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Abstract. The initial stages of fullerene and endohedral metallofullerene (EMF) synthesis in 

carbon-helium plasma at 1500 K and 2500 K have been simulated with quantum chemical 

molecular dynamics (MD) based on density-functional tight-binding (DFTB). The cases of 

formation of large (>100 atoms) sp
2
-carbon clusters with scandium atoms inside were 

observed. These clusters are considered as precursors of fullerenes or EMFs, and thus it is 

shown that formation of EMFs can be explained within the framework of "shrinking hot giant" 

mechanism. Also, the dependence of formation rates on plasma parameters, including 

temperature, buffer gas and metal atoms concentrations, has been studied. 

1.  Introduction  

Since the discovery of buckminsterfullerene C60 [1], the family of fullerenes has attracted much 

attention due to their unusual electronic and optoelectronic properties, such as high electron affinities 

as well as novel chemical reactions [2]. It’s well-known that encapsulations of metal atoms or small 

molecules into fullerene’s cage lead to significant change of its chemical and physical properties [3,4]. 

The chemistry of these complexes is considerably different from that of bare fullerenes, in particular, 

their reduction-oxidation properties. The most promising and well investigated are endohedral 

metallofullerenes (EMFs, fullerenes with metal atoms inside) and endohedral metal carbide fullerenes 

(EMCFs, fullerenes containing metal atoms and a carbon molecule) [5-7]. 

These promising compounds have a lot of various applications due to their unusual electronic and 

magnetic properties, which strongly depend on their structure. Moreover, being very inert, carbon 

EMF cage can be used for medical purposes [8, 9]. Such structures may be used as carriers of 

radioactive isotopes [10], radiotracers or MRI contrast media [11]. The possibility of their using in 

anticancer therapy is also intensively investigated.  

However, the yield of EMFs via plasma chemical synthesis is very low at the present moment. 

There are still many questions about endohedral metallofullerenes’ formation mechanisms, as well as 

thermodynamic and kinetic stability. For example it can be mentioned that large fullerenes (Cn, n>70) 

are thermodynamically more favorable, whereas the fullerene mixture consists essentially of C60. 

Thereby, two opposed mechanisms can be realized: growth of the fullerene and its shrinking via C2 

evaporation (so-called “fullerene road” and “shrinking hot giant” mechanisms, respectively) [12-14]. 

RTEP2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 110 (2016) 012078 doi:10.1088/1757-899X/110/1/012078

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



 

 

 

 

 

 

 

According to the recently developed "shrinking hot giant" mechanism, large fullerenes are formed 

first during carbon cluster aggregation process. Being the result of differently sized carbon clusters’ 

coagulation and due to high thermodynamic stability, these giant fullerenes include large number of 

atoms as well as structural defects. Subsequently, these giant fullerene clusters shrink in size by the 

loss of the C2 clusters [14] during the further process of plasma cooling, because the larger clusters 

have less kinetic stability [12]. 

This mechanism of fullerene formation was supported by a number of investigations, including 

quantum-chemical molecular dynamical simulations [12, 15]. One possible confirmation of this model 

is the fact that yields of C70 and higher fullerenes in fullerene mixture are much higher at high helium 

pressure (more than 0.10 MPa) [16] than at reduced pressure (0.013 MPa) [12]. 

In this work, plasma chemical synthesis of fullerenes and EMFs is simulated by quantum-chemical 

molecular dynamics. It is shown that formation of endohedral fullerenes can be explained within the 

framework of "shrinking hot giant" mechanism. Also, the dependence of formation rates on plasma 

parameters (including temperature, buffer gas and metal atoms concentrations) is studied. 

2.  Methods 

All MD simulations were performed within the framework of non-consistent charge density-functional 

tight-binding (NCC DFTB) method [17, 18]. This method is often used for conducting MD for large 

systems (thousands of atoms) and for long run times (up to several nanoseconds), while having results 

comparable with conventional DFT [13]. 

