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We perform quantum Monte Carlo simulations of the itinerant-localized periodic Kondo-Heisenberg model for
the underdoped cuprates to calculate the associated spin correlation functions. The strong electron correlations
are shown to play a key role in the abrupt destruction of the quasi-long-range antiferromagnetic order in the
lightly doped regime.
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I. INTRODUCTION

The aim of this article is to explore the mechanism underly-
ing the abrupt suppression of the long-range antiferromagnetic
(AF) order observed in the lightly hole-doped cuprates. As is
well known the two-dimensional (2D