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Transfer of spin angular momentum of an incident wave into orbital angular momentum of the
bound states in the continuum in an array of dielectric spheres
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We consider scattering of electromagnetic plane waves by a linear periodic array of dielectric spheres. For
incident waves with circular polarization with frequency tuned to the bound states with orbital angular momentum
in the radiation continuum, the spin angular momentum of the incident wave transfers into the orbital angular
momentum. This, in turn, gives rise to giant vortical power currents rotating around the array. Incident wave with
linear polarization with frequency tuned to the Bloch bound state in the continuum induces giant laminar power
currents.
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I. INTRODUCTION

It is well known that electromagnetic (EM) fields cannot
only carry energy but also angular momentum. The angular
momentum is composed of the spin angular momentum (SAM)
and the orbital angular momentum (OAM) describing the
polarization and the phase structure distribution of EM fields,
respectively. The research on the OAM of EM fields has been
of interest since Allen et al. investigated the mechanism of
the OAM in laser modes [1,2]. In contrast to SAM, which
has only two possible states of left-handed and right-handed
circular polarizations, the states of OAM are in principle
unlimited owing to the unique characteristics of spiral flow
of propagating EM waves [3]. The OAM has the potential to
tremendously increase the spectral efficiency and capacity of
communication systems [4]. Among numerous investigations
on OAM effects, one of the subjects of intensive recent studies
is the link between the near-field chirality and the far-field
OAM. For different types of chiral polaritonic lenses, it was
shown that the near-field chirality can lead to the tailoring
optical OAM in the far-field region [5,6]. There have been
many proposals to generate OAM beams by use of chiral
plasmonic nanostructures [5], ferrite particles [7], monolithic
integration of spiral phase plates [8], chiral polaritonic lenzes
[9], designer metasurfaces [10], etc.

Schäferling et al. [11] have shown that chiral fields, i.e.,
electromagnetic fields with nonvanishing optical chirality, can
occur next to symmetric nanostructures without geometrical
chirality illuminated with linearly polarized light at normal
incidence. Rodriguez-Fortuño et al. [12] demonstrated a
planar photonic nanostructure with no chirality consisting
of a silicon microdisk coupled to two waveguides. The
device distinguishes the handedness of an incoming circularly
polarized light beam by driving photons with opposite spins
toward different waveguides. It was shown theoretically and
experimentally that the fundamental resonance of a silicon
microdisk resonator can inherit the angular momentum carried
by anormally incident light beam and transfer it as linear
momentum into one of two output waveguides. Remarkably,
the microdisk is not chiral: It responds equally to the left
chiral polarization and the right chiral polarization without
exhibiting optical activity or circular dichroism. Instead, it
couples light to different waveguides (with opposite linear

momenta) depending on the handedness of incoming light
and the relative position between the microdisk and the
waveguides.

The above results have a simple interpretation by an analog
with the spin-orbit interaction λ

−→
S

−→
L in atomic spectroscopy

where
−→
S is the SAM and

−→
L = −→

r × −→
p is the OAM. The

transfer of SAM to OAM is well known as a resonant transition
between the electron bound state without OAM and the state
with OAM. Our primary goal is to show a similar transfer of
SAM to OAM of bound states in all-dielectric system. It has
been widely believed that only those electromagnetic (EM)
modes whose eigenfrequencies lie below the light cone are
confined in dielectric systems and the rest of the eigenmodes
have finite life times. Recently, confined EM modes, i.e., bound
states in the radiation continuum (BSC) were shown to exist in
various periodical arrays of (i) long cylindrical rods [13–18],
(ii) photonic crystal slabs [19–24], (iii) two-dimensional arrays
of spheres [25], (iv) core-shell single spheres [26–28], and (v)
one-dimensional array of dielectric spheres [29]. The BSCs
are of immense interest in optics because of the experimental
opportunity to confine light despite the fact that outgoing
waves are allowed in the surrounding medium.