In order to model large systems, we used boxes sized 100*100*100 Å. Each MD box contained 

120 C2 dimers and different numbers of He and Sc atoms (0, 120 or 240 helium atoms and 12 or 24 Sc, 

respectively). The spatial distribution of atoms and molecules as well as C2 dimers orientations were 

uniformly random. Each box was simulated at two finite temperatures (1500 and 2500 K) by 

Berendsen thermostat [19] with coupling parameter of 100 fs. Taking into account that the system 

under consideration is large, only Г point was used for the reciprocal space sampling. MD runs were 

conducted up to 0.6 ns with a time step of 1 fs. At least 5 different trajectories for each combination of 

parameters (i.e. temperature, number of He and Sc atoms) were simulated to get statistics for 

averaging the formation rates values. 

In order to measure the dynamics of cluster aggregation and transformation, changes in orbital 

hybridization type of carbon atoms were tracked with time. Atoms having four, three and two carbon 

neighbors within a coordination sphere with radius equal to 1.9 Å were considered to be in sp
3
, sp

2
 and 

sp hybridization states respectively. Some atoms had only one neighboring C atom, for example atoms 

on the ends of chains or atoms in C2 dimers. This state is further referred as 1b. The time evolution of 

number of atoms in certain hybridization states was averaged among 5 calculated trajectories for every 

parameters set. 

3.  Results and discussion 

3.1.  Fullerene formation mechanism 

Qualitatively, almost the same picture is observed for all the trajectories with all the parameter sets: 

At the beginning of MD run, constant collisions of C2 dimers lead to formation of Cn chains. This 

initial chain building process is rapid and almost irreversible, as the driving force for their formation is 

the creation of carbon-carbon σ-bond between two carbon atoms with energy of nearly 3.4 eV. As a 

consequence, these long chains grow longer and longer, until almost no free C2 molecules are present 

in the system. This stage is reached in a very short time in the order of tens of picoseconds. 

After that, chains gradually begin to connect and form so-called “Y-junctions” containing a single 

sp
2
-type carbon atom, and subsequently forming cyclic structures, containing pentagons, hexagons, 

and heptagons, as a result of thermal vibrations and bending. Formation of energetically favorable 

hexagons and heptagons from the interaction between two long carbon chains are also frequently 

observed. This can be considered as the initial stage of the growth of a carbon sheet fragments. 
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After formation of a cycle-containing nucleus, the cluster begins a transformation into a network of 

sp
2
-type carbon atoms. The transformation is mainly due to bond formation between linear carbon 

chains attached to the nucleus in close proximity to each other. The driving force for this process is 

growing π-conjugation and stabilization, so the most kinetically stable pentagons and hexagons are 

formed. The pentagons, introducing a uniform curvature to the growing cluster, give it a bowl shape. 

Concerning Sc atoms, we observe frequently that ends of carbon chains are terminated by Sc 

atoms, connected to the carbon chain by Sc-C σ-bond. 

The Sc atoms participate actively in the carbon sheet 

growth process too. We observed that Sc become di- 

and sometimes even trivalent, effectively replacing sp
2
 

carbon. Some of the carbon sheets formed also contain 

Sc at the ends of carbon side chains or on top of the sp
2
-

type carbon networks, with the position inside a carbon 

cage bowl being more stable. 

Similar to nanotube to fullerene conversion, long 

carbon chains attached to the opening of the bowl reach 

over the opening and thereby form additional large 

macrocyclic rings, which in turn can collapse in a 

“zipper”-type cycloaddition reaction mechanism. As a 

result, clusters of more than 100 carbon atoms are 

likely to evolve into a form, which resembles a giant 

defect-rich fullerene. Figure 1 shows an example of 

such a structure, consisting of 125 C atoms and 3 Sc 

atoms inside the almost closed carbon cage. 

3.2.  Effect of plasma parameters 

The rates of fullerene formation are proportional to the rates of sp
2
-carbon network growth. Thus, we 

can compare the rates of sp
2
-carbon network growth in order to estimate, how different plasma 

parameters affect fullerene and endohedral fullerene production in plasma chemical synthesis. The 

dynamics of carbon atom transformation from 1b state to sp
2
 are shown in figure 2. It should be noted, 

that there are almost no atoms in the sp
3
 state.  

