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Temporal oscillations of light transmission through dielectric microparticles subjected to optically
induced motion
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We consider light-induced binding and motion of dielectric microparticles in an optical waveguide that gives
rise to a backaction effect such as light transmission oscillating with time. Modeling the particles by dielectric
slabs allows us to solve the problem analytically and obtain a rich variety of dynamical regimes both for
Newtonian and damped motion. This variety is clearly reflected in temporal oscillations of the light transmission.
The characteristic frequencies of the oscillations are within the ultrasound range of the order of 105 kHz for
micron-size particles and injected power of the order of 100 mW. In addition, we consider dynamics of a dielectric
particle, driven by light propagating inside a Fabry-Perot resonator. These phenomena pave a way for optical
driving and monitoring of the motion of particles in waveguides and resonators.
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I. INTRODUCTION

The response of a microscopic dielectric object to an optical
field can profoundly affect its motion. A classical example of
this influence is an optical trap, which can hold a particle
in a tightly focused light beam [1]. Optical fields can also
be used to arrange, guide, or detect particles in appropriate
light-field geometries [2–5]. Optical forces are ideally suited
for manipulating microparticles in various systems, which
are characterized by length scales ranging from hundreds of
nanometers to hundreds of micrometers, forces ranging from
femto- to nanonewton, and time scales ranging upward from a
microsecond [6]. Transportation of particles of various sizes by
light is of immense growing interest caused by many potential
applications [3,7,8].

Manipulation of dielectric objects of a submicron size
requires a strong optical confinement and high intensities
than can be provided by diffraction-limited systems [4].
In order to overcome these limitations, it was proposed to
use subwavelength liquid-core slot waveguides [9], fiber or
photonic crystal (PhC) waveguides, and cavities [8,10,11].
The technique simultaneously makes use of near-field optical
forces to confine particles inside the waveguide and scattering
or absorption forces to transport it. The ability of the slot or the
PhC waveguides to condense the accessible electromagnetic
energy to spatial scales as small as 60 nm also allows
researchers to overcome the fundamental diffraction problem.
However, the consequence is that the cavity mode is strongly
perturbed by the presence of a particle in its vicinity, making
standard PhC cavities unsuitable for noticeable backaction
effects. A clear evidence of the backaction between a resonant
field in a photonic crystal cavity and a single dielectric
nanoparticle through the optical gradient forces was presented
in Refs. [10,12–14]. As a result, the motion of the particles
can considerably modify the light propagation.

The aim of the present paper is to study the time-dependent
backaction effect for light propagation in a waveguide includ-
ing a few dielectric microparticles with sizes comparable to
the light wavelength, similar to the example shown in Fig. 1(a).
An analogous problem was considered by Karásek et al. [15],

who numerically studied by the coupled dipole method a
longitudinal optical binding between two microparticles in a
Bessel beam.

There are several aspects tremendously complicating the
consideration of spherical particles. (i) Spheres give rise
to the problem of the calculation of electromagnetic (EM)
fields of both polarizations, especially in the near-field zone.
This problem can be solved only numerically by expanding
the waveguide propagating solutions over vector spherical
functions and using the Lorenz-Mie theory [16,17]. (ii) For
the scattering, the Mie resonances could play an important
role for the dielectric spheres of high refractive index. (iii)
All translational and rotational degrees of freedom are to be
included in the dynamics of each particle.

In the present paper, we model the particles with dielectric
slabs inserted in a directional waveguide of a square cross
section d × d, as shown in Fig. 1(b). We take the perpendicular
dimensions of the slabs very close to this cross section. This
allows us to consider only the one-dimensional motion of
particles and treat the problem analytically. This approach
was applied for the calculation of optical forces on dielectric
particles in one-dimensional optical lattices [18–20] by using
the transfer matrix [21]. This model of a classical optome-
chanical system [22] preserves all qualitative features of the
initial problem as it can be described by the transfer matrix
and predicts the important result of temporal oscillations of
light transmittance caused by light-induced motion.

This paper is organized as follows. In Sec. II, we remind
the reader of the formulas for the light pressure on a single
particle in a waveguide. In Sec. III, we formulate the model
and consider the motion of a single particle in the presence of a
static “scattering center” inserted in the waveguide. In Sec. IV,
we investigate the regimes of motion of two mobile particles.
Section V presents the results for the motion of a single particle
inside a Fabry-Perot resonator. Conclusions and a discussion
of the results are given in Sec. VI.

