Single-layer model of reflective nanostructures for magneto- ellipsometry data analysis

To cite this article: O A Maximova et al 2016 IOP Conf. Ser.: Mater. Sci. Eng. 155012030

View the article online for updates and enhancements.

Related content
New travel-time approximations for a transversely isotropic medium Alexey Stovas and Bjorn Ursin

Selective Cu filling of nanopores using supercritical carbon dioxide Eiichi Kondoh, Yukihiro Tamegai, Mitsuhiro Watanabe et al.

Monitoring of Si Molecular-Beam Epitaxial Growth by an Ellipsometric Method Yoshifumi Yoshioka, Tetsuya Ikuta, Toshiya Taji et al.

Single-layer model of reflective nanostructures for magnetoellipsometry data analysis

O A Maximova ${ }^{1,2}$, $\mathbf{N N ~ K o s y r e v}^{3}$, S N Varnakov ${ }^{1,3}$, S A Lyashchenko ${ }^{1,3}$ and S G Ovchinnikov ${ }^{1,2,3}$
${ }^{1}$ Reshetnev Siberian State Aerospace University, Krasnoyarsk, 660037, Russia
${ }^{2}$ Siberian Federal University, Krasnoyarsk, 660041, Russia
${ }^{3}$ Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russia
E-mail: maximo.a@mail.ru

Abstract

In this work we present the method of magneto-ellipsometry data analysis. Magnetoellipsometry measurements are conducted in situ during nanostructures synthesis. Magnetic field is applied in configuration of magneto-optical transverse Kerr effect. Single-layer model of reflective nanostructures is in focus.

1. Introduction

Magneto-ellipsometry is considered as one of powerful reliable nondestructive methods for nanostructures synthesis control that is highly important for spintronics, electronics and nanotechnology. This technique combines ellipsometry and magneto-optical Kerr effect measurements. Magneto-ellipsometry has to be developed and in this work we report on magnetoellipsometry measurements analysis for the case of single-layer nanostructures study. We have developed the approach that can be applied to investigation of reflective ferromagnetic/nonferromagnetic nanostructures that are a subject of interest due to observed spin transport phenomena. We offer an algorithm that yields information about dielectric permittivity tensor of ferromagnetic layer [1], where diagonal tensor elements are responsible for refractive index and extinction coefficient, off-diagonal tensor elements are related to magneto-optical effects:

$$
[\varepsilon]=\left[\begin{array}{ccc}
\varepsilon_{11} & \varepsilon_{12} & 0 \tag{1}\\
\varepsilon_{21} & \varepsilon_{22} & 0 \\
0 & 0 & \varepsilon_{33}
\end{array}\right]=\left[\begin{array}{ccc}
\varepsilon_{11}^{\prime}-i \varepsilon_{11}^{\prime \prime} & -i\left(\varepsilon_{12}^{\prime}-i \varepsilon_{12}^{\prime \prime}\right)\left(Q_{1}-i Q_{2}\right) & 0 \\
i\left(\varepsilon_{12}^{\prime}-i \varepsilon_{12}^{\prime \prime}\right)\left(Q_{1}-i Q_{2}\right) & \varepsilon_{11}^{\prime}-i \varepsilon_{11}^{\prime \prime} & 0 \\
0 & 0 & \varepsilon_{11}^{\prime}-i \varepsilon_{11}^{\prime \prime}
\end{array}\right],
$$

where ε is a complex permittivity of a medium ($\varepsilon_{11}=\varepsilon_{22} \approx \varepsilon_{33}, \varepsilon_{12}=-\varepsilon_{21}$), real parts are marked by ', imaginary by ", $Q=Q_{1}-i Q_{2}$ is a proportional to magnetization magneto-optical parameter. In the nonmagnetic condition $(Q=0)$ the off-diagonal tensor elements vanish.

In the following, we describe the method of interpretation of the ellipsometric and magnetoellipsometric measurements data from the in situ setup of a magneto-optical generalized ellipsometer, which is integrated into an ultra-high vacuum chamber with the electromagnet for magnetization reversal of the sample. The key idea of this approach and the case of the model of a homogeneous semi-infinite medium have been reported in [2] and at the $8^{\text {th }}$ Joint European Magnetic Symposia (JEMS-2016) [3]. Here we repeat some of our basic ideas and present developed expressions for experimental data processing for a single-layer model of reflective nanostructures in order to study their optical and magneto-optical properties. We consider the case of electromagnetic wave incidence from non-magnetic dielectric medium (characterized by the refraction index N_{0}) onto ferromagnetic metal (the refraction index N_{I}) on substrate (the refraction index N_{2}). We set the magnetization vector to be z -axis directed, so that YX plane is a plane of incidence, YZ plane is a boundary plane. The transverse configuration is in focus because of the design features of high-vacuum chamber and

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
electromagnet that are commonly used for magnetization reversal. In this paper, we consider the visible light range, as a great amount of modern ellipsometers work in this range.

