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We discuss the dynamical response of strongly interacting Bose atoms in an adiabatically tilted optical lattice.
The analysis is performed in terms of the multilevel Landau-Zener tunneling. Different regimes of tunneling
are identified and analytical expressions for the doublon number, which is the quantity measured in laboratory
experiments, are derived.
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I. INTRODUCTION

Experimental demonstration of the Mott insulator (MI) with
cold atoms in 2002 [1] sparkled the interest in the controlled
excitation of this highly correlated many-body state. One of
the possible techniques to achieve such an excitation is the
application of a lattice tilt corresponding to a static potential
with uniform gradient. The major theoretical breakthrough is
credited to Sachdev, Sengupta, and Girvin [2] who mapped
the tilted Bose-Hubbard model with integer filling factor
onto an effective Ising spin system to demonstrate that the
MI state evolves to the density-wave (DW) state as the
growing potential gradient traverses the point of quantum
phase transition. The DW state is an ordered particle-hole
excitation of the MI state in which empty lattice sites alternate
with doubly occupied ones. Later on competing DW orders in
a one-dimensional hard-boson model were described [3] and
theoretical approaches were developed for both quench [4,5]
and adiabatic [6] dynamics across the quantum critical point.
The quantum phase transition predicted in Ref. [2] was
confirmed in the pioneering experiment of Simons et al. [7]
in 2011 and later in a more clear form in the experiment
of Meinert et al. [8], where a considerable reduction of the
residual harmonic confinement was achieved.

The mentioned theoretical and experimental works brought
up a new trend in physics of cold atoms [9] and initiated
extensive studies on a tilted Bose-Hubbard model including
doublon production through dielectric breakdown [10,11], MI
dynamics in parabolic confinement [12], photon-assisted tun-
neling for strongly correlated Bose gas [13,14], the impact of
quantum quench on Bloch oscillations [15,16], upward prop-
agation in the gravity field [17], long-range tunneling [18,19],
and formation of quantum carpets [20]. Spin analogies for
various involved configurations of lattice and/or interparticle
interactions were proposed [21,22]. Finally, nonequilibrium
dynamics of the MI state in relation to the effective Ising
model was considered [23,24] where the defect density and
order parameter correlation function were computed. Recent
progress in the field of out-of-equilibrium dynamics in strongly
interacting one-dimensional systems is reviewed in Ref. [25]
while the numerical techniques for solving the Bose-Hubbard
model with a tilt are addressed in Ref. [26].

In this paper we approach the problem from a different
viewpoint. Namely, instead of mapping the bosonic system
into a spin system, we employ the theory of multilevel

Landau-Zener (LZ) tunneling. This theory is an extension
of the common Landau-Zener theory from two onto many
(including the case of infinitely many) levels, showing a
structured avoided crossing [27–31]. We identify the diabatic
and adiabatic regimes of the multilevel LZ tunneling and
derive asymptotic equations for the number of produced
doublons depending on the system parameters. Importantly,
our approach admits a straightforward generalization onto
two-dimensional tilted lattices, which have so far attracted
less attention.

II. THE MODEL AND MAIN EQUATIONS

First we discuss the one-dimensional case. We consider a
unit-filled Bose-Hubbard model with the following Hamilto-
nian:

Ĥ = −J

2

∑
l

(â†
l+1âl + H.c.)

+ U

2

∑
l

n̂l(n̂l − 1) + F
∑

l

ln̂l , (1)

where J is the hopping matrix element, U is the microscopic
interaction constant, and the external field F = F (t) is
assumed to slowly increase from zero to a value above the
interaction constant U . Throughout the paper we use the
periodic boundary condition, which can be imposed after
applying the gauge transformation for the external field. Thus
we simulate the dynamics of the following system,

Ĥ (t) = −J

2

L∑
l=1

(â†
l+1âle

iθ(t) + H.c.) + U

2

L∑
l=1

n̂l(n̂l − 1),

(2)

where θ (t) = ∫ t

0 F (t ′)dt ′ and âL+1 ≡ âl . The periodic bound-
ary condition facilitates the study of the thermodynamic limit
N = L → ∞. Going ahead, we mention that convergence
of the results towards the thermodynamic limit crucially
depends on the sweeping rate ν = dF/dt , which is our control
parameter. We found rapid convergence for large ν, while it
was asymptotically slow if ν → 0.

Next we comment on the Hilbert space of the Hamilto-
nian (2). For the unit filling factor the whole Hilbert space of
L bosons can be truncated to the subspace spanned by the Fock
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states |n〉 = |n1,n2, . . . ,nL〉, where the number of atoms in a
given site can be 0, 1, or 2. Accuracy of this approximation is
mainly controlled by the ration J/U , which we choose to be
<0.1. We mention, however, that in some cases the condition
J/U � 1 is not sufficient and the validity of the above
approximation should be checked independently by simulating
the system dynamics in the whole Hilbert space [32]. We come
back to this point in Sec. V.