The most simple symmetry-protected TE and TM polarized
BSCs found in Ref. [29] have both zero OAM m = 0 and the
Bloch vector βc = 0 and occur in a wide range of the radii of
the spheres and dielectric constants. Alongside Bloch BSCs
with βc �= 0 and BSC with OAM m �= 0 were shown to exist.
The Bloch BSC is a traveling wave with a definite Bloch vector
βc directed along the array. These BSCs are degenerate with
respect to the sgn of βc. Although true BSCs are invisible
in scattering of plane waves their effect can be substantial in
the vicinity of the BSC point in the parametric space of the
incident wave: frequency, wave vector, and polarization as well
as material parameters of the spheres [15,29]. In particular a
plane wave with the frequency and angle of incidence tuned
close to the Bloch BSC point excites the Bloch BSC with giant
currents flowing along the array. The BSCs have the important
for optical applications property to enormously enhance the
incident wave [25,30,31]. Thus the plane wave is capable of
initiating giant laminar power currents in dielectric arrays.

BSCs with OAM are more interesting. Because of the axial
symmetry of the array these BSCs are degenerate relative to
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azimuthal number ±m. Illumination by a plane wave with
linear polarization equally excites both degenerate BSCs,
resulting in currents with zero OAM (zero vorticity). The plane
wave with circular polarization excites the BSCs with either
m > 0 or m < 0 as dependent on the polarization. Therefore
the plane wave with circular polarization induces a giant power
current spinning around the array axis. In other words, plane
wave with SAM transfers the spin angular momentum onto the
orbital angular momentum with giant vortical power currents.

II. BASIC EQUATIONS FOR EM WAVE SCATTERING BY A
LINEAR ARRAY OF SPHERES

In the present paper we consider a free-standing one-
dimensional infinite array of dielectric spheres in air (Fig. 1).
In what follows we refer to all length quantities in terms of the
period h of the array.

We seek the solutions of the Maxwell equations, which
obey the Bloch theorem

E(r + Rj ) = eiβRj E(r), H(r + Rj ) = eiβRj H(r),

with the Bloch wave vector β directed along the array aligned
with the z axis (see Fig. 1). Here Rj = jez is the position of
the center of the j th sphere and ez is the unit vector along the
array. Scattered electromagnetic fields are expanded in a series
over vector spherical harmonics Mm

n and Nm
n [32,33]

E(r) =
∑

j

eiβRj

∑
lm

[
am

l Mm
l (r − Rj ) + bm

l Nm
l (r − Rj )

]
,

H(r) = −i
∑

j

eiβRj

∑
lm

[
am

l Nm
l (r − Rj ) + bm

l Mm
l (r − Rj )

]
.

(1)

Here the first (second) terms presents TE (TM) spherical vector
EM fields.

In absence of an incident wave Linton et al. [32] derived
the homogeneous matrix equation for the amplitudes am

l ,bm
l

Z−1
T E,la

m
l − ∑

ν

(
am

ν Amm
νl + bm

ν Bmm
νl

) = 0,

Z−1
T M,lb

m
l − ∑

ν

(
am

ν Bmm
νl + bm

ν Amm
νl

) = 0, (2)

FIG. 1. Periodic infinite array of dielectric spheres with radius R

and the dielectric constant ε illuminated by a plane wave (blue arrow).
The wave can be reflected to discrete diffraction continua given by
Eq. (11) and shown by red arrows.

where summation over ν begins with max(1,m), and ZT E,l

and ZT M,l are the so-called Lorenz-Mie coefficients found
in Stratton’s book [33]. Mathematical expressions of matrix
elements Amm

lν and Bmm
lν are rather cumbersome. The reader

can find explicit expressions for them in Ref. [32].
The next step is to account for incident plane wave, which

can be expanded over vector spherical harmonics [33]:

Eσ (r) =
∞∑
l=1

l∑
−l

[
qσ

lmMm
l (r) + pσ

lmNm
l (r)

]
,

Hσ (r) = −i
∑
lm

[
pσ

lmMm
l (r) + qσ

lmNm
l (r)

]
. (3)

Here index σ stands for plane TE or TM wave.

pT E
lm = −Flmτlm(α), qT E

lm = Flmπlm(α),
(4)

pT M
lm = −iFlmπlm(α), qT M

lm = iFlmτlm(α),

kx = −k0 sin α, ky = 0, kz = β = k0 cos α,

Flm = (−1)mil

√
4π (2l + 1)(l − m)!