2. Ellipsometry and magneto-ellipsometry measurements data

Let us denote the ellipsometric parameters in the non-magnetic condition $(Q=0)$ as ψ_{0} and Δ_{0} [1]. In the case of magneto-ellipsomertic characterization of the sample ($Q=Q_{1}-i Q_{2} \neq 0$) the surface transverse magneto-optical Kerr effect results in the ellipsometric angles corrections $\delta \psi$ and $\delta \Delta$. Thus, the ellipsometric parameters become $\psi_{0}+\delta \psi, \Delta_{0}+\delta \Delta$. It means that four independent real-valued quantities $\left(\psi_{0}, \delta \psi, \Delta_{0}, \delta \Delta\right)$ are measured and, as a result, four real-valued quantities $\left(\varepsilon_{11}^{\prime}, \varepsilon^{\prime \prime}{ }_{11}, \varepsilon_{12}^{\prime}, \varepsilon^{\prime \prime}{ }_{12}\right)$ can be derived.

To start analysis of magneto-ellipsometry experimental data (ψ and Δ) we have to write the real and imaginary parts of complex reflection coefficients in the basic equation of ellipsometry [4, 5]:

$$
\begin{equation*}
\rho=\operatorname{tg}\left(\psi_{0}+\delta \psi\right) \exp \left(i\left(4_{0}+\delta \Delta\right)\right)=R_{p} R_{S}^{-1}=\left(R_{p}^{\prime}-i R_{P}^{\prime \prime}\right)\left(R_{S}^{\prime}-i R_{S}^{\prime \prime}\right)^{-1}, \tag{2}
\end{equation*}
$$

where ρ is the complex ellipsometric parameter, R_{p} and R_{s} are complex reflection coefficients corresponding to in-plane p-polarization and out-of-plane s-polarization respectively, real parts again are marked by ', imaginary by ". According to mode conversion from the p to the s polarized channel we can write that

$$
\begin{align*}
& R_{p}=R_{p p}+R_{p s}=R_{p 0}^{\prime}+R_{p 1}^{\prime}-i\left(R_{p 0}^{\prime \prime}+R_{p 1}^{\prime \prime}\right), \tag{3}\\
& R_{S}=R_{S S}+R_{S p}=R_{S 0}=R_{S 0}^{\prime}-i R_{S 0}^{\prime \prime}, \tag{4}
\end{align*}
$$

where we have distinguished the magnetic field contribution and marked it by subscript 1 , nonmagnetic summands - by subscript 0 . One can see that transverse Kerr effect yields to $R^{\prime \prime}{ }_{s l}=0, R_{s l}^{\prime}=0$.

By substituting equations (3-4) into (2) we obtain for non-magnetic condition:

$$
\begin{align*}
& \operatorname{tg} \psi_{0}=\sqrt{\frac{\left(R_{p 0}^{\prime} R_{S 0}^{\prime}+R_{S 0}^{\prime \prime} R_{p 0}^{\prime \prime}\right)^{2}+\left(R_{s 0}^{\prime \prime} R_{p 0}^{\prime}-R_{p 0}^{\prime \prime} R_{S 0}^{\prime}\right)^{2}}{R_{s 0}^{\prime 2}+R_{s 0}^{\prime \prime 2}}}, \tag{5}\\
& \Delta_{0}=\operatorname{arctg} \frac{R_{S 0}^{\prime \prime} R_{p 0}^{\prime}-R_{p 0}^{\prime \prime} R_{S 0}^{\prime}}{R_{p 0}^{\prime} R_{S 0}^{\prime}+R_{p 0}^{\prime \prime} R_{S 0}^{\prime \prime}}, \tag{6}
\end{align*}
$$

while the influence of an external magnetic field leads to ellipsometric parameters $\delta \psi$ and $\delta \Delta$:

$$
\begin{gather*}
\delta \psi=\psi-\psi_{0}=\operatorname{arctg}\left(F \operatorname{tg}\left(\psi_{0}\right)\right)-\psi_{0}, \tag{7}\\
\delta \Delta=\Delta-\psi_{0}=\operatorname{arctg} \frac{R_{s 0}^{\prime \prime}\left(R_{p 0}^{\prime}+R_{p 1}^{\prime}\right)-\left(R_{p 0}^{\prime \prime}+R_{p 1}^{\prime \prime}\right) R_{s 0}^{\prime}}{\left(R_{p 0}^{\prime}+R_{p 1}^{\prime}\right) R_{S 0}^{\prime}+\left(R_{p 0}^{\prime \prime}+R_{p 1}^{\prime \prime}\right) R_{s 0}^{\prime \prime}}-\operatorname{arctg} \frac{R_{s 0}^{\prime \prime} R_{p 0}^{\prime}-R_{p 0}^{\prime \prime} R_{s 0}^{\prime}}{R_{p 0}^{\prime} R_{S 0}^{\prime}+R_{p 0}^{\prime \prime} R_{s 0}^{\prime \prime}}, \tag{8}
\end{gather*}
$$

where F is a helpful notation:

$$
\times \sqrt{\operatorname{tg}\left(\psi_{0}+\delta \psi\right)=F \operatorname{tg}\left(\psi_{0}\right)=\operatorname{tg}\left(\psi_{0}\right) \times} \begin{align*}
& 1+\frac{\left(R_{s 0}^{\prime \prime} R_{p 1}^{\prime \prime}\right)^{2}+\left(R_{p 1}^{\prime \prime} R_{s 0}^{\prime}\right)^{2}+2 R_{p 0}^{\prime \prime} R_{p 1}^{\prime \prime}\left(R_{s 0}^{\prime 2}+R_{s 0}^{\prime \prime 2}\right)}{\left(R_{p 0}^{\prime} R_{s 0}^{\prime}+R_{p 0}^{\prime \prime} R_{s 0}^{\prime \prime}\right)^{2}+\left(R_{s 0}^{\prime \prime} R_{p 0}^{\prime}-R_{p 0}^{\prime} R_{s 0}^{\prime} R_{s 0}^{\prime}\right)^{2}+\left(R_{p 1}^{\prime} R_{s 0}^{\prime \prime}\right)^{2}+2 R_{p 0}^{\prime} R_{p 1}^{\prime}\left(R_{s 0}^{\prime}{ }^{2}+R_{s 0}^{\prime \prime 2}\right)} \tag{9}\\
& \left(R_{p 0}^{\prime} R_{s 0}^{\prime}+R_{p 0}^{\prime \prime} R_{s 0}^{\prime \prime}\right)^{2}+\left(R_{s 0}^{\prime \prime} R_{p 0}^{\prime}-R_{p 0}^{\prime \prime} R_{s 0}^{\prime}\right)^{2}
\end{align*} .
$$

3. Data analysis

In Figure 1 one can see a diagram of single-layer model, where $0-$ ambient medium, $1-$ ferromagnetic metal (d - thickness), $2-\operatorname{substrate}, \varphi_{0}, \varphi_{1}$ and φ_{2} are the angles of incidence and refraction and related to each other by Snell's law.

Figure 1. Single-layer model of reflective nanostructures
For a single-layer model complex refractive indices of the material under study ($N_{l}=n_{l}-i k_{l}$) are calculated from ψ_{0}, Δ_{0} measurements by the Nelder-Mead method. The values of $N_{0}=n_{0}-i k_{0}, N_{1}=n_{1}-i k_{1}$, $N_{2}=n_{2}-i k_{2}$ are necessary for the following ellipsometric angles calculation.

Analytical expressions for the Fresnel coefficients that take into account the magneto-optical parameter in the off-diagonal permittivity tensor elements were presented in [2, 4]. It was shown that the following expressions should be used for a single-layer model:

