in the new SCA (Nn 1- ).

n 1 2 3 4 5 6

n 1С - 1 1 2 5 14 42
Pn 1- 1 2 8 40 224 1344
Nn 1- 0 1 6 35 210 1302
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The coefficients Cn 1- and Pn 1- in expressions (53) and (55) represent the number of
diagrams in each order n of the expansion in series of the self-energy. Table 2 shows the
values of these numbers to the sixth order for a standard (first row) and the new (second row)
SCA. The table shows that the new approach for n 1> takes into account in every order n of
expansion of the self-energy more diagrams than the standard SCA. Hence, the advantage of
the new approach over the standard one increases with increasing n.

3.2. The arbitrary correlation radius (kc≠0)

We considered in the previous section the number of diagrams contained in each order of a
series expansion of the Green’s function G, and the self-energy ,S found in both the standard
and the new approach when k 0.c = In the general case of an arbitrary radius correlation
(k 0c )¹ the number of diagrams is determined by the same formulas (42), (51), (53) and (55).
Moreover, the number of diagrams with non-intersecting and intersecting lines of correlation/
interaction, which is contained in each order of the series expansion of the self-energy ,S can
also be found by formulas (53) and (55). The coefficient Cn 1- in formula (53), which takes
into account the total number of diagrams for the standard SCA, also determines the number
of diagrams with non-intersecting lines of correlation for the new SCA. Accordingly, the
number of diagrams with intersecting lines of correlation for the new SCA is determined by
the difference between the coefficients Pn 1- and Cn 1- :

N P C C 2 1 . 56n n n n
n

1 1 1 1
1( ) ( )= - = -- - - -

-

Thus, table 2 illustrates not only the advantage of the new SCA over the standard one, but
also the number of diagrams with non-intersecting (first row) and intersecting (third row) lines
of correlation/interaction taken into account in the new approach.

Figure 4. Diagram representation of the mass operator kS (first three orders of its
expansion) in terms of the original Green’s functions gk for the cases of the standard
(thin green lines) and the new (thin green lines+thick red lines) approximations.
Diagrams unaccounted for in the new approximation are shown by dot–dashed
(Green’s functions gk) and dotted (correlations) lines.
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Let us consider in more detail the form of diagrams, which the new approach includes in
the first three orders of expansion of the self-energy kS in a series. For this, we expand in a
series the equations (29) and (30) to terms of third order (i.e. to ,6 )g and then iterate them to
the same order. Figure 4 shows all diagrams included in the first three orders of the exact
expression for the self-energy (13 diagrams). The new SCA takes into account 11 of them.
Four of them are also taken into account in the standard SCA, and are shown in figure 4 as
thin green lines; the remaining nine are depicted as thick red lines. Thus, the new SCA
accurately describes the first and second orders (one and two diagrams, respectively) and
includes eight to ten of diagrams of the third order in accordance with table 2.

The fourth and higher orders of expansion of the self-energy in a series, along with
accurate diagrams, contain some faulty diagrams, which violate the law of conservation of
momentum. An example of one such diagram is shown in figure 5. It differs from the accurate
diagram by replacement of the Green’s function Gk k k3 4- + by the Green’s function G .k k k2 4- +

This has led to a violation of the law of conservation of momentum at two points marked by
squares in the figure. The appearance of such defective diagrams is associated with
approximations used in the derivation of the new SCA. Estimates show that the effect of the
defective diagrams on the final result of the calculation should be negligible. Thus, of the 40
diagrams taken into account in the fourth order, only two are defective. Of the seven Green’s
functions included in each diagram, one function in a defective diagram is incorrect.
Therefore, from the 280 Green’s functions taken into account in the fourth order, only two are
incorrect. When k 0,c  all defective diagrams are transformed into accurate ones.

Figure 5. One of the two defective diagrams of the fourth order. Points of violation of
the law of conservation of momentum are shown by squares. There is the Green’s
function Gk k k2 4- + between them instead of Gk k k3 4- + .

Figure 6. The imaginary part of the Green’s function calculated in the new SCA (top
row of graphs) and in the standard SCA (bottom row) at u k 0.018c c g= = (a), 0.18
(b), 0.33 (c), 0.5 (d), and 1.0 (e).