The discussed subspace is reduced further by noticing
that the periodic boundary condition conserves the total
quasimomentum κ . Thus, the Hamiltonian matrix can be split
into L blocks by introducing the translationally invariant Fock
states. We are interested only in the κ = 0 block because it
contains the initial MI state. In what follows we refer to the
specified Hilbert space as the doublon Hilbert space and denote
its dimension by ND . Two states of our prime interest in this
Hilbert space are the MI state

|MI 〉 = |1,1,1,1, . . .〉
and the DW state

|DW 〉 = 1√
2

(|0,2,0,2, . . .〉 + |2,0,2,0, . . .〉) , (3)

where the symmetric form of the DW state is obviously due to
the periodic boundary condition.

Finally we introduce the instantaneous Floquet operator
which is at the core of our analytical approach. To calculate this
operator we fix F , so that θ (t) = F t in Eq. (2), and calculate
the evolution operator over the Bloch period T = 2π/F ,

Ŵ = êxp

(
−i

∫ T

0
Ĥ (t)dt

)
, (4)

where the hat over the exponent sign denotes the time ordering.
Let us briefly discuss the spectrum of the operator (4). It is
convenient to begin with the case of zero hopping where the
Fock states |n〉 are also eigenstates of the Floquet operator:

Ŵ |n〉 = λ|n〉, λ = exp

(
−i

πU

F

L∑
l=1

nl(nl − 1)

)
. (5)

Plotting eigenphases angle(λ) = i log(λ) as the function of
1/F we obtain a characteristic pattern shown in Fig. 1(a).
Each line in this figure is associated with a fixed number of
doublons: the line with zero slope is the MI state, the first line
with nonzero slope represents the one-doublon states, etc., and
the line with the maximal slope is the DW state.

For J = 0 the majority of levels in Fig. 1(a) are multiply
degenerate, with the MI and DW states being obvious exclu-
sions. Nonzero J removes the degeneracy and originates the
multilevel avoided crossings at F = U/j , where j is a positive
integer number [see Fig. 1(b)]. These avoided crossings are
associated with the first-order (j = 1), second-order (j = 2),
etc., resonant tunneling of atoms in the tilted lattice. Our
ultimate goal is to calculate the number of doublons Nd as
we subsequently traverse the multilevel avoided crossings in
Fig. 1(b) by tilting the lattice from F = 0 to F > U . For
the purpose of future discussions Fig. 2(a) shows Nd = Nd (t),
which is obtained by the straightforward numerical simulations
of time evolution of the system (2), where we used the
linear ramp for the static field, i.e., F/U = νt [and, hence,
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FIG. 1. Spectrum of the Floquet operator (4) as the function of
U/F for J = 0 (a) and J = 0.04U (b). The system size L = 6, where
the dimension of the doublon Hilbert space ND = 26.

θ (t) = Uνt2/2]. For a large sweeping rate Nd is seen to
approach zero while for a small ν it evolves in a stepwise
manner, where the positions of the steps correlate with
positions of the avoided crossings in Fig. 1(b).

III. MULTILEVEL LANDAU-ZENER TUNNELING

We analyze each multilevel avoided crossing (MLAC)
separately. It is instructive to begin with the case j = 1 which
corresponds to the first-order resonant tunneling.
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FIG. 2. The mean number of doublons Nd normalized to Nmax =
L/2 as the function of time for different sweeping rates ν, calculated
by using the doublon Hilbert space (a) and j = 1 resonant subspace
(b). The parameters are J = 0.02U , L = 6, and ν = 10−1/2π

(marked by 1), ν = 10−2/2π (marked by 2), ν = 10−3/2π (marked
by 3), and ν = 10−4/2π (marked by 4). The time is related to F as
F/U = νt .
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A. The case j = 1

The first step in the analysis is to identified the resonant
subspace. In the case j = 1 the resonant subspace consists
of doublon Fock states with the additional constraint that two
doublons cannot occupy the nearest sites [2]. This constraint
drastically decreases the dimension of the doublon Hilbert
space through removing all irrelevant states, i.e., those that
cannot be excited from the initial MI state by means of the first-
order resonant tunneling. For the parameters of Fig. 1(b) the
relevant states are shown in Fig. 3(a). Notice that the MI state
(the horizontal line) is analytically connected with the DW
state (the line with the maximal slope). An important quantity
which can be extracted from the depicted spectrum is the
minimal gap � separating the lowest level, i.e., the level which
analytically connects the MI and DW states, from the next
level. Since the number of levels in the MLAC progressively
increases with L [see Eq. (A4) in the Appendix A] the gap
� tends to zero as L tends to infinity and we found that with
good accuracy

� = 8J/L . (6)

After truncating the doublon Hilbert space to the resonant
subspace the problem can be reformulated as a problem of
multilevel Landau-Zener tunneling [27–29]. This theory deals
with systems of the following type,

i
dψ

dt
= (H1 + tH2)ψ, −∞ < t < ∞, (7)

where H1 and H2 are two matrices or two Hamiltonians. For
the currently considered case j = 1 these Hamiltonians were
found in Refs. [2,7], where they were expressed through the
spin operators of the effective spin system. In our analysis we
do not use this mapping and calculate the matrices H1 and H2

directly from the original Hamiltonian. Given F/U = νt the
instantaneous spectrum of the effective Hamiltonian H (t) =
H1 + tH2 coincides with the spectrum of the Floquet operator
shown in Fig. 3(a) after folding the former into the fundamental
energy interval −F/2 � E < F/2.