II. FORCES ON A DIELECTRIC SLAB IN A WAVEGUIDE

The motion of a particle in a vacuum- or air-filled waveguide
is governed by the EM force F defined by the stress tensor Tαβ
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FIG. 1. (a) Two particles inside a waveguide. (b) Model of two
identical dielectric slabs in a waveguide for the transverse electric
(TE) transmission. Coefficients r and t characterize the reflection
and transmission of each slab and Ez corresponds to the direction of
the electric field inside the waveguide.

integrated over the surface elements dSβ [23,24],

Fα =
∫

TαβdSβ,

Tαβ = 1

4π
EαE∗

β − 1

8π
δαβ |E|2+ 1

4π
HαH ∗

β − 1

8π
δαβ |H|2, (1)

where α and β are the Cartesian indices. We concentrate on
the basic propagating mode TE10 having the following solution
[25]:

Hx = H0ψ(x) cos
πy

d
,

Hy = − ikd

π
H0ψ(x) sin

πy

d
, (2)

Ez = iωd

π
H0ψ(x) sin

πy

d
,

where

ω2 = π2

d2
+ k2, (3)

H0 is the field amplitude, ψ(x) = eikx in the uniform waveg-
uide, and the speed of light c ≡ 1.

To describe the EM field, we need to know the scattering
properties of each slab specified by the reflection and transmis-
sion coefficients r,t , which can be expressed with the transfer
matrix M [21],

M11 = cos(qa) + i

2

[
q

k
+ k

q

]
sin(qa),

M12 = i

2

[
q

k
− k

q

]
sin(qa),

(4)
M22 = M∗

11,M21 = M∗
12,

t = 1

M22
, r = M12

M22
,

FIG. 2. Transmission and reflection through a single slab.

where a is the slab thickness. Here, q is wave-vector compo-
nent along the x axis given by

q2 = εk2 + (ε − 1)
π2

d2
, (5)

where ε is the dielectric constant of the slabs shown in
Fig. 2.

Let us consider force acting on such a slab. Its presence in
the waveguide modifies the components of the electromagnetic
field in the TE10 mode (2) as

Hx

H0
= cos

πy

d

{
eik(x−x1) + re−ik(x−x1), x < x1

teik(x−x1−a), x > x1 + a,
(6)

Hy

H0
= − ikd

π
sin

πy

d

{
eik(x−x1) − re−ik(x−x1), x < x1

teik(x−x1−a), x > x1 + a,
(7)

Ez

H0
= iωd

π
sin

πy

d

{
eik(x−x1) + re−ik(x−x1), x < x1

teik(x−x1−a), x > x1 + a.
(8)

Substituting these solutions into Eq. (1), we obtain the light
pressure

P = P0(1 + |r|2 − |t |2) = 2P0|r|2, (9)

where

P0 = H 2
0

8π

(
kd

π

)2

. (10)

III. DYNAMICS OF A SINGLE PARTICLE IN THE
PRESENCE OF A SCATTERING CENTER

The situation described in the previous section changes
dramatically if another element, besides the mobile dielectric
particle, is inserted in the waveguide. In particular, we insert at
x = 0 an immobile particle (“scattering center”) characterized
by light transmission and reflection coefficients, as shown in
Fig. 3. Then the solution for the EM field and, therefore, the
force acting on the mobile particle become dependent on its
distance to the center and cause various regimes of the slab
motion. Here we concentrate on this motion driven by the
optical force Fj (xj ) and the corresponding potential Uj (xj )
described by equation

mẍj + 6πηdẋj = Fj (xj ) = −dUj

dxj

, (11)

resulting, as we will show, in the time oscillations of the
light transmittance through the waveguide. Index j = L,R

enumerates the particle positioned on the left or on the right
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FIG. 3. Immobile scattering center-related geometries.
(a) Movable slab is on the left from the scattering center and
y = −(xL + a). In this geometry, we consider two types of the static
elements: one optically equivalent to the movable slab and an ideal
mirror. A and B are the field amplitudes. (b) Movable slab is on the
right from the scattering center, which here is optically equivalent to
the slab.

from the immobile center, m = ρad2 is the particle mass (ρ is
the material density), and 6πηd is the linear drag coefficient for
a particle in a medium of viscosity η [26,27]. In what follows,
we choose the dielectric constant of the slab ε = 4 (glass),
its width a = d/2, and zero initial velocity. We neglect the
imaginary part of the dielectric constant and corresponding
contribution into the optical force due to its smallness in the
visible-light frequency domain [28].