$$
\begin{align*}
& R_{p}=r_{01 p}+\frac{t_{01 p} t_{10 p} r_{12 p} \exp (-i 2 \beta)}{1-r_{10 p} r_{12 p} \exp (-i 2 \beta)}, \tag{10}\\
& R_{S}=\frac{r_{01 S}+r_{12 S} \exp (-i 2 \beta)}{1+r_{01 S} r_{12 S} \exp (-i 2 \beta)}, \tag{11}\\
& r_{01 p}=\frac{N_{1} \cos \varphi_{0}-N_{0} \cos \varphi_{1}}{N_{1} \cos \varphi_{0}+N_{0} \cos \varphi_{1}}-i \frac{2 Q N_{0}^{2} \sin \varphi_{0} \cos \varphi_{0}}{\left(N_{1} \cos \varphi_{0}+N_{0} \cos \varphi_{1}\right)^{2}}, \tag{12}\\
& r_{12 p}=\frac{N_{2} \cos \varphi_{1}-N_{1} \cos \varphi_{2}}{N_{2} \cos \varphi_{1}+N_{1} \cos \varphi_{2}}-i \frac{2 Q N_{1}^{2} \sin \varphi_{1} \cos \varphi_{1}}{\left(N_{2} \cos \varphi_{1}+N_{1} \cos \varphi_{2}\right)^{2}}, \tag{13}\\
& r_{10 p}=\frac{N_{0} \cos \varphi_{1}-N_{1} \cos \varphi_{0}}{N_{0} \cos \varphi_{1}+N_{1} \cos \varphi_{0}}+i \frac{2 Q N_{1}^{2} \sin \varphi_{1} \cos \varphi_{1}}{\left(N_{0} \cos \varphi_{1}+N_{1} \cos \varphi_{0}\right)^{2}}, \tag{14}\\
& r_{01 S}=\frac{N_{0} \cos \varphi_{0}-N_{1} \cos \varphi_{1}}{N_{0} \cos \varphi_{0}+N_{1} \cos \varphi_{1}}, \tag{15}\\
& r_{12 S}=\frac{N_{1} \cos \varphi_{1}-N_{2} \cos \varphi_{2}}{N_{1} \cos \varphi_{1}+N_{2} \cos \varphi_{2}}, \tag{16}\\
& t_{01 p}=\frac{2 N_{0} \cos \varphi_{0}}{N_{1} \cos \varphi_{0}+N_{0} \cos \varphi_{1}}+i \frac{2 Q N_{0}^{3} \sin \varphi_{0} \cos \varphi_{0}}{N_{1}\left(N_{1} \cos \varphi_{0}+N_{0} \cos \varphi_{1}\right)^{2}}, \tag{17}\\
& t_{10 p}=\frac{2 N_{1} \cos \varphi_{1}}{N_{1} \cos \varphi_{0}+N_{0} \cos \varphi_{1}}-i \frac{2 Q N_{1}^{3} \sin \varphi_{1} \cos \varphi_{1}}{N_{0}\left(N_{1} \cos \varphi_{0}+N_{0} \cos \varphi_{1}\right)^{2}}, \tag{18}
\end{align*}
$$

$$
\begin{equation*}
\beta_{1}=\frac{2 \pi}{\lambda} N_{1} \cos \varphi_{1} d_{1}, \tag{19}
\end{equation*}
$$

where β_{I} is phase thickness of the film. Indices $r_{o l p}, r_{0 I s}$ and $r_{12 p}, r_{12 s}$ in expressions $(12,15)$ and (13, 16) are the refractive indices for interfaces $0-1$ and $1-2$, respectively. Indices $t_{0 l p}$ and $t_{l o_{p}}$ in expressions $(17,18)$ are transmission coefficients. Indices $r_{o l p}$ and $t_{0 l_{p}}$ correspond to the wave propagation from medium 0 to medium 1, while $r_{10_{p}}$ and $t_{I \theta_{p}}$ - to the backward propagation. Taking into account expressions (3,4) let us write $r_{0 l p}, r_{I 2 p}, r_{0 l s}, r_{12 s}, r_{I p_{p},}, t_{0 l p}, t_{l 0_{p}}$ in the same manner as the refractive indices and transmission coefficients for the model of a homogeneous semi-infinite medium:

$$
\begin{gather*}
r_{01 S}=\left(R_{S 0}^{\prime}\right)_{01}-i\left(R_{s 0}^{\prime \prime}\right)_{01} . \tag{20}\\
r_{12 S}=\left(R_{S 0}^{\prime}\right)_{12}-i\left(R_{S 0}^{\prime \prime}\right)_{12} . \tag{21}\\
r_{01 p}=\left(R_{p 0}^{\prime}\right)_{01}+\left(R_{p 1}^{\prime}\right)_{01}-i\left(\left(R_{p 0}^{\prime \prime}\right)_{01}+\left(R_{p 1}^{\prime \prime}\right)_{01}\right)=r r_{01}-i r i_{01}, \tag{22}\\
r_{12 p},\left(R_{p 0}^{\prime}\right)_{12}+\left(R_{p 1}^{\prime}\right)_{12}-i\left(\left(R_{p 0}^{\prime \prime}\right)_{12}+\left(R_{p 1}^{\prime \prime}\right)_{12}\right)=r r_{12}-i r i_{12}, \tag{23}\\
r_{10 p}=\left(R_{p 0}^{\prime}\right)_{10}+\left(R_{p 1}^{\prime}\right)_{10}-i\left(\left(R_{p 0}^{\prime \prime}\right)_{10}+\left(R_{p 1}^{\prime \prime}\right)_{10}\right)=r r_{10}-i r i_{10}, \tag{24}\\
t_{01 p}=\left(T_{p 0}^{\prime}\right)_{01}+\left(T_{p 1}^{\prime}\right)_{01}-i\left(\left(T_{p 0}^{\prime \prime}\right)_{01}+\left(T_{p 1}^{\prime \prime}\right)_{01}\right)=t r_{01}-i t i_{01}, \tag{25}\\
t_{10 p}=\left(T_{p 0}^{\prime}\right)_{10}+\left(T_{p 1}^{\prime}\right)_{10}-i\left(\left(T_{p 0}^{\prime \prime}\right)_{10}+\left(T_{p 1}^{\prime \prime}\right)_{10}\right)=t r_{10}-i t i_{10}, \tag{26}
\end{gather*}
$$

where $\left(R_{s 0}^{\prime}\right)_{01},\left(R_{s 0}^{\prime \prime}\right)_{01},\left(R_{p 0}^{\prime}\right)_{01},\left(R_{p 0}^{\prime \prime}\right)_{01},\left(R_{p 1}^{\prime}\right)_{01},\left(R_{p l}^{\prime \prime}\right)_{01}$ are $R_{s i}^{\prime}, R_{s o}^{\prime \prime}, R_{p 0}^{\prime}, R_{p 0}^{\prime \prime}, R_{p l}^{\prime}, R_{p 1}^{\prime \prime}$ in the model of a homogeneous semi-infinite medium, respectively. Subscript 01 denotes the electromagnetic wave incidence from ambient medium 0 onto layer 1. Indices $\left(R_{s 0}^{\prime}\right)_{12},\left(R_{s 0}^{\prime \prime}\right)_{12},\left(R_{p 0}^{\prime}\right)_{12}$, $\left(R_{p 0}^{\prime \prime}\right)_{12},\left(R_{p l}^{\prime}\right)_{12},\left(R_{p l}^{\prime \prime}\right)_{12}$ are also calculated by formulae for the model of a homogeneous semi-infinite medium, the only difference is that subscript 12 denotes the electromagnetic wave incidence from layer 1 onto substrate 2 that leads to the following changes: $\cos \varphi_{0} \rightarrow \cos \varphi_{1}, \cos \varphi_{1} \rightarrow \cos \varphi_{2}, \sin$ $\varphi_{0} \rightarrow \sin \varphi_{1}, n_{l} \rightarrow n_{2}, n_{0} \rightarrow n_{1}, k_{l} \rightarrow k_{2}, k_{0} \rightarrow k_{1}$. Likewise, indices $\left(R_{p 0}^{\prime}\right)_{10},\left(R_{p 0}^{\prime \prime}\right)_{10},\left(R_{p l}^{\prime}\right)_{10},\left(R_{p l}^{\prime \prime}\right)_{10}$ describe the electromagnetic wave propagation from layer 1 to medium $0: \cos \varphi_{0} \leftrightarrow \cos \varphi_{1}, \sin \varphi_{0} \leftrightarrow \sin \varphi_{1}$, $n_{0} \leftrightarrow n_{l}, k_{0} \leftrightarrow k_{1}$.

Transmission coefficients were not involved into algorithm of data processing for the model of a homogeneous semi-infinite medium. Therefore, we report on $\left(T_{p 0}^{\prime}\right)_{01},\left(T^{\prime \prime}{ }_{p 0}\right)_{01},\left(T_{p 1}^{\prime}\right)_{01},\left(T_{p l}^{\prime \prime}\right)_{01}$ here:

$$
\begin{gather*}
\left(T_{p 0}^{\prime}\right)_{01}=2 \frac{\left(n_{0} n_{1}+k_{0} k_{1}\right)\left(a^{2}+c^{2}\right)+\left(n_{0}{ }^{2}+k_{0}{ }^{2}\right)(a b+c d)}{A_{3}{ }^{2}+B_{3}{ }^{2}}, \tag{27}\\
\left(T_{p 0}^{\prime \prime}\right)_{01}=2 \frac{\left(n_{0}{ }^{2}+k_{0}{ }^{2}\right)(a d-b c)+\left(n_{1} k_{0}-n_{0} k_{1}\right)\left(a^{2}+c^{2}\right)}{A_{3}{ }^{2}+B_{3}{ }^{2}}, \tag{28}\\
\left(T_{p 1}^{\prime}\right)_{01}=2 \frac{Q_{1}(p q+r s)-Q_{2}(p r-s q)}{\left(n_{1}{ }^{2}+k_{1}{ }^{2}\right)\left(A_{3}{ }^{2}+B_{3}{ }^{2}\right)^{2}}, \tag{29}\\
\left(T_{p 1}^{\prime \prime}\right)_{01}=2 \frac{Q_{1}(p r-s q)+Q_{2}(p q+r s)}{\left(n_{1}{ }^{2}+k_{1}{ }^{2}\right)\left(A_{3}{ }^{2}+B_{3}^{2}\right)^{2}}, \tag{30}
\end{gather*}
$$

where

$$
\begin{align*}
& A_{3}=n_{1} a+k_{1} c+n_{0} b+k_{0} d, \tag{31}\\
& B_{3}=k_{1} a-n_{1} c+k_{0} b-n_{0} d, \tag{32}\\
& p=N\left(3 n_{0}^{2} k_{0}-k_{0}^{3}\right)+P\left(n_{0}^{3}-3 n_{0} k_{0}^{2}\right), \\
& q=n_{1}\left(A_{3}^{2}-B_{3}^{2}\right)-2 A_{3} B_{3} k_{1}, \tag{34}\\
& r=k_{1}\left(B_{3}{ }^{2}-A_{3}^{2}\right)-2 A_{3} B_{3} n_{1}, \tag{35}
\end{align*}
$$

$$
\begin{gather*}
s=N\left(n_{0}^{3}-3 n_{0} k_{0}^{2}\right)-P\left(3 n_{0}^{2} k_{0}-k_{0}^{3}\right), \tag{36}\\
a=\operatorname{Re}\left(\cos \varphi_{0}\right), \tag{37}\\
b=\operatorname{Re}\left(\cos \varphi_{1}\right), \tag{38}\\
c=\operatorname{Im}\left(\cos \varphi_{0}\right), \tag{39}\\
d=\operatorname{Im}\left(\cos \varphi_{1}\right), \tag{40}\\
N=\operatorname{Re}\left(\sin \varphi_{0}\right) a-\operatorname{Im}\left(\sin \varphi_{0}\right) \mathrm{c} \tag{41}\\
P=-\operatorname{Re}\left(\sin \varphi_{0}\right) c-\operatorname{Im}\left(\sin \varphi_{0}\right) a \tag{42}
\end{gather*}
$$

Coefficients $\left(T_{p 0}^{\prime}\right)_{10},\left(T^{\prime \prime}{ }_{p 0}\right)_{10},\left(T_{p l}^{\prime}\right)_{10},\left(T^{\prime \prime}{ }_{p l}\right)_{10}$ correspond to the electromagnetic wave propagation from layer 1 to medium 0, that leads to the changes: $\cos \varphi_{0} \leftrightarrow \cos \varphi_{l}, \sin \varphi_{0} \leftrightarrow \sin \varphi_{1}, n_{0} \leftrightarrow n_{l}, k_{0} \leftrightarrow k_{1}$.

Let us take into account $N_{0}=n_{0}-i k_{0}, N_{l}=n_{1}-i k_{1}, N_{2}=n_{2}-i k_{2}, Q=Q_{1}-i Q_{2}$ and compare expressions (10, 11) with (2, 3). Thus we obtain expressions for $R_{p 0}^{\prime}, R_{p 0}^{\prime \prime}, R_{p l}^{\prime}, R_{p l}^{\prime \prime}, R_{s 0}^{\prime}$ and $R_{s o}^{\prime \prime}$.