As soon as we know the matrices H1 and H2 we can use
a number of rigorous results from the theory of multilevel LZ
tunneling. Let us define the integral probability of LZ tunneling
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FIG. 3. MLAC at F = U (a) and F = U/2 (b). The parameters
are as follows: L = 6, and J = 0.02U in panel (a) and J = 0.04U

in panel (b).

across the MLAC as

PLZ = 1 − Nd (t = ∞)

Nmax
, (8)

where Nmax = L/2 is the maximally possible number of
doublons. We mention that definition (8) differs from the
standard definition of multilevel LZ tunneling which involves
NR(NR + 1)/2 transition probabilities between the instanta-
neous states of the system. (Here NR is the dimension of the
resonant subspace which determines the size of the matrices
H1 and H2.) The advantage of Eq. (8) is that it converges in
the thermodynamic limit. This allows us to use terminology of
the two-level Landau-Zener problem: we call transition across
the MLAC diabatic if PLZ ≈ 1 and adiabatic if PLZ ≈ 0.

We begin with the diabatic regime. Using Eq. (13) in
Ref. [28] it can be proved that in the limit of large ν the
integral probability is given by

PLZ = exp

(
−π

J 2

νU

)
. (9)

Here “large ν” means that PLZ is close to unity. Notice that
PLZ ≈ 1 does not imply occupation of the MI state to be close
to unity—on the contrary, in the thermodynamic limit it goes to
zero. The accuracy of Eq. (9) is illustrated in the main panel in
Fig. 4. In this figure the dashed line is Eq. (9) and the solid lines
are numerical results for different system sizes 6 � L � 18.

We proceed with the opposite case of small ν. Here
one clearly sees the finite-size effect due to a finite gap �

between the lowest level and the next level in Fig. 3(a).
Because of the gap the system sooner or later enters the
usual adiabatic regime where the probability to stay in the
lowest level approaches unity while the probability to appear
in the next level is an exponentially small value given by
the celebrated Landau-Zener formula: P = exp (−α�2/ν),
where α ∼ 1 is a constant determined by the angle between
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FIG. 4. Probability of LZ tunneling across the j = 1 MLAC as
the function of the sweeping rate ν for different system sizes L = 6, 8,
10, 12, 14, 16, and 18. The corresponding dimensions of the resonant
subspaces are NR = 5, 8, 15, 31, 64, 143, and 329. The hopping
matrix element J = 0.02U . The inset shows the same data in the
semilogarithmic scale as the function of 1/ν.
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two asymptotes for the energy level positions. Thus, at the
end point of the adiabatic passage one finds Nd (t = ∞) =
L
2 (1 − P ) + (L

2 − 1)P . Taking into account our definition of
PLZ, Eq. (8), this gives

PLZ = 2

L
exp

(
−CLZ

�2(L)

ν

)
, ν → 0, (10)

where, according to our numerical studies, CLZ ≈ 1.7. The
asymptotic behavior (10) is exemplified in the inset in Fig. 4
which shows the logarithm ofPLZ as the function of the inverse
sweeping rate.

Since the gap �(L) in Eq. (10) vanishes in the thermody-
namic limit L → ∞, we obtain completely different results if
the limits ν → 0 and L → ∞ are exchanged. To find PLZ in
this case (i.e., to find the limiting curve in Fig. 4) we proceed
as follows. Assume for the moment a finite L. Then we can
choose ν small enough for only two levels to be involved in
the Landau-Zener dynamics. The simplest possible condition
for the onset of two-level tunneling with the probability given
by Eq. (10) is ν = CLZ�2(L). Combining the above equation
with the estimate (6) for the gap width � and Eq. (10) we can
eliminate L, which gives

PLZ = 1

2J

(
ν

CLZ

) 1
2

. (11)

The obtained algebraic dependence is in agreement with
numerical results of Ref. [23] where PLZ was argued to scale
as PLZ ∼ ν1/2 in the thermodynamic limit.