3.2.1.  Effect of buffer gas concentration. Buffer gas atoms are known to play crucial role in fullerene 

growth. Comparing the rates of changes in the number of sp
2
 carbon atoms (in figure 2 He 

concentration rises from top row to bottom), we can conclude that presence of helium atoms nearly 

doubles the speed of carbon cages growth. This fact can be explained by the heat transfer from the 

growing sp
2
 nucleus to the buffer gas, which results in stabilization of the nucleus. However, the effect 

comes to saturation at high helium concentrations. The results for equal carbon and buffer gas 

concentrations (120 C2 dimers and 120 He atoms) are almost the same as for 1:2 proportion. 

3.2.2.  Effect of plasma temperature. MD simulations at 1500K and 2500K reveal unusually weak 

temperature dependence of sp
2
-carbon cluster formation rates. We speculate that the rates of cluster 

transformation to sp
2
 sheet depend on internal vibrational energy of the cluster, which can be higher 

than the plasma temperature, because of the energy released during new bonds creation [20]. 

3.2.3.  Effect of metal atoms concentration. Comparing the results for the He-free systems with 

different Sc atom numbers (see figure 2 (a) and (d)) we can see that increase in Sc concentration rises 

amounts of carbon atoms in 1b state. Analysis of the trajectories showed that this is due to Sc atoms 

hanging on the ends of carbon chains and thus not allowing them to connect to each other. As a result, 

the growth rates of unbranched chains and cycles are significantly reduced. In the cases with the buffer 

gas, however, the effect doesn’t take place, because collisions with He atoms tear Sc from chain ends. 

 

Figure 1. One of EMF cages after 0.4 ns 

simulation. Yellow balls represent carbon 

atoms, purple – scandium, cyan – helium. 
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(a) 240 C, 0 He, 12 Sc; T= 2500 K 

 

(d) 240 C, 0 He, 24 Sc; T= 2500 K 

 

(b) 240 C, 120 He, 12 Sc; T= 2500 K 

 

(e) 240 C, 120 He, 12 Sc; T= 1500 K 

 

(c) 240 C, 240 He, 12 Sc; T= 2500 K 

 

(f) 240 C, 240 He, 12 Sc; T= 1500 K 

 
Figure 2.  (a) – (f) Time evolution of the number of atoms in different hybridizations states. The 

numbers of carbon and helium atoms as well as the temperature used in the simulations are given 

above each plot. Horizontal time axes are in 10
5
 fs. 
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4.  Conclusions 

In the present work we have performed DFTB MD simulations of the initial stages of fullerenes and 

scandium EMFs’ synthesis in carbon-helium plasma at temperatures of 1500K and 2500K. During the 

simulations, which have started from uniformly distributed separate C2 dimers, He and Sc atoms, most 

of the carbon have coagulated with formation of large (>100 atoms) sp
2
-carbon shell-like clusters. It 

also should be noted, that there was almost no sp
3
-associated clusters. The observed closed sp

2
-carbon 

cage structures, some of which had several scandium atoms inside, can be considered as precursors of 

fullerenes or EMFs, which will obtain their stable structure after further annealing. These observations 

confirm the "shrinking hot giant" mechanism of fullerenes or EMFs formation in plasma. 

Also the dependences of sp
2
-carbon cage growth rates from the plasma parameters were 

investigated. It was shown that sp
2
-carbon cage growth rates are almost 2 times bigger at 1:1 He and 

C2 concentrations than without helium at all, although the further increase of He concentration has no 

visible effect. Also, an unusually weak dependence of sp
2
-carbon cage growth rate on the temperature 

was found. Finally, it was shown that increase in Sc concentration lowers the growth rates of 

unbranched chains and cycles in the cases without helium, but has no effect in cases with buffer gas. 
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