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Abstract. In this work we present the method of magneto-ellipsometry data analysis. Magneto-
ellipsometry measurements are conducted in situ during nanostructures synthesis. Magnetic
field is applied in configuration of magneto-optical transverse Kerr effect. Single-layer model
of reflective nanostructures is in focus.

1. Introduction

Magneto-ellipsometry is considered as one of powerful reliable nondestructive methods for
nanostructures synthesis control that is highly important for spintronics, electronics and
nanotechnology. This technique combines ellipsometry and magneto-optical Kerr effect
measurements. Magneto-ellipsometry has to be developed and in this work we report on magneto-
ellipsometry measurements analysis for the case of single-layer nanostructures study. We have
developed the approach that can be applied to investigation of reflective ferromagnetic/non-
ferromagnetic nanostructures that are a subject of interest due to observed spin transport phenomena.
We offer an algorithm that yields information about dielectric permittivity tensor of ferromagnetic
layer [1], where diagonal tensor elements are responsible for refractive index and extinction
coefficient, off-diagonal tensor elements are related to magneto-optical effects:
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where ¢ is a complex permittivity of a medium (g;,=¢,,~e3;3, €,=-€;), real parts are marked by ',
imaginary by ", 0=0;-iQ, is a proportional to magnetization magneto-optical parameter. In the non-
magnetic condition (Q=0) the off-diagonal tensor elements vanish.

In the following, we describe the method of interpretation of the ellipsometric and magneto-
ellipsometric measurements data from the in situ setup of a magneto-optical generalized ellipsometer,
which is integrated into an ultra-high vacuum chamber with the electromagnet for magnetization
reversal of the sample. The key idea of this approach and the case of the model of a homogeneous
semi-infinite medium have been reported in [2] and at the 8" Joint European Magnetic Symposia
(JEMS-2016) [3]. Here we repeat some of our basic ideas and present developed expressions for
experimental data processing for a single-layer model of reflective nanostructures in order to study
their optical and magneto-optical properties. We consider the case of electromagnetic wave incidence
from non-magnetic dielectric medium (characterized by the refraction index N,) onto ferromagnetic
metal (the refraction index N;) on substrate (the refraction index N;). We set the magnetization vector
to be z-axis directed, so that YX plane is a plane of incidence, YZ plane is a boundary plane. The
transverse configuration is in focus because of the design features of high-vacuum chamber and
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electromagnet that are commonly used for magnetization reversal. In this paper, we consider the
visible light range, as a great amount of modern ellipsometers work in this range.

2. Ellipsometry and magneto-ellipsometry measurements data

Let us denote the ellipsometric parameters in the non-magnetic condition (0=0) as y, and 4, [1]. In
the case of magneto-ellipsomertic characterization of the sample (O=0;-i0,#0) the surface transverse
magneto-optical Kerr effect results in the ellipsometric angles corrections dy and d4. Thus, the
ellipsometric parameters become y+dy, 4y+d4. It means that four independent real-valued quantities
(o, oy, Ay, 04) are measured and, as a result, four real-valued quantities (¢';;, €";1, €'12, €"15) can be
derived.

To start analysis of magneto-ellipsometry experimental data (y and A) we have to write the real
and imaginary parts of complex reflection coefficients in the basic equation of ellipsometry [4, 5]:

p=19(yg + 8y expli(4 +64) =RpRg = (Rp ~IREI(Rg ~iR ™, 2)

where p is the complex ellipsometric parameter, R, and R, are complex reflection coefficients
corresponding to in-plane p-polarization and out-of-plane s-polarization respectively, real parts again
are marked by ', imaginary by ". According to mode conversion from the p to the s polarized channel
we can write that

Rs =Rss +Rsp =Rsg =Rgg ~1Rgp- )
where we have distinguished the magnetic field contribution and marked it by subscript 1, non-

magnetic summands — by subscript 0. One can see that transverse Kerr effect yields to R";=0, R';; =0.
By substituting equations (3-4) into (2) we obtain for non-magnetic condition:
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while the influence of an external magnetic field leads to ellipsometric parameters oy and d4:
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3. Data analysis

In Figure 1 one can see a diagram of single-layer model, where 0 — ambient medium, 1 —
ferromagnetic metal (d — thickness), 2 — substrate, @), ¢; and ¢, are the angles of incidence and
refraction and related to each other by Snell’s law.