B. The case j = 2

In the case j = 2, which corresponds to the second-order
resonant tunneling, the spectrum of the Floquet operator in the
resonant subspace is depicted in Fig. 3(b). For the considered
example the resonant subspace consists of five Fock states:
the MI state |111111〉, one-doublon state, |111012〉, which is
resonantly related to the MI state via the intermediate state
|111021〉; two-doublon states, |012012〉 and |110022〉, which
are related to the one-doublon state via the states |021012〉 and
|110112〉, respectively; and the two-doublon state |020112〉,
which can be obtained from the two-doublon state |012012〉 via
the intermediate state |021012〉. (It is implicitly assumed that
all these states are symmetrized by using cyclic permutation
to satisfy the conservation law for the total quasimomentum.)
To find the MLAC shown in Fig. 3(b) one first calculates
the Floquet operator keeping the intermediate states and then
eliminates them by projecting this operator onto the basis of
the resonant states. This results in the effective Hamiltonian
where the resonant states are directly related to each other
by the transition matrix elements which are proportional to
J 2/U . Thus we can use the results of the previous subsection
with some minor modifications. First, the maximally possible
doublon number Nmax = L/3 but not L/2. Second, the critical
value of the sweeping rate ν which separates the diabatic and
adiabatic regimes of the multilevel LZ tunneling scales as J 4

but not J 2.

IV. DYNAMICS OF DOUBLON NUMBER

In the previous section we considered different regimes of
LZ tunneling across a MLAC. It was argued, in particular, that
the adiabatic regime is sensitive to the system size. This result,
however, is more of academic than of practical interest. In
fact, in the laboratory experiment one deals with an ensemble
of one-dimensional (1D) lattices where the lattice lengths are
determined by the distances between defects in the initial
MI state. Thus, the system size L is, strictly speaking, not
known. At the same time, as it is seen in Fig. 4 an error in the
dependence PLZ = PLZ(ν) due to unknown L never exceeds
a few percent. This allows us to make reliable predictions by
analyzing the lattices of a rather small size. With this in mind
we address the dependence Nd = Nd (t) in the limit of small
ν, which is of prime experimental interest.

Let us assume the sweeping rate ν to be small enough to
ensure a truly adiabatic regime. In the other words, we follow
the lowest level in Fig. 3(a) which analytically connects the MI
state with the DW state. Denoting by |
(F )〉 the instantaneous
eigenstate of the Floquet operator associated with this level we
have

Nd (F ) = 〈
(F )|D̂|
(F )〉, (12)

where D̂ is the doublon number operator. Below we display
analytical solutions of Eq. (12) for L = 2 and L = 4 and
compare them with the numerical solutions for L → ∞.
It should be mentioned that Eq. (12) rapidly converges
as L is increased and the corresponding curves become
undistinguishable in the linear scale if L � 8.

For L = 2 the dimension of the resonant subspace NR = 2
and the problem reduces to the diagonalization of a 2 × 2
matrix,

H (F ) =
(

0 −J

−J δ(F )

)
,

where δ(F ) = U − F . For the mean number of doublons this
model gives

Nd (F )

Nmax
= (δ − √

δ2 + 4J 2)
2

4J 2 + (δ − √
δ2 + 4J 2)

2 . (13)

Next consider L = 4. In this case NR = 3 and

H (F ) =
⎛⎝ 0 −√

2J 0
−√

2J δ(F ) −J

0 −J 2δ(F )

⎞⎠.

After some algebra we get

Nd (F )

Nmax
= (E2 − δ2)2 + 2J 2(E + δ)2

2J 2(E − δ)2 + J 2(E + δ)2 + (E2 − δ2)2
, (14)

where E = E(F ) denotes the position of the lowest level:

E(F ) = 2

√
3J 2 + δ2

3
cos

(
η + 2π

3

)
,

η(F ) = πθ (δ) − arctan

(2
√(

3J 2+δ2

3

)3 − (
J 2δ

2

)2

J 2δ

)
.

We found that there is no need to consider the next approxima-
tion because Eq. (14) reproduces the results for L → ∞ with

043630-4



MOTT-INSULATOR STATE OF COLD ATOMS IN TILTED . . . PHYSICAL REVIEW A 94, 043630 (2016)

0 1 2
0

0.2

0.4

0.6

0.8

1

F/U

N
d

(a)

0 1 2
0

0.2

0.4

0.6

0.8

1

F/U

(b)

FIG. 5. Number of doublons as the function of F = F (t) for two
different protocols: a piecewise ramp with ν = 1.25 × 10−2 in the
interval 0 � F/U < 0.6 and ν = 2.5 × 10−4 in the interval 0.6 �
F/U < 2 (a), and the linear ramp in the interval 0 � F/U < 2 with
the rate ν = 2 × 10−5 (b). The dashed lines are analytical results of
Eqs. (14) and Eq. (B4), respectively. The system size L = 8, where
the dimension of the doublon Hilbert space ND = 142. The hopping
matrix element J = 0.04U .

accuracy higher than 1% . Thus, for practical purposes one can
use Eq. (14) or, even simpler, Eq. (13). It follows from these
equations that the characteristic width of the step for Nd (F ) is
proportional to J .