J. Phys. A: Math. Theor. 49 (2016) 095004 V A Ignatchenko and D S Polukhin

13



Next, we compare the shape and linewidth of the G ( )w resonance pick calculated in the
framework of the new and standard approximation. The calculation is performed for the fixed
wave number k 1.8.g = Changing the shape of the function Gk ( )n with an increase in the
dimensionless correlation wave number u kc c g= , calculated in the framework of the new
SCA, is shown in figure 6 (top row of graphs). Note that the scales of figures 6(d) and (e) are
different from each other as well as that of figures 6(a)–(c). Changing the shape of the
function Gk ( )n with increasing u ,c calculated by us in the standard SCA, is also shown in
figure 6 (bottom row of graphs). Figure 7 shows the variation in width of the resonance peak
nD of the function Gk ( )n with increasing u .c Crosses in this figure correspond to the standard

SCA, and circles to the new SCA. Compare the results obtained in the standard and the new
SCA (figures 2, 6 and 7). In both cases, the widest resonance peak corresponds to the smallest
value of u .c A significant narrowing of the resonance peak and change in its shape occur with
increasing u .c The height of the peak increases, and its wings become unbounded. We now
turn to the differences between the results obtained using the standard and the new SCA. It is
seen from figures 2, 6 and 7 that the standard SCA is unsatisfactory to reproduce either the
shape or width of the resonance peak of the function Gk ( )n in most of the investigated range

u0 1.c  The most pronounced advantage of the new SCA over the standard SCA is
shown for u 0.c = In this case, we can compare the form of the resonance peaks calculated in
different approximations with the known exact (Gaussian) form of this peak (figure 2). The
shape of the resonance peak calculated in the standard SCA has, far from reality, a domed
appearance; the peak width is much greater than the width of the exact resonance peak. In
contrast, the resonance peak of the function Gk ( )n calculated using the new SCA is similar to
the exact peak in form and width. When uc is different from zero, the advantage of the
improved SCA over the standard SCA is manifested in a significant part of the investigated
interval of uc (figures 6 and 7). Whereas the distorted dome shape of the resonance peak

Figure 7. The linewidth nD of the resonance curve G ( )n versus u kc c g=
calculated in the improved SCA (circles) and in the standard SCA (crosses). The exact
value of linewidth at u 0c = is also shown (asterisk).
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calculated in the standard SCA is manifested in varying degrees to all u 0.3,c < the peak
calculated in the new SCA has the usual resonance form over the entire range. Near the right-
hand edge of the investigated interval, the results obtained when using both the new and
standard approximations approach each other.

4. Conclusion

We summarize and discuss briefly the results obtained. A self-consistent approximation of a
higher level compared to the standard self-consistent approximation is derived taking into
account both the first and second terms of the series for the vertex function. In contrast to the
standard approximation, a new self-consistent approximation is described by a system of two
coupled nonlinear integral equations for the Green’s function and the vertex function. In
addition to all the diagrams with non-intersecting lines of correlation/interaction taken into
account by the standard self-consistent approximation, the new approach takes into account in
each term of the Green’s function expansion a significant number of diagrams with inter-
sections of these lines. Analytical formulas for the number of diagrams in each order of the
expansion of both the Green function and self-energy for the standard and for the new
approach have been derived. Tables and graphs that are based on these formulas demonstrate
the advantage of the new approach. A comparison of the new and standard approximations
was also carried out on a model problem of the dynamic susceptibility of waves in an
inhomogeneous medium. The obtained results suggest that the new approach has undoubted
advantages in the study of problems of both stochastic radio physics and optics in media with
enough long-wave inhomogeneities (k k ,c ) because it better describes the shape, line-
width, and amplitude of the resonance lines than the standard approach. The proposed
approach could be also applied in other areas of physics (the scattering of electrons on
impurities, electron–phonon interaction, etc). The usefulness and limits of applicability of the
new SCA in these areas require special studies which are beyond the scope of this paper.

Appendix A

Adding to the random function x( )r in equation (18) the arbitrary deterministic function x ,( )h
we obtain

G g G

g d

x x x x x x x x x x x x

x x x

, ; , , ;

, .