We begin with the realization shown in Fig. 3(a). Similar to
Ref. [19], we write the equation for the ingoing and outgoing
amplitudes of waves ψ(x) describing the EM field components
in each region of the waveguide (Fig. 3):[

A

B

]
= M

[
1
R

]
,

[
T

0

]
= M

[
Aeiky

Be−iky

]
, (12)

where we assumed optical equivalence of the scattering center
and the movable slab, y = −(xL + a) is the distance between
the particles, and the matrix M is given by Eq. (4). The total
transmission and reflection amplitudes can be expressed as
[21,29]

R = r + t2re2iky

1 − r2e2iky
, T = t2eiky

1 − r2e2iky
. (13)

Substituting the solution of Eq. (12) into Eq. (1), we find the
forces acting on the slab (FL) and the scattering center (FSC)
as

FL(y) = P0d
2[1 + |R|2 − |A|2 − |B|2],

FSC(y) = P0d
2[|A|2 + |B|2 − |T |2]

= −FL(y) + 2P0d
2|R|2, (14)

respectively. The forces depend only on the distance y.
The magnitude of the force acting on the particle of the

cross section d2 can be evaluated with Eq. (1) as P0d
2, which

is proportional to the injected into the waveguide light power
W0 [30,31]. At W0 = 100 mW, this yields the typical optical
force F of the order of 1 nN. The characteristic frequency of
the oscillations, which we need for dimensionless equations
of motion, can be estimated by an order of magnitude in the
physical units as �0 = √

F/dm. Since the dielectric particles
of our interest with the size of the order of 10−4 cm have
masses m of the order of 1 pg, these oscillations show
characteristic frequencies of the order of 2π × 100 kHz [31],
much lower than the light frequency. Below we show, as
dependent on the initial conditions, motion of particles can be
bounded with characteristic frequency substantially less than
�0 or unbounded on times considerably larger than �−1

0 . The
corresponding velocity of �0d being of the order of 10 cm/s
allows one to consider the light transmission adiabatically. On
the other hand, the thermal velocity of a particle of the mass
of 1 pg at room temperature is of the order of 1 mm/s, which
allows one, to a good approximation, to neglect the random
Brownian motion.

Introducing the dimensionless coordinate via d, force as
P0d

2, and mass m ≡ 1 (leading to the time unit as �−1
0 ), we

can write Eq. (11) in dimensionless form,

ẍj + γ ẋj = fj (xj ), (15)

where fj is the dimensionless force acting on the j th particle
[26], and γ is expressed in the physical units as

γ = 6πη

√
d

P0m
. (16)

For water with ηw ≈ 10−2 dyn s/cm2, Eq. (16) yields the
dimensionless γ of the order of 10 for the injected light power
W0 of the order of 100 mW. For air with ηa ≈ 0.01ηw, the
value of γ at the same W0 is of the order of 0.1, corresponding
to a relatively weak damping. With the increase in the light
power, the effect of viscous friction decreases as W

−1/2
0 .

For the realization corresponding to Fig. 3(a), we show in
Fig. 4(a) the light transmittance through two particles, optical
force fL(xL), and the corresponding potential

UL(xL) = −
∫ xL

xL(0)
fL(x)dx, (17)

where xL(0) is the initial position of the particle. One can
see that in the Newtonian regime γ = 0 describing exactly
particles in the vacuum or approximately in the air, we
have either the bounded or unbounded time evolution of the
positions, dependent on xL(0) as presented in Figs. 4(a) and
4(b). The characteristic period of the potential is determined
by the wave vector k. Two particles in the waveguide form a
Fabry-Perot resonator (FPR) structure in which the transmit-
tance |T |2 shows sharp peaks when the distance between the
slab and the scattering center equals the integer number of half
wavelengths. Then the wave-function amplitude ψ(x) inside
the resonator is maximal to give rise to resonant behavior of the
optical force acting on the walls of the resonator. Indeed, one
can see that the force follows the light transmittance with sharp
resonant negative dips. As a result, the potential UL(xL) in (17)
acquires a tilted periodic shape with the particle dynamics
qualitatively different from that in a simple periodic one.
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FIG. 4. (a) The optical force (14) (solid line), the corresponding
potential (dotted line), and the light transmission (dash-dotted line)
for the left-moving particle. (b) The corresponding time evolution
of the left particle position and light transmission for two choices
of initial positions. (c) and (d) correspond to an immobile mirror at
the xR = 0 position. The parameters of the slab are a = d/2, ε = 4,
and k = 1/2. The evolution in (a)–(d) is considered frictionless with
γ = 0. The coordinates, time, forces, and potentials are given in the
units of d , �−1

0 , P0d
2, and P0d

3, respectively [see Eq. (15)].