Figure 1. Single-layer model of reflective nanostructures

For a single-layer model complex refractive indices of the material under study (N,;=n;-ik;) are
calculated from y,, 4, measurements by the Nelder-Mead method. The values of Ny=ny-iky, N;=n;-ik;,
N,=ny-ik, are necessary for the following ellipsometric angles calculation.

Analytical expressions for the Fresnel coefficients that take into account the magneto-optical
parameter in the off-diagonal permittivity tensor elements were presented in [2, 4]. It was shown that
the following expressions should be used for a single-layer model:
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2
oA =7N1 cos¢d,, (19)

where f; is phase thickness of the film. Indices 7y, 79;s and 7,5, 7,2 in expressions (12, 15) and (13,
16) are the refractive indices for interfaces 0-1 and 1-2, respectively. Indices #,;, and ¢,, in expressions
(17, 18) are transmission coefficients. Indices 7y, and #,;, correspond to the wave propagation from
medium 0 to medium 1, while 9, and ¢;5, — to the backward propagation. Taking into account
expressions (3, 4) let us write 7g;,, 712, Y155 ¥1255 ¥i0ps Loips t1gp 10 the same manner as the refractive
indices and transmission coefficients for the model of a homogeneous semi-infinite medium:

foas = (Rso)or —1(Rso)os - (20)

fas = (Rgo)re —1(Rso)1z - (21)
lo1p = =(R; 0)01 + (Rpl)Ol I((RpO ot (R Do) =M, —i iy, (22)
Mo = =(R; 0)12 + (R;’n)lz I((RpO 2 T (Rpl ) =T, =1 Ty, (23)
Mop =(R; 0)10 + (R;’)l)lo I((RpO ot (Rpl 10) =g —1 Ty, (24)
Lo, (TpO Jo + (Tpl)()l '((T 0o + (Tpl o) =th — ity (25)
Op = (Tp0)10 + (Tpl)lo - I((TpO)lO + (Tplll 10) =1, —i ti10 5 (26)

where (R'sp)o1, (R"s0)or, (R'p0)o1, (R"p0)o1, (R'p1)o1, (R"p1)o1 are R'sy , R, R'y9, R"p0, R, R",; in the
model of a homogeneous semi-infinite medium, respectively. Subscript 01 denotes the
electromagnetic wave incidence from ambient medium 0 onto layer 1. Indices (R's)12, (R"s0)12, (R'»0)12,
(R"0)12, (R, )12, (R",1)12 are also calculated by formulae for the model of a homogeneous semi-infinite
medium, the only difference is that subscript 12 denotes the electromagnetic wave incidence from
layer 1 onto substrate 2 that leads to the following changes: cos @y—cos @, cos ¢,—cos @, sin
(00—>Sl'l’l @1, nj—n; ng—ny, k1—>k2, k0—>k1. Likewise, indices (R:D())lo, (R,tpg)l(), (R:DI)IO’ (R”p[)]() describe
the electromagnetic wave propagation from layer 1 to medium 0: cos @y<>cos ¢, sin py—sin ¢,
No<ny, k()<—>k1.

Transmission coefficients were not involved into algorithm of data processing for the model of a
homogeneous semi-infinite medium. Therefore, we report on (7",0)o1, (T"50)01, (T'p1)o1, (T",1)o01 here:
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where

A =na+kc+nb+ky,d, 3D
B, =ka-nc+kb—-nyd, (32)
p=N(@nZk, —k3)+P(nd —3n,k?), (33)
q:n1(A32 _B32)_2%Bsk13 (34)
r:kl(B32 —Aj)—Z%Bsnl, (35)
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s=N(nd —3n,k?) — P(3nlk, —k?), (36)
a=Re(cosg,), (37
b=Re(cos¢g,), (38)
c=Im(cos¢,), (39)
d=Im(cos¢g,), (40)

N =Re(sing,)a—Im(sing,)c (41)
P =—Re(sing,)c — Im(sing,)a (42)

Coefficients (7",0)10, (T"0)10, (T"»1)10. (T",1)10 correspond to the electromagnetic wave propagation
from layer 1 to medium 0, that leads to the changes: cos py<>cos ¢, sin pysin @;, ng—n;, ko—k;.

Let us take into account Ny=ny-iky, N;=n;-ik;, N,=nrik, O=0;-iQ, and compare expressions (10,
11) with (2, 3). Thus we obtain expressions for R',y, R",9, R',;, R",1, R's9 and R’y

Ryo = (((Ryo)or + & (Rpo)re =1 (Ryo )12)(1+§L0112 Moz )+
+((R;;E) Jor +’71(R 012 +§1(Rp0 12 ) (& Moy, + 77 Loy, DA+ & Loy, — 0112) +(§1 o2 T70 L0112)2)_1 > (43)
Roo =(((Rio)oy +m (Ryo)rs + & (R ,8)12)(1+§1L0112 — 1 Mop) —
~((Roo)or + & (Roo )iz =72 (R6 )12 G Mgy + 77, Loysp DA+ & Ly, =71 Mo, ) +(EMoss +77 Loz )*) (44)
e L
Ry = L= i,
Rso = ((Réo)or + & (Reo)is =71 (Re0 )12 )A+ & Hous, =17 d0110) +
H(Rso)or +77. (Rso )z + & (RS0 )& Jonnz + 7 Howao DA+ & Hopay _771‘]0112)2 +(& Jowe "'771Honz)2)71 > (47)
Rso = (((Rg0)or +77 (Reo )1z +& (Reo 1o YA+ & Hoao =1 30002) —

(45)

(46)

~(Réo)or + & (Réo)s, =71 (Ré )2 ) (& 3011z +7% Horao DA+ & Horso = 1130100)” + (G 3000 +7Ho112)) s (48)
where the following notations are used:

Lot :(R'O)lZ(R,O)Ol _(R,;))12(R’2))01’ (49)

Moy, = (RpO)Ol( ;’)2))12 +(R; 0)12(Rp0 01> (50)

51 =Re(exp(-i24)), (51

=—Im(exp(-i24)), (52)

Jozz = (Re)or (Rso )iz + (Ro)i2 (Rg)oa» (53)

Hoiz = (Rso)or (Reo e — (Rso)iz (R ) » (54)

Q2=1-& (I, —rigriy,) + 7, (Mg, +reeri,), (55)

w = r‘i01 - (é:lrrlz - 771ri12 )(ri01rr10 + rilO Mo, — T) - (él.riIZ T, )(rrmrrlo - ri01ri10 - 9) > (56)

I =& (rig I, + i, ) + 17, (M I, —rigriy, ), (57)

=TTy — (&I, — i, )(Myy Mg — gy Mg — 6) + (&1, + 7270, ) (g I, + Ty Iy, — 7)), (58)

0 =trtr, —tiyti,, (59)

7 =tigth, +titr, . (60)

Thus, we have all formulae that are necessary for theoretical calculation of the ellipsometric angles
(2-9) in case of a single-layer model. Final step is giving the best fit to the experimental data by the
use of the wavelength-to-wavelength Nelder—Mead minimization of the ellipsometric angles. It yields
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the spectral dependences of real (Q;) and imaginary parts (Q,) of magneto-optical parameter Q. So, we
have information about all elements of the dielectric permittivity tensor.

4. Conclusion

To conclude, we have proposed an approach to studying single-layer nanomaterials by means of
magneto-ellipsometry. The algorithm of experimental data analysis (v, 4o wotdy, Aytod) is
presented. As a result, optical and magneto-optical properties can be easily and reliably characterized
during synthesis.
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