(l + m)!
,

τlm(α) = m

sin α
P m

l (cos α),

πlm(α) = − d

dα
P m

l (cos α). (5)

The general equation for the amplitudes am
l ,bm

l which
describe the scattering by a linear array of spheres takes the
following form

Z−1
T E,la

m
l −

∑
ν

(
am

ν Amm
νl + bm

ν Bmm
νl

) = qσ
lm,

Z−1
T M,lb

m
l −

∑
ν

(
am

ν Bmm
νl + bm

ν Amm
νl

) = pσ
lm. (6)

Thanks to the axial symmetry of the array we can exploit
the vector cylindrical modes for description of the diffraction
continua which are doubly degenerate in TM and TE polariza-
tions σ . The modes can be expressed through a scalar function
ψ [33]

ψm,n(r,φ,z) = H (1)
m (χnr)eimφ+ikz,nz. (7)

Then for the TE modes we have

Ez = 0, Hz = ψm,n,

Er = ik0

χ2
n

1

r

∂ψm,n

∂φ
, Hr = ikz

χ2
n

∂ψm,n

∂r
, (8)

Eφ = −ik0

χ2
n

∂ψm,n

∂r
, Hφ = ikz

χ2
n

1

r

∂ψm,n

∂φ
,

and for the TM modes

Ez = ψm,n, Hz = 0,

Er = ikz

χ2
n

∂ψm,n

∂r
, Hr = −ik0

χ2
n

1

r

∂ψm,n

∂φ
, (9)

Eφ = ikz

χ2
n

1

r

∂ψm,n

∂φ
, Hφ = ik0

χ2
n

∂ψm,n

∂r
,
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where

χ2
n = k2

0 − k2
z,n (10)

and
kz,n = β + 2πn, n = 0,±1,±2, . . . . (11)

Therefore the diffraction continua are specified by two
quantum numbers m and n where the m is the result of the
axial symmetry and n is the result of translational symmetry
of the infinite linear array of the dielectric spheres. Note that
each diffraction continuum is doubly degenerate relative to
the polarization σ . As a result of the interplay between the
frequency k0 and the wave number kz,n the continua can be
open (χ is real) or closed (χ is imaginary). In what follows we
consider the BSCs embedded into the first radiation continuum
n = 0 and below the others with |n| > 0. Therefore β = kz,0.

III. EMERGENCE OF THE BSC IN SCATTERING

Let us rewrite Eq. (6) in a compact form [29],

L̂� = �inc, (12)

where the matrix L̂ is defined by the Lorenz-Mie coefficients
and matrix elements Amm

lν and Bmm
lν , �inc is given by the

incident wave and consists of amplitudes qσ
lm and pσ

lm, and the
column � consists of amplitudes am

l and bm
l of the multipole

expansion of the scattering function. The scattering function
can be expressed via the inverse of the matrix L̂,

� = L̂−1�inc. (13)

This equation is a Green’s equation in which the source
presented by incident plane wave �inc unambiguously gives
the solution as the scattered wave �. However, there can be
an exception when the inverse of the matrix L̂ does not exist.
That occurs if one of complex eigenvalues of L̂ turns to zero:

L̂�BSC = 0. (14)

According to the above equation the BSC is a null eigenvector
of matrix L̂ with zero eigenvalue. As soon as one deviates
from the BSC point in the parametric space the BSC emerges
in the form of a collapsing Fano resonance. That phenomenon
was observed in scattering of EM waves by arrays of rods [14–
16,18,19,21,25]. The Fano resonance for the present system
can be interpreted as interference of two optical paths, one
through the spheres and another between the spheres. In what
follows we highlight these features of the BSCs using the
biorthogonal basis of eigenvectors of the non-Hermitian matrix
L̂ [15,34]:

L̂Xf = Lf Xf , L̂+Yf = L∗
f Yf , Y+

f Xf ′ = δff ′ . (15)

It immediately follows that

L̂−1 =
∑
f

Xf

1

Lf

Y+
f . (16)

Because of the axial symmetry matrix L̂ has OAM-preserving
block structure

L
(m)
ll′ =

(
Z−1

T E,lδll′ − Amm
ll′ −Bmm

ll′

−Bmm
ll′ Z−1

T M,lδll′ − Amm
ll′

)
, (17)

where each block corresponds to a specific value m.