Respectively, as depends on the initial position of the
particle, the time evolution shows oscillations or a motion
until the particle touches the immobile element at xL = −a,
as shown in Fig. 4(b). After this event, the evolution needs a
special analysis which goes beyond the scope of the present
paper. The inset in Fig. 4(b) shows that the choice of the
initial position strongly changes the evolution of the light
transmission through the particles with the left particle dragged
by light. Here we obtain oscillations with growing frequency
since the distance between particles increases with time with
acceleration caused by nonzero mean optical force. For the
periodic oscillations of the left particle shown by the red
line in Fig. 4(b), the time oscillations of light transmission
are periodic with a few harmonics. The appearance of this
multifrequency behavior is a result of anharmonicity of the
binding potential UL shown in Fig. 4(a).

Figure 5 shows the case corresponding to Fig. 3(b).
Again the optical force follows the resonant dependence
of the transmittance as a function of the distance between

0 1 0
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FIG. 5. (a) The optical force (14) (solid line), the corresponding
potential (dotted line), and the light transmission (dash-dotted
line) for the immobile left particle positioned at xL = 0. (b) The
corresponding time evolution of the position of the right particle and
light transmission (in the inset) for γ = 0. The parameters of the
“scattering center” and the slab are identical with a = d/2, ε = 4,
and k = 1/2. The coordinates, time, forces, and potentials are
given in units of d , �−1

0 , P0d
2, and P0d

3, respectively [see
Eq. (15)].
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FIG. 6. Time evolution of the (a) left- or (b) right-particle
coordinate and light transmission in a viscous medium with xL(0) =
−17 and xR(0) = 5. The values of γ are shown near the plots. The
coordinates and time are given in the units of d and �−1

0 , respectively
[see Eq. (15)].

the particles with, however, positive peaks. Unlike the case
of Fig. 3(a), the motion of the particle here is always
unbounded. Respectively, we have time oscillations of trans-
mittance in Fig. 5(b) with growing frequency. The effects
of damping on the motion of the particles with the cor-
responding time evolution of light transmittance are shown
in Fig. 6.

IV. EVOLUTION IN SYSTEM OF TWO
MOBILE PARTICLES

For identical particles shown in Fig. 7, we obtain, similarly
to Eqs. (11) and (14), the following dimensionless equation of

FIG. 7. Two mobile slabs geometry.

motion:

ÿ + γ ẏ = f̃ (y) = −dŨ

dy
, (18)

where f̃ (y) = fR(y) − fL(y). The “force” f̃ (y) depends only
on the distance between particles y = xR − xL and is shown
in Fig. 8(a). Surprisingly, the corresponding “potential” Ũ (y)
shows only periodic dependence on the distance y, different
from the interaction considered in the previous section and
similar to the optical binding of atomic clouds [18] due to
the standing EM waves. The characteristic “potential” height
Ũ0 can be estimated as Fd ∼ 10−8 erg. Since we consider the
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FIG. 8. (a) Force and potential vs function of distance between
two mobile particles. Time evolution of coordinates and distance
between the particles for the initial positions xL(0) = 0 and (b)
xR(0) = 6.5 and (c) xR(0) = 10. The coordinates, time, forces, and
potentials are given in units of d , �−1

0 , P0d
2, and P0d

3, respectively
[see Eq. (15)].
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light incident from the left, the inversion symmetry is broken,
resulting in Ũ (y) �= Ũ (−y).

Figure 8 demonstrates that the time dependence of the light
transmittance strongly depends on the initial distance between
the particles. For the distance y(0) when the potential is close
to the minimum, the positions evolve in time approximately
preserving the interparticle distance. Respectively, the light
transmittance oscillates with time approximately harmoni-
cally, as shown in the inset of Fig. 8(b). However, if the
initial position is far from the minimum, the nonparabolicity
of the potential becomes important and the time dependence
of the transmittance acquires higher harmonics. Interactions
presented in Fig. 8 show more variety than the optical binding
of small dielectric particles in the Bessel beams [15] and in
the random fields [32].

V. DYNAMICS OF A PARTICLE INSIDE A
FABRY-PEROT RESONATOR

The analysis of the system of dielectric slabs in the
waveguide allows us to consider analytically optical driving
of a dielectric particle by EM fields in resonant cavities. The
cavity can be modeled by two immobile dielectric slabs and
the particle is modeled by a mobile slab, as shown in Fig. 9.