A similar equation can be derived for the second-order
resonant tunneling at F = U/2 [see Eq. (B4) in Appendix B].
The dependencies (14) and (B4) are shown in Fig. 5 by the
dashed lines.

It is interesting to compare Eqs. (14) and (B4) against
direct numerical simulations of the doublon dynamics (see
solid lines in Fig. 5). We mention that in these simulations
we use the doublon Hilbert space and, hence, no resonant
approximations are involved. In Fig. 5(b) we tilt the lattice
by using the linear ramp with the rate ν = 2 × 10−5, which is
small enough to ensure the adiabatic regime for the MLAC at
F = U/2. In Fig. 5(a) we tilt the lattice by using a protocol
with two different rates: in the interval 0 � F/U < 0.6 the rate
ν = 1.25 × 10−2 is used, which ensures the diabatic regime
for MLAC at F = U/2; in the interval 0.6 � F/U < 2 the
rate is changed to ν = 2.5 × 10−4, which insures the adiabatic
regime for the second avoided crossing at F = U . A good
agreement with analytical results is noticed.

V. TWO-DIMENSIONAL LATTICES

In this section we generalize the results of the previous
sections to the two-dimensional case,

Ĥ = −Jx

2

∑
l,m

(â†
l+1,mâl,m + H.c.)

− Jy

2

∑
l,m

(â†
l,mâl,m+1 + H.c.)

+ U

2

∑
l,m

n̂l,m(n̂l,m − 1)

−F (t)
∑
l,m

[l cos φ + m sin φ]n̂l,m , (15)

where, as before, F (t) changes linearly in time with the rate
ν, and the initial state of the system is a Mott insulator
with unit filling. Like for 1D lattices we use the periodic
boundary conditions, which are imposed after applying the
gauge transformation. Thus we simulate the dynamics of a
finite system of the size Lx × Ly with the Hamiltonian

Ĥ (t) = −Jx

2

Lx∑
l=1

Ly∑
m=1

(â†
l+1,mâl,me−iθx (t) + H.c.)

− Jy

2

Lx∑
l=1

Ly∑
m=1

(â†
l,m+1âl,me−iθy (t) + H.c.)

+ U

2

Lx∑
l=1

Ly∑
m=1

n̂l,m(n̂l,m − 1) , (16)

where θx(t) = ∫
Fx(t)dt and θy(t) = ∫

Fy(t)dt . The main
difference and challenge of the 2D system (16) as compared
to the 1D system (2) is sensitivity to the field orientation. The
cases where F is exactly aligned or slightly misaligned with
one of the primary axes of the lattice have been analyzed in
the recent work [34]. Here we address another important case
where F is strongly misaligned with the primary axes. It is
shown below that strongly misaligned 2D lattices are closer to
the one-dimensional situation than the aligned lattices.

A. Floquet operator

To be specific we consider the field orientation Fx/Fy ≈
1/2 and we begin with the case where Fx/Fy = 1/2 exactly.
In this case we can introduce the Floquet operator,

Ŵ = êxp

(
−i

∫ T

0
Ĥ (t)dt

)
, (17)

where T = 2π/Fx = 4π/Fy is the common Bloch period.
Similar to 1D tilted lattices we restrict ourselves by the doublon
Hilbert space where nl,m � 2. The validity of this, not obvious
for 2D tilted lattices approximation, will be checked later on.
Using the doublon Hilbert space we calculate the spectrum of
the operator (17) and decompose it into Lx × Ly independent
spectra according to the total quasimomentum. As before, we
are bound with the zero quasimomentum subspace because the
MI state belongs to this subspace. The obtained spectrum is
shown in Fig. 6 for the lattice 2 × 4, Jy = 0.02U , and Jx = 0,
panel (a), and Jx = 0.04U , panel (b).

Let us discuss the depicted spectra in more detail. The
spectrum in Fig. 6(a) obviously reproduces the spectrum of
two independent 1D lattices of the length L = Ly , where
the MLAC at F/U = √

5/2 corresponds to the first-oder
tunneling in the y direction. The spectrum in Fig. 6(b)
contains extra MLACs at F/U = √

5, which corresponds
to the first-order tunneling in the x direction, and a number
of less pronounced crossings corresponding to the second-
order tunneling. In what follows we focus on the first-order
resonance at F/U = √

5/2.
If Jx = 0 the doublon Hilbert space can be truncated to the

resonant subspace, which is given by the tensor product of two
(in general case, Lx) 1D resonant subspaces introduced earlier
in Sec. III. The spectrum of the operator (17) on this subspace
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FIG. 6. Eigenphases of the Floquet operator as the function of
U/F for Fx/Fy = 1/2 and (a) Jx = 0 and (b) Jx = 0.04U . The lattice
size is 2 × 4 (dimension of the doublon Hilbert space ND = 147),
and the hopping matrix element Jy = 0.02U .