0 π
β

0

k
0

n=1

n=-1

n=0
|m| = 1
|m| = 2 π

3π

2π

FIG. 2. Two BSCs with OAM are marked by closed circles and
Bloch BSC with β �= 0, m=0 is marked by a rhombus. All BSC
points are calculated for spheres with ε=15 [29]. Dashed and dash-
dotted lines show thresholds where the next continua n=±1 are
opened.

In the nearest vicinity of the BSC point one of the
complex eigenvalues Lc is close to zero. That allows us to
substantially simplify Eq. (16), leaving in the sum only the
leading contribution related to Lc. Respectively the scattering
function in Eq. (13) is simplified as follows:

�σ ≈ 1

Lc

Xc

(
Y+

c · �σ
inc

)
, σ = T E/T M. (18)

This equation manifests one property that is remarkable as
well as important for applications: The BSCs enormously
enhance the incident wave �inc by the factor 1/Lc [25,30,31].
First this effect for scattering by the infinite periodic array of
dielectric spheres was shown in Ref. [29] in the vicinity to the
symmetry protected BSCs with m = 0. The Bloch BSC with
m = 0, β �= 0 and BSCs with OAM m �= 0, β = 0 were also
found in Ref. [29]. These BSCs exist above the first diffraction
continuum n = 0 but below the diffraction continuum n = ∓1
as shown in Fig. 2. The BSCs marked by rhombus and closed
circles in Fig. 2 are of special interest because in scattering of
plane waves in the vicinity of the BSC points they are able to
support giant power currents: laminar currents along the array
of spheres in the case of the Bloch BSC and vortical currents
around the array in the case of BSCs with OAM.

IV. SCATTERING OF PLANE WAVES IN THE VICINITY
OF THE BLOCH BSC

In this section we consider the Bloch BSC whose field con-
figuration was obtained in Ref. [29] and shown in Fig. 3. Since
the Bloch number βc = 1.2074, the EM field configuration is
incommensurate with the period of the array, and the EM field
is different at each sphere.

The numerical results are presented in Fig. 4(a), which
shows that under illumination of the array by a TE plane
wave there is a resonant peak only in the total cross section
σT E,T E [29]. If a plane wave with TE polarization, the wave
vector (kx,0, β ≈ βc), and the frequency k0 = k0c = 3.6505
illuminates the array, the running Bloch quasi-BSC with β is
excited as shown in Fig. 4(b). As shown in Fig. 4(b) such a
plane wave gives rise to giant laminar power flows.
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FIG. 3. EM field configurations from Ref. [29] and power current
of the Bloch BSC with βc =1.2074, k0c =3.6505, Rc =0.4, ε=15.

V. TRANSFER OF SAM INTO OAM OF THE BSC
WITH m �= 0

Scattering of circularly polarized plane waves in the vicinity
of the BSCs with OAM is the main issue of this section.
Because of the time-reversal symmetry, BSCs with OAM are
degenerate with respect to the sgn of m. That modifies Eq. (18)
as follows:

�m
σ ≈ 1

Lc

∑
±

[
Xc(±m)

(
Yc(±m)+ · �±m,σ

inc

)]
, (19)

where the incident wave according to Eq. (6) is given as

�m,σ
inc =

(
sgn(m)pσ

|m|
qσ

|m|

)
, m are odd, σ = T E,

�m,σ
inc =

(
pσ

|m|
sgn(m)qσ

|m|

)
, m are odd, σ = T M,

�m,σ
inc =

(
pσ

|m|
sgn(m)qσ

|m|

)
, m are even, σ = T E,

�m,σ
inc =

(
sgn(m)pσ

|m|
qσ

|m|

)
, m are even, σ = T M. (20)

and subvectors pm and qm are given by Eq. (4). In particular,
for the plane wave incident normally to the array β = 0 we
have

pT E
|m| =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0

pT E
m,2

0

pT E
m,4

...

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, qT E

|m| =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

qT E
m,1

0

qT E
m,3

0
...

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, m are odd,

pT M
|m| =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

pT M
m,1

0

pT M
m,3

0
...

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, qT M

|m| =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0

qT M
m,2

0

qT M
m,4

...

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, m are odd,

pT E
|m| =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

pT E
m,1

0

pT E
m,3

0
...

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, qT E

|m| =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0

qT E
m,2

0

qT E
m,4

...

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, m are even,

pT M
|m| =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0

pT M
m,2

0

pT M
m,4

...

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, qT M

|m| =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

qT M
m,1

0

qT M
m,3

0
...

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, m are even.

(21)

3.655 3.656 3.657
k0

0

0.5

1

1.4

σ
σ
,σ
'

(a) TM → TM

TE → TE

TE → TM, TM → TE

(b)

FIG. 4. (a) Total cross section for scattering of plane wave with β = 1.3074 in the vicinity of the Bloch BSC shown in Fig. 3 vs the
frequency. (b) The plane wave supports giant laminar power current at the point marked in the left panel by open circle. The color bar at the
right indicates absolute value of the current.
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FIG. 5. BSC with orbital angular momentum m. Electric field
force lines are shown in red, and magnetic field force lines are shown
in blue.

By virtue of Eq. (17) and B(m)
ll′ = −B(−m)

ll′ the eigenvectors can
be decomposed over the polarizations as follows:

Xc(±m) =
(

xm
T E

±xm
T M

)
, Yc(±m) =

(
ym

T E

±ym
T M

)
. (22)

Then it follows from Eq. (19)

�m
σ ≈

⎧⎨⎩
D

|m|
σ

Lc,m
[Xc(m) + (−1)m(Xc(−m)], σ = T E,

D
|m|
σ

Lc,m
[Xc(m) + (−1)m+1Xc(−m)], σ = T M,

(23)

where

D|m|
σ = y+

T Epσ
|m| + y+

T Mqσ
|m|. (24)

Assume that the elliptically polarized plane wave �T E
inc +

α�T M
inc is incident with small β. By taking

α = D
|m|
T E

D
|m|
T M

(25)

we obtain from Eq. (23) that

�σ ≈ F|m|X+m
c , F|m| = 2D

|m|
T E

Lcm

. (26)

The scattering function has only a contribution with the
positive OAM m > 0. Here we introduced the enhancement
factor F which defines to what extent the scattering function is
amplified in the near zone. Respectively for DT E = −αDT M

the scattering function has only a contribution with the negative
OAM m < 0.

Two BSCs with m = ±1 and m = ±2 were found in
Ref. [29]. The solution for the BSC with m = 1 and βc = 0 is

FIG. 6. Enhancement factor |Fm| vs k0 and β. White line
corresponds to polarization (25) |α| = 1. Open circles mark maximal
enhancement.

0 0.004 0.008
β

0

2

4

6

|L
c|

×10-5 m = 2

0 0.005 0.01
β

0

0.5

1

|L
c
|

×10-4 m = 1

FIG. 7. The lowest eigenvalue |Lc| of matrix (17) in the vicinity
of the BSCs with OAM.

the following [29]:⎛⎜⎝ m = 1
l � 1

k0c = 2.847
Rc = 0.3945

⎞⎟⎠,

(
a1

l ,b
1
l

) =

⎛⎜⎝ 0 0.6662 + 0.4273i

−0.33 + 0.5145i 0
0 −0.0048 − 0.0031i

0 0

⎞⎟⎠.

(27)

The solution for the BSC with m = 2 and βc = 0 has the
following form:⎛⎜⎜⎜⎝

m = 2
l � 2

k0c = 3.086
Rc = 0.471

⎞⎟⎟⎟⎠,

(
a2

l ,b
2
l

) =

⎛⎜⎜⎜⎝
0 0.6545 + 0.2013i

−0.2142 + 0.6964i 0
0 −0.0057 − 0.0018i

0 0
0 0

⎞⎟⎟⎟⎠.

(28)

These solutions are shown in Fig. 5.
All components of electric and magnetic fields are nonzero

and localized around the array as shown in Fig. 5. We show
the EM field around only one sphere because the pattern is
periodically repeated along the z axis. One can see that the

0 0.005 0.01
β

0

0.01

0.02

0.03

|D
σ
|

DTE

DTM

m = 1

0 0.05
β

0

0.02

0.04

0.06

0.08

|D
σ
| DTE

DTM

m = 2

FIG. 8. The values Dσ given by Eq. (24) in the vicinity of the
BSCs with OAM.
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2.7 2.8 2.9
k0

0

0.02

0.04

0.06

0.08

β

R = R |F | = ∞
R = R − 0.0005, |F | = 805

R = R − 0.005, |F | = 118

R = R − 0.01, |F | = 63

m = 1

3.08 3.1 3.12
k0

0

0.02

0.04

0.06

β

R = R , |F | = ∞
R = R − 0.003, |F | = 124

R = R − 0.006, |F | = 59

R = R − 0.001, |F | = 426

m = 2

FIG. 9. Values of the maximal enhancement factor |F | vs k0 and
β as dependent on radius of spheres for |α| = 1.

value of the azimuthal number m reflects in the structure of
force lines in the xy plane while the number of the amplitudes
am

l reflects in the structure of lines along the z axis.
One can show from Eqs. (21), (27), and (28) that asymptot-

ically D
|m|
T M → 0 for β → 0. From Eq. (26) it follows that the

enhancement factor for scattering of plane waves in the vicinity
of the BSC point is determined by the ratio Dσ/Lc. In what
follows we sweep the frequency of the incident wave k0 and
the angle of incidence defined by β in the vicinity of the BSCs
with OAM m = 1 and m = 2. Figure 6 illustrates the behavior
of the enhancement factor in the plane of the frequency
k0 and β calculated with the use of Eq. (26). Following
the line with |α| = 1 we found the maximal enhancement
marked by open green circles in Fig. 6 for the following
parameters: (i) For the case of the BSC with m = 1 the
optimal parameters are k0 = k0c + 0.0025, β = 0.0052, α =
0.63 + 0.77i for R = Rc − 0.0005. (ii) For the case of the BSC
with m = 2 : k0 = k0c + 0.02, β = 0.031, α = 0.31 + 0.94i

for R = Rc − 0.003. Fixing these parameters except β we
plot the lowest eigenvalue of the matrix L̂ in Fig. 7 and
the values of |Dσ | Eq. (24) in Fig. 8 versus β. From these
figures one can see that, first, the enhancement is determined
by the lowest eigenvalue Lcm while DT E is almost constant.
Second, the value DT M grows from zero. Therefore, to achieve
enhancement one has to inject a plane wave with elliptic
polarization. In what follows we take for simplicity the circular
polarization |α| = 1 of the incident wave.

FIG. 10. Pointing current circulates around the spheres when
circularly polarized light is injected. Currents around other spheres
are repeating periodically.
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FIG. 11. Value of angular component of the power current around
the spheres at distance r from the center of sphere and z = 0.

Because of the smallness of the eigenvalue Lcm in Eq. (23)
EM fields given by the scattering function can reach extremely
high values near the spheres. Clearly this is an effect of the
BSCs with infinitely high quality factor that presents a possi-
bility to enormously enhance the incident light [16,25,30]. In
Fig. 9 we demonstrate that the enhancement is very sensitive
to the choice of the sphere radius in the vicinity of Rc when
other parameters are tuned to the BSC point.

Thanks to carrying OAM, the BSC with m �= 0 supports
vortical power currents [35] as demonstrated in Fig. 10. Owing
to the enhancement of the scattered field in the near zone,
the spinning currents can reach giant values with respect to
the incident power currents as demonstrated in Fig. 11. All
currents are measured in terms of the incident power with
β = 0.00517 for the case m = 1 and β = 0.0307 for the case
m = 2. The value of the current is extremely high inside the
spheres but rapidly drops outside the spheres as shown in
Fig. 12. As soon as the polarization is linear, for example α =
0, vortical currents around the array vanish as demonstrated in
Fig. 13.

Figures 14 and 15 demonstrate that the orbital angular
momentum of the BSCs affects the scattering of plane
waves with linear polarization. The effect is a conversion
of the incident polarizations T E → T M and vise versa. For
the normally incident waves β = 0 there is no polarization
conversion and no resonant peaks in the total cross sections
T M → T M . Once the angle of incidence deviates from zero
β �= 0 all three total cross sections acquire resonant response,
as shown in Fig. 14. Note that there is polarization conversion
when the frequency is far from the BSC frequencies. The
absence of polarization conversion is clearly seen in the

FIG. 12. Isosurfaces of constant angular component of the power
current.
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m = 1 m = 2

FIG. 13. Power currents in the middle plane between spheres
induced by linearly polarized light with α = 0.

differential cross section T E → T M as shown in Fig. 15. It
is also remarkable that this cross section distinctively reflects
the value of the OAM m.

VI. DISCUSSIONS AND SUMMARY

As was found in our previous paper [29], the periodical
array of dielectric spheres can trap light above the light cone
in a variety of the BSCs, the majority of which are symmetry-
protected BSCs of both polarizations. Alongside BSCs with
OAM, m = ±1 and m = ±2 were predicted due to the axial
symmetry of the array. These BSCs emerge in the response of
the array to incident plane waves with circular polarization.
A transfer of the SAM of the incident plane wave into the
OAM of EM field takes place for any frequency and wave
vector of the incident wave as shown in Fig. 6. The transfer
results in the power current spinning around the array. The
most remarkable is that as seen from Figs. 6 and 9 in the
nearest vicinity of the BSCs with m �= 0 the array supports
giant vortical power currents, which are directly related to the
extremal enhancement of the scattered field. The value of the
current is also sensitive to the distance from the array. It rapidly
goes down away from spheres as shown in Fig. 12.

Theoretically the value of the circulating currents can
grow up to infinity in the BSC point. However, there are
two differences between the present theory and possible
experimental realization of the transfer of SAM into OAM, that
is, (1) a finite number of the spheres and (2) there are always
some losses when the waves transport through the sample
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σ
,σ
'
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TE → TM

TM → TM

TE → TE

3.1066 3.1067 3.1068
k0

0

0.5

1

σ
σ
,σ
'

m = 2

TM → TM

TE → TE

TM → TE
TE → TM

FIG. 14. Total cross section for scattering of plane wave by the
array in the vicinity of the BSC with OAM at β = 0.0052 (left panel)
and β = 0.031.

FIG. 15. Differential cross section for scattering of plane wave
illuminating the array in the vicinity of the BSC with OAM.

because of material for spheres. The most profound effect of
finite arrays is that the BSCs become quasi-BSCs because,
unlike a plasmonic sphere, finite dielectric systems cannot
support BSCs [26–28]. Therefore, the effect of giant vortical
currents around the array can be suppressed. It is believed that
for a sufficiently large number of the spheres the lifetime of
the quasi-BSC tends to infinity. Below we show numerically
that one hundred spheres is quite enough to reach the
theoretical limit for giant currents established in the previous
section.

For finite number of the spheres the translational invariance
is broken. Then Eq. (1) can be modified as follows [32]:

E(r) =
N∑

j=1

∑
lm

[
alm

j Mm
l (r − Rj ) + blm

j Nm
l (r − Rj )

]
,

H(r) = −i

N∑
j=1

∑
lm

[
alm

j Nm
l (r − Rj ) + blm

j Mm
l (r − Rj )

]
.

(29)

The expansion coefficients alm
j ,blm

j were found numerically
[36] and presented in Fig. 16. At the first sight it seems
that for growing N the solution for amplitudes aj and bj

should saturate except in the vicinity of the edges of the finite
array. However, the EM field is a massless field which has
no characteristic scale. Hence we have the behavior of the
amplitudes as shown in Fig. 16. Nevertheless we can see a
tendency for saturation of the amplitudes to the maximal value
with the growth of N , but we always observe non-negligible

FIG. 16. (a) Values of coefficients alm
j in Eq. (29) and (b)

values of power current at z = n + 0.5, r = 0.25 where the current
is maximal for different number of spheres with R = 0.468 for
k0 = 3.10705, kz = 0.0307, α = −0.31 + 0.95i.
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effect of the edges of the finite array. That affects the transfer
of SAM of incident light into the giant vortical currents in
the vicinity of a quasi-BSC. A similar effect which transforms
the BSCs into quasi-BSCs is the volatility of the material
parameters of the spheres.

The next problem which can seriously damage the effect of
giant spinning currents is the complex dielectric permittivity
ε = ε′ + iε′′. Fortunately, for silicon dielectric particles there
is a wide frequency window in the nearest infrared range where
the ε′′ is extremely small [37]. The advantage of dielectric
structures is a wide range of BSC wavelengths from microns
(photonics) to centimeter (microwave range) as dependent on

the choice of the radius of spheres. Losses when the waves
transport through the array result in the finite free path length
L = vg/ε

′′ω, where vg is the group velocity. Therefore, it is
sufficient to take the number of spheres not exceeding L/h,
where h is the period of the array. A particular case of this
problem was considered in Ref. [38].
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