A1

0 0

0

˜ ˜ ˜ ˜˜( ( ) ( )) ( ) ˜( ( ) ( ))[ ( ) ( )]

( )
( )

ògr h gr h gr h¢ ¢ ¢

¢ ¢

+ = + + +

´

By averaging of equation (A1) we obtain

G g G g d G

g d

x x x x x x x x x x x x x

x x x

, ; , , ; , , ;

, .

A2

0 0 0

0

( ) ( ) ( ) ( ) ( ) ⟨ ( ) ˜( )⟩

( )
( )

ò òh h h g r h¢ ¢ ¢ ¢ ¢ ¢

¢ ¢

= + +

´

Then we decouple the average of the product G̃r using the Furutsu–Novikov formula
[32, 33]
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G K
G

x x x x x
x x

x
, ; ,

, ;
, A3⟨ ( ) ˜( )⟩ ( ) ( )

( )
( )òr h g

d h
dh

¢ ¢ ¢ 
¢


=

where K x x,( )¢  is the normalized correlation function

K Kx x x x x x, , , 1. A4( ) ⟨ ( ) ( )⟩ ( ) ( )r r¢  ¢  ¢ ¢= =

To find the variational derivative in equation (A3) we use the identity [12]

G Gx x x x x x x, ; , ; d . A51
1

1 0 1 0( ) ( ) ( ) ( )ò h h d= --

Varying equation (A5), we obtain

G
G G d d

x x
x

x x x x x x x x x
, ;

, ; , ; ; , ; , A61 1 2 2 1 2∬( )
( )

( ) ( ) ( ) ( )d h
dh

h h h
¢


 ¢= G

where the following notation is introduced:

Gx x x x x x, ; ; , ; . A71 2 1 2
1( ) ( ) ( ) ( )h d h dh G = - -

Substituting equation (A6) into equation (A3) and equation (A3) into equation (A2), we
obtain

G g G g d K

G G g d d d d

x x x x x x x x x x x x

x x x x x x x x x x x x x

, ; , , ; , ,

, ; , ; ; , ; , , A8

0 0 0
2

1 1 2 2 0 1 2

∬∬( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
òh h h g

h h h

¢ ¢ ¢ ¢ ¢ 

 ¢ ¢ ¢ 

= + +

´ G

Next cumbersome operations with equation (A8) are carried out, which we describe here
briefly. We divide equation (A8) by G x x, ;˜( )h and integrate it in x. According to
equation (A5) the left-hand side of this equation turns into the Dirac delta function x x .0 ˜( )d -
The two corresponding functionsd- are also formed on the right-hand side of the equation.
We divide the resulting equation by g x x,0 ˜( ˜) and integrate over x .0 Upon integrating over all

functionsd- and transferring the first term of the equation from the right-hand side to the left-
hand side, we obtain

g G K G

d d

x x x x x x x x x x x x x x

x x

, , ; , , ; ; , ;

. A9

1 1 2
2 2

2

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜( ˜) ( ˜ ) ( ) ( ˜) (˜ ) ( ) ( ˜ )

( )
ò òh h d g h h 



- = - + G

´

- -

We vary equation (A9) with respect to h and use equation (A5) and the formula [12, 13]

x x x x . A103 3˜ ˜( ) ( ) ( ) ( )dh dh d= -

The first term in equation (A9) vanishes, and we obtain the general form of the equation
that generates series expansion of the vertex function:

K G

G K

G

x x x x x x x x x x x x x x

x x x x x x x x x x x

x x x x x x x x

, ; ; , , ; ; , ;

, ; ; , ; d d d d ,

, ; , ; ; d d .

A11

3 3
2

2 2 4

4 5 3 5 2 4 5
2

2 2 3 2

∭
∬

˜ ˜ ˜ ˜ ˜ ˜ ˜

˜ ˜

˜ ˜

( ˜ ) ( ) ( ˜) (˜ ) ( ) ( )

( ) ( ˜ ) (˜ )

( ˜ ) ( ) ( )
( )

òh d d g h h

h h g

h d h dh

 

 

 

G = - - + G

´ G +

´ G

Writing equation (A8) for 0h = and introducing an appropriate designation for the self-
energy ,S we obtain two exact equation: the Dyson equation and the equation of connectionS
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with .G Restricting ourselves to the second term on the right-hand side of equation (A11), we
obtain at 0h = an approximate equation for G.
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