is shown in Fig. 7(a). Our particular interest in Fig. 7(a) is
the “lowest” level. Using the fact that two 1D lattices are
independent it is easy to prove that this level analytically
connects the MI state with the state

|ψ〉 = 1√
2

(|DW〉 + |D̃W〉), (18)

where |DW〉 is the “correlated” DW state,

|DW〉 = 1√
2

⎡⎢⎣
⎛⎜⎝22

00
22
00

⎞⎟⎠ +

⎛⎜⎝00
22
00
22

⎞⎟⎠
⎤⎥⎦, (19)

and |D̃W〉 is the “uncorrelated” DW state,

|D̃W 〉 = 1√
2

⎡⎢⎣
⎛⎜⎝20

02
20
02

⎞⎟⎠ +

⎛⎜⎝02
20
02
20

⎞⎟⎠
⎤⎥⎦. (20)

Let now Jx �= 0 and, hence, two 1D lattices are no more
independent. To account for the lattice coupling we use the
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U/F
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U/F
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e(
λ)

/π
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FIG. 7. The spectrum of the Floquet operator on the resonant
subspace (NR = 10) for Jx = 0 (a) and Jx = 0.04U (b).

specific perturbation theory in the parameter Jx . The procedure
involves two steps and goes as follows. First we introduce the
new basis which diagonalizes the Floquet operator (17) for
Jy = 0. We refer to this basis as many-body Wannier-Stark
states. If Jx � Fx and Fx �= U (the latter condition ensures
that there is no resonant tunneling in the x direction) these
many-body Wannier-Stark states can be approximated by the
Fock states which, however, have slightly different energies:

Ei = E
(0)
i + �Ei , E

(0)
i = 〈ni |U

2

∑
l,m

n̂l,m(n̂l,m − 1)|ni〉.
(21)

We find the energies Ei by calculating diagonal elements of the
Floquet operator for Jy = 0, i.e., by dropping the second term
in the Hamiltonian (16). Notice that for Jy = 0 the system
becomes quasi-one-dimensional. For this reason the above-
introduced correction �Ei to the energy of ith Fock states can
be found semianalytically by using simple combinanatorics.

In the second step we calculate the Floquet operator (17)
approximately, by dropping the first term in the Hamilto-
nian (16) and simultaneously correcting the energies of the
Fock states. This again reduces the 2D problem to a quasi-1D
problem, where the x degree of freedom is now taken into
account by nonzero �Ei . The accuracy of the method is
illustrated in Fig. 8(a) which compares the eigenphases of
the exact and approximate Floquet operators for Jy = 0.02U

and Jx = 0.04U .
The described approach, although perturbative, has several

advantages over the straightforward diagonalization of the
Floquet operator. First, it allows us to treat larger lattices by
reducing the 2D problem to the sequence of two quasi-1D
problems. Second, it can be also used in the case of irrational
orientations of the field, where one has no common Bloch

0 50 100 150
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1

an
gl

e(
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/π

j

(a)

0.6 0.7 0.8 0.9 1 1.1 1.2
0
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1

U/F

|c
j|2

(b)

FIG. 8. (a) Exact (dots) and approximate (open circles) eigen-
phases of the Floquet operator for Fx/Fy = 1/2. The other parameters
are U/F = 0.8, Jy = 0.02U , and Jx = 0.04U . (b) Squared modulus
of the expansion coefficients ci for the eigenstate associated with the
lowest level in Fig. 7(b). The coefficients in front of the correlated and
uncorrelated DW states are marked by the dashed and dash-dotted
lines, respectively. The hopping matrix element Jx is set to a very
small yet finite value of Jx = 0.001U .
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period. Finally, it justifies the resonant approximation for
Jx �= 0 and provides a physical interpretation of the numerical
results in terms of the energies �Ei . Figure 7(b) shows the
spectrum of the Floquet operator for Jx = 0.04U , calculated
by using the resonant Hilbert space. It is seen that the lowest
level is now separated from the next level by the finite gap
�̃. The size of the gap is given by the difference between
the energy corrections �Ei to the correlated DW state (19)
and uncorrelated DW state (20), which was found to scale
as

�̃ ≈ 5J 2
x /U. (22)

The presence of the gap also breaks the symmetry of the
Jx = 0 problem so that the MI state is now analytically
connected with the correlated DW state but not with the
symmetric state (18). This is illustrated in Fig. 8(b), which
shows expansion coefficients over the symmetrized Fock
basis for the eigenstate |
(F )〉 associated with the lowest
level,

|
(F )〉 =
NR∑
i=1

ci(F )|ni〉. (23)

Our prime interest in this figure is the expansion coefficients
in front of the correlated DW state (19), dashed line, and
in front of the uncorrelated DW state (20), dash-dotted line.
Notice that for Jx = 0 these coefficients would be equal, so
that the dashed and dashed-dotted line would approach 1/2 in
Fig. 8(b). However, when Jx �= 0 the coefficient in front of the
uncorrelated DW state is seen to vanish while the coefficient
in front of the correlated DW state tends to unity. This means
that in the deep adiabatic regime the final state of the system is
the correlated DW. This result holds for arbitrary Lx where we
have several uncorrelated DW states. For example, for Lx = 4
these are ⎛⎜⎝2220

0002
2220
0002

⎞⎟⎠,

⎛⎜⎝2200
0022
2200
0022

⎞⎟⎠,

⎛⎜⎝2020
0202
2020
0202

⎞⎟⎠. (24)

[Unlike Eqs. (19) and (20) here we display not symmetrized
Fock states—the symmetrization procedure is assumed implic-
itly.] We found that the closest to the energy of the correlated
DW state is the uncorrelated DW state which is obtained
from the former by shifting one column, like the first state
in Eq. (24). Furthermore, the energy difference between these
two states (i.e., the difference between associated corrections
�Ei) is essentially independent of Lx . Thus, the correlated
DW state is separated from a bundle of uncorrelated DW states
by a finite gap, where Eq. (22) provides an estimate for the gap
size.

B. Dynamics of doublon number

This subsection presents numerical solutions of the time-
dependent Schrödinger equation with the Hamiltonian (16)
where F (t) = νt . Simulations are performed in the doublon
Hilbert space. Figure 9(c) shows the doublon number Nd as
the function of time for the lattice 2 × 4 and ν = 10−3/2π . As
expected, one finds many similarities with Fig. 2(a) showing
the result for 1D lattices. In particular, small steps are due to

0 0.5 1 1.5 2
0
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1

F/U

N
d

(c)

1 1.2 1.4 1.6
0

0.5

1

|c
j|2

(a)

1 1.2 1.4 1.6
0

0.5

1
(b)

FIG. 9. Panels (a) and (b) show occupations of the correlated and
uncorrelated DW states for the rates ν = 10−3/2π and ν = 10−4/2π .
(c) The mean number of doublons Nd normalized to Nmax = LxLy/2
as the function of time, where the time is related to F as F = Uνt .
Parameters are Jy = 0.02U , Jx = 0.005U , Lx = 2, Ly = 4, and
ν = 10−3/2π .

the second-order tunneling and the large step at F/U = √
5/2

is due to the first-order tunneling. By using an appropriate
protocol for the sweeping rate ν we can ensure the diabatic
regime for MLACs associated with the second-order tunneling.
Then the main step is described by Eq. (14) and Nd (t)
approaches Nmax = LxLy/2.

The mean number of doublons, however, does not provide
the whole information about the final state of the system—it
can be only stated that populations of the correlated and
uncorrelated DW states sum up to unity. For this reason we
specifically address populations of the states Eqs. (19) and (20)
[see Fig. 9(a)]. It appears that the chosen rate ν does not
ensure a fully adiabatic regime, so that the populations of
the correlated and uncorrelated DW states become almost
equal due to the LZ tunneling between two lowest levels in
Fig. 8(b). To obtain the correlated DW state as the final state
the sweeping rate should be essentially smaller, smaller than
the inverse gap (24). In fact, for ν = 10−4/2π we already
observe a misbalance in the population [see Fig. 9(b)], which
tends to unity for smaller ν or, alternatively, larger Jx .

To conclude this section we comment on truncation of the
Hilbert space to the doublon subspace. The validity of this
approximation assumes a negligible population of the Fock
states which may lead to triple occupations of the lattice
sites. We have checked that during adiabatic passage the
population of these states is of orders of magnitude smaller
than the population of the resonant states. As the final check
we repeated calculations shown in Fig. 9 by using the whole
Hilbert space—the results appear to be almost identical. We
stress, however, that the truncation of the whole Hilbert space
to the doublon Hilbert space and further to the resonant
subspace is justified only in the considered case of strong
misalignment. If φ ≈ 0 we do observe a qualitative difference
in the doublon dynamics when we truncate the Hilbert space.
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VI. CONCLUSIONS

In the work we analyzed the evolution of the Mott-insulator
state of cold atoms in 1D and 2D optical lattices as the lattices
are tilted by applying a monotonically increasing static field
F = F (t). The analysis was performed by using the theory of
multilevel Landau-Zener tunneling, properly adopted for the
considered problem.

As concerns 1D lattices, the central result of the paper are
Eqs. (9), (10), and (11), which give the number of produced
doublons Nd as the function of the sweeping rate ν = dF/dt .
We paid particular attention to the adiabatic regime ν → 0,
where the Mott-insulator state evolves into the density-wave
state (empty lattice sites alternating with doublons). For this
case we derived analytical expressions which capture the
dynamics of the doublon number. It is shown that, having
the goal to produce the density-wave state, one should use
a protocol F = F (t) which ensures diabatic transition of the
multilevel avoided crossing at F = U/2, which is associated
with the second-order tunneling, and adiabatic transition of
the multilevel avoided crossing at F = U , associated with the
first-order tunneling.

The above results are equally applied to the 2D square
lattice, provided that the static field F is strongly mismatched
with the primary axes of the lattice (for example, 1/3 <

Fx/Fy < 1/2). In this case the 2D lattices can be viewed as an
array of weakly coupled 1D lattices. Correspondently, there are
two adiabatic conditions for the rate ν. The first one is deduced
from Eq. (10). It ensures that every column of the 2D lattice is a
one-dimensional density-wave state. The second one requires
ν � 1/�̃, where �̃ is given in Eq. (22). It ensures that the
column density waves are correlated; i.e., we have empty rows
alternating with rows where every site has double occupancy.

It might be thought that the field orientation φ =
arctan(Fx/Fy) ≈ 0 is more suitable for producing the density-
wave state in the square 2D lattice. This, however, is not the
case. As shown in Ref. [34], for φ ≈ 0 the system has an
intrinsic instability due to high mobility of the quasiparticles
(doublons and holes) in the transverse x direction. For a strong
misalignment this mobility is suppressed by the Wannier-Stark
localization and the quasiparticles are essentially localized in
the sites where they were created. Yet, a slightly larger than
unity localization length introduces nonzero correlations in
the x direction, which make it possible to produce the 2D
density-wave state from the initial Mott-insulator state by
means of the adiabatic passage.
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APPENDIX A

In this appendix we display explicit formulas for the
dimension of the Hilbert spaces. The total dimension of
the Hilbert space of the Bose-Hubbard model is given by the

well-known equation

N = (N + L − 1)!

(N − 1)!L!
, (A1)

where one should set N = L in the case of unit filling. In the
main text we refer to subspace of the total Hilbert space, which
is defined by the condition nl � 2, as the doublon Hilbert
space. It has the dimension

ND =
L/2∑
n=0

L!

(L − 2n)!(n!)2
. (A2)

Finally, the dimension of the j = 1 resonant subspace is
dependent on boundary conditions. For the open (Dirichlet)
boundaries we have

N ′
R =

L/2∑
n=0

(L − n)!

(L − 2n)!n!
, (A3)

while for the periodic boundary condition we have

NR = N ′
R(L) + N ′

R(L − 2) . (A4)

Needless to say that NR < ND < N . For example, for L = 8
the inequality relation reads as 47 < 1107 < 6435 and for
L = 16 as 2207 < 519 662 7 < 300 540 195. We also mention
that in the case of the periodic boundary condition the
dimension of every Hilbert space can be reduced by factor
L if we take into account the conservation of the total
quasimomentum.

APPENDIX B

To obtain a quantitative description of the second-order
transition we consider the three-site Bose-Hubbard chain. Pro-
jecting Eq. (2) onto the basis vectors |ψ1〉 = |1,1,1〉, |ψ2〉 =

1√
3

∑2
l=0 T̂ l|0,2,1〉, and |ψ3〉 = 1√

3

∑2
l=0 T̂ l|0,1,2〉 (here T̂ is

the cyclic permutation operator) and removing time depen-
dance from the kinetic term through substitutions

|ψ1〉 = e−i(Ut/2−θ(t))|φ1〉,
|ψ2〉 = e−iUt/2|φ2〉, (B1)

|ψ3〉 = e−i(Ut/2+θ(t))|φ3〉,
we obtain

H (F ) =

⎛⎜⎝−μ(F ) −
√

6J
2 0

−
√

6J
2

U
2 − 3J

2

0 − 3J
2 μ(F )

⎞⎟⎠, (B2)

where μ(F ) = U
2 − F . The eigenvalues of this matrix could

be found exactly by Cardano’s formula. It is much simpler
though to find an approximate solution for μ(F ) ≈ 0 because
we are only interested in the part of the spectrum underlying
the second-order resonant transition. After some algebra we
have

E1,2 = 3J 2

2U 2
μ − 15J 2

4U

∓
√(

3J 2

2U 2
μ − 15J 2

4U

)2

+
(

μ2 − 3J 2

2U
μ

)
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+O

(
J 2

U 2

)
,

E3 = U

2
+ O

(
J 2

U 2

)
. (B3)

The eigenvalues E1,2, which show an avoided crossing at
μ(F ) ≈ 0, define the effective Hamiltonian. Basing on this

effective Hamiltonian the mean number of doublons is given
by

Nd (F )

Nmax
≈ 2

3

(
(μ − E1)2 + 9J 2

4

)
(μ + E1)2(

μ2 − E2
1

)2 + 9J 2

4 (μ + E1)2 + 3J 2

2 (μ − E1)2
.

(B4)
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of many-body long-range tunneling after a quantum quench,
Science 344, 1259 (2014).

[19] F. Queisser, P. Navez, and R. Schützhold, Sauter-Schwinger-like
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