$$
\begin{align*}
& R_{p 0}^{\prime}=\left(\left(\left(R_{p 0}^{\prime}\right)_{01}+\xi_{1}\left(R_{p 0}^{\prime}\right)_{12}-\eta_{1}\left(R_{p 0}^{\prime \prime}\right)_{12}\right)\left(1+\xi_{1} L_{0112}-\eta_{1} M_{0112}\right)+\right. \\
& \left.+\left(\left(R_{p 0}^{\prime \prime}\right)_{01}+\eta_{1}\left(R_{p 0}^{\prime}\right)_{12}+\xi_{1}\left(R_{p 0}^{\prime \prime}\right)_{12}\right)\left(\xi_{1} M_{0112}+\eta_{1} L_{0112}\right)\right)\left(\left(1+\xi_{1} L_{0112}-\eta_{1} M_{0112}\right)^{2}+\left(\xi_{1} M_{0112}+\eta_{1} L_{0112}\right)^{2}\right)^{-1}, \tag{43}\\
& R_{p 0}^{\prime \prime}=\left(\left(\left(R_{p 0}^{\prime \prime}\right)_{01}+\eta_{1}\left(R_{p 0}^{\prime}\right)_{12}+\xi_{1}\left(R_{p 0}^{\prime \prime}\right)_{12}\right)\left(1+\xi_{1} L_{0112}-\eta_{1} M_{0112}\right)-\right. \\
& \left.-\left(\left(R_{p 0}^{\prime}\right)_{01}+\xi_{1}\left(R_{p 0}^{\prime}\right)_{12}-\eta_{1}\left(R_{p 0}^{\prime \prime}\right)_{12}\right)\left(\xi_{1} M_{0112}+\eta_{1} L_{0112}\right)\right)\left(\left(1+\xi_{1} L_{0112}-\eta_{1} M_{0112}\right)^{2}+\left(\xi_{1} M_{0112}+\eta_{1} L_{0112}\right)^{2}\right)^{-1}, \tag{44}\\
& R_{p 1}^{\prime}=\frac{\Omega \chi-\Gamma \varpi}{\Omega^{2}+\Gamma^{2}}-R_{p 0}^{\prime}, \tag{45}\\
& R_{p 1}^{\prime \prime}=\frac{\Omega \varpi+\Gamma \chi}{\Omega^{2}+\Gamma^{2}}-R_{p 0}^{\prime \prime}, \tag{46}\\
& R_{s 0}^{\prime}=\left(\left(\left(R_{s 0}^{\prime}\right)_{01}+\xi_{1}\left(R_{s 0}^{\prime}\right)_{12}-\eta_{1}\left(R_{s 0}^{\prime \prime}\right)_{12}\right)\left(1+\xi_{1} H_{0112}-\eta_{1} J_{0112}\right)+\right. \\
& \left.+\left(\left(R_{s 0}^{\prime \prime}\right)_{01}+\eta_{1}\left(R_{s 0}^{\prime}\right)_{12}+\xi_{1}\left(R_{s 0}^{\prime \prime}\right)_{12}\right)\left(\xi_{1} J_{0112}+\eta_{1} H_{0112}\right)\right)\left(\left(1+\xi_{1} H_{0112}-\eta_{1} J_{0112}\right)^{2}+\left(\xi_{1} J_{0112}+\eta_{1} H_{0112}\right)^{2}\right)^{-1}, \tag{47}\\
& R_{s 0}^{\prime \prime}=\left(\left(\left(R_{s 0}^{\prime \prime}\right)_{01}+\eta_{1}\left(R_{s 0}^{\prime}\right)_{12}+\xi_{1}\left(R_{s 0}^{\prime \prime}\right)_{12}\right)\left(1+\xi_{1} H_{0112}-\eta_{1} J_{0112}\right)-\right. \\
& \left.-\left(\left(R_{s 0}^{\prime}\right)_{01}+\xi_{1}\left(R_{s 0}^{\prime}\right)_{12}-\eta_{1}\left(R_{s 0}^{\prime \prime}\right)_{12}\right)\left(\xi_{1} J_{0112}+\eta_{1} H_{0112}\right)\right)\left(\left(1+\xi_{1} H_{0112}-\eta_{1} J_{0112}\right)^{2}+\left(\xi_{1} J_{0112}+\eta_{1} H_{0112}\right)^{2}\right)^{-1}, \tag{48}
\end{align*}
$$

where the following notations are used:

$$
\begin{gather*}
L_{0112}=\left(R_{p 0}^{\prime}\right)_{12}\left(R_{p 0}^{\prime}\right)_{01}-\left(R_{p 0}^{\prime \prime}\right)_{12}\left(R_{p 0}^{\prime \prime}\right)_{01}, \tag{49}\\
M_{0112}=\left(R_{p 0}^{\prime}\right)_{01}\left(R_{p 0}^{\prime \prime}\right)_{12}+\left(R_{p 0}^{\prime}\right)_{12}\left(R_{p 0}^{\prime \prime}\right)_{01}, \tag{50}\\
\xi_{1}=\operatorname{Re}\left(\exp \left(-i 2 \beta_{1}\right)\right), \tag{51}\\
\eta_{1}=-\operatorname{Im}\left(\exp \left(-i 2 \beta_{1}\right)\right), \tag{52}\\
J_{0112}=\left(R_{S 0}^{\prime}\right)_{01}\left(R_{S 0}^{\prime \prime}\right)_{12}+\left(R_{S 0}^{\prime}\right)_{12}\left(R_{S 0}^{\prime \prime}\right)_{01}, \tag{53}\\
H_{012}=\left(R_{S 0}^{\prime}\right)_{01}\left(R_{S 0}^{\prime}\right)_{12}-\left(R_{S 0}^{\prime \prime}\right)_{12}\left(R_{S 0}^{\prime \prime}\right)_{01}, \tag{54}\\
\Omega=1-\xi_{1}\left(r r_{10} r r_{12}-r i_{10} r i_{12}\right)+\eta_{1}\left(r i_{10} r r_{12}+r r_{10} r i_{12}\right), \tag{55}\\
\sigma=r i_{01}-\left(\xi_{1} r r_{12}-\eta_{1} i_{12}\right)\left(r i_{01} r r_{10}+r i_{10} r r_{01}-\tau\right)-\left(\xi_{1} r i_{12}+\eta_{1} r r_{12}\right)\left(r r_{01} r r_{10}-r i_{01} r i_{10}-\theta\right), \tag{56}\\
\Gamma=\xi_{1}\left(r i_{10} r r_{12}+r r_{10} r 1_{12}\right)+\eta_{1}\left(r r_{10} r r_{12}-r i_{10} r i_{12}\right), \tag{57}\\
\chi=r r_{01}-\left(\xi_{1} r r_{12}-\eta_{1} r i_{12}\right)\left(r r_{01} r r_{10}-r i_{01} r i_{10}-\theta\right)+\left(\xi_{1} r i_{12}+\eta_{1} r r_{12}\right)\left(r i_{01} r r_{10}+r i_{10} r r_{01}-\tau\right), \tag{58}\\
\theta=t r_{01} t r_{10}-t i_{01} t i_{10}, \tag{59}\\
\tau=t i_{01} t r_{10}+t i_{10} t r_{01} . \tag{60}
\end{gather*}
$$

Thus, we have all formulae that are necessary for theoretical calculation of the ellipsometric angles (2-9) in case of a single-layer model. Final step is giving the best fit to the experimental data by the use of the wavelength-to-wavelength Nelder-Mead minimization of the ellipsometric angles. It yields

IOP Conf. Series: Materials Science and Engineering 155 (2016) 012030 doi:10.1088/1757-899X/155/1/012030
the spectral dependences of real $\left(Q_{1}\right)$ and imaginary parts $\left(Q_{2}\right)$ of magneto-optical parameter Q. So, we have information about all elements of the dielectric permittivity tensor.

4. Conclusion

To conclude, we have proposed an approach to studying single-layer nanomaterials by means of magneto-ellipsometry. The algorithm of experimental data analysis ($\psi_{0}, \Delta_{0}, \psi_{0}+\delta \psi, \Delta_{0}+\delta \Delta$) is presented. As a result, optical and magneto-optical properties can be easily and reliably characterized during synthesis.

5. Acknowledgements

The work was supported by the Russian Foundation for Basic Research, Grant No. 16-32-00209 mol_a, Grant No. 16-42-243058, Grant No. 14-02-01211. The work was supported partly by The Complex program of SB RAS № II.2P, project 0358-2015-0004, the Ministry of Education and Science of the RF (State task No. 16.663.2014K), grant Scientific School 7559.2016.2.

References

[1] Sokolov A V 1961 Optical Properties of Metals (Moscow: GIFML) p. 322
[2] Maksimova O A et al. 2014 Journal Of Structural Chemistry 55. No. 6 pp 1134-41
[3] Maximova O, Kosyrev N, Varnakov S et al. Proc of JEMS-2016 (Glasgow: IOP) p 117-118
[4] Maximova O A, Ovchinnikov S G, Hartmann U et al. 2013 J. SibSAU Vestnik (Krasnoyarsk) 49. No. 3 pp121-127
[5] Azzam R M A and Bashara N M 1977 Ellipsometry and Polarized Light (Amsterdam: NorthHolland) chapter 4