The solutions of the EM field equations are given by the
transfer matrices[

A

B

]
= m

[
1
R

]
,

[
T

0

]
= m

[
Ceik(L−x−a)

De−ik(L−x−a)

]
(19)

for the walls of the resonator and[
C

D

]
= M

[
Aeik(x−a)

Be−ik(x−a)

]
(20)

for the embedded movable slab. Here, the matrix M is given
by Eq. (4), m has the elements

m11 = cos(q0a) + i

2

[
qm

k
+ k

qm

]
sin(qma),

(21)

m12 = i

2

[
qm

k
− k

qm

]
sin(qma), m22 = m∗

11, m21 = m∗
12,

and

q2
m = εmk2 + (εm − 1)

π2

d2
. (22)

Similar to Eq. (9), we have, for the optical pressure on the
mobile particle [18],

P (x) = P0[|A(x)|2 + |B(x)|2 − |C(x)|2 − |D(x)|2]. (23)

FIG. 9. Two slabs with dielectric constant εm shown by red color
fixed at x = 0 and x = L from FPR (cavity). The third slab with the
dielectric constant ε can move inside the resonator.

FIG. 10. The potential U (x) (in the units of P0d
3) vs the particle

position (in the units of d) and the dielectric constant of the FPR walls
for ε = 4,a = 1/2,k = 1/2, and L = 20.

The corresponding potential U (x) is presented in Fig. 10. One
can see that it strongly depends on the dielectric constant of
the walls of the resonator, i.e., on its openness. For εm close to
ε, the potential holds local minima capable to bind the particle
at the corresponding positions. This result is reminiscent of
electron transmission through the well potential relief with
two different potential wells [33].

Time evolution of the particle position in the FPR is shown
in Fig. 11(a) for two initial x(0). The first position, x(0) = 6.5,

yields oscillations in the vicinity of a local potential minimum,
shown in Fig. 10. An extremely nonlinear profile of the
potential over the particle position gives rise to the shape of
the corresponding time oscillations of the light transmittance,
shown in Fig. 11(b) by the dashed red line. The second choice,
x(0) = 4.5, corresponds to the accelerated time evolution until

FIG. 11. Time evolution of the (a) particle position and (b)
transmittance for the same parameters given in Fig. 10, εm = 3
and L = 20. The initial position of the particle is x(0) = 6.5 (red
dash-dotted lines) and x(0) = 4.5 (blue solid lines). The coordinates
and time are given in units of d and �−1

0 , respectively.
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the particle will reach the right wall. This motion corresponds
to the time behavior of the transmittance, as shown in Fig. 11(b)
by the blue solid line.

VI. SUMMARY AND CONCLUSIONS

Although the replacement of the particles by slabs as shown
in Fig. 1 is a significant simplification, it preserves the main
qualitative features of the light transmittance in a waveguide
with embedded particles as described in general terms by
a transfer matrix dependent on the positions and optical
properties of these particles. When one particle is inserted in a
waveguide, it is subject to a radiation pressure of the propagat-
ing light. This pressure does not depend on the position of the
particle and produces its constant acceleration in the vacuum
or drags it in a viscous medium with a constant velocity. The
transmittance of light through the particle remains position
and time independent. The situation changes dramatically if at
least two particles are inserted in the waveguide. Because of
different light pressure acting on the particles, the interparticle
distance changes with time. Respectively, the transmittance
given by the Fabry-Perot resonator transfer-matrix equations
(13) acquires a time dependence.

To describe the light-induced interaction between the
particles, one can introduce an effective system-dependent
potential. This potential usually has a tilted (or a simple,
as depends on the system realization) periodic shape, where
the evolution of the interparticle distance can be bounded
or unbounded. As a result, the light transmittance shows
a rich variety of time-dependent behaviors in the form of
time oscillations either with a few harmonics for a bounded

motion or with a growing frequency for the unbounded
one. The characteristic period of the oscillations in the light
transmittance shown here is of the order of 10−5 s for the
propagating light power of the order of 100 mW. Therefore,
by changing the laser light power and direction, one can
achieve different regimes of the particles motion. Similar
modifications can be achieved by choosing different materials
for the movable particles and static elements such as the
“scattering center” in Fig. 3 or walls of the Fabry-Perot
resonator in Fig. 9.

It is important to mention that recent publications confirm
the presence of this phenomenon in different experimental
setups: two rotating dielectric microparticles [34] and density
oscillations of swimming bacteria confined in microchambers
[35]. Both systems show the characteristic frequencies of light
modulation in the sound range. Thus, the analysis of the
time dependence of the light transmittance paves a way for
manipulating and monitoring the motion of the particles in
optical waveguides.

Note added in proof. Recently, two papers on cavity
optomechanics with thick dielectric membranes appeared
[36,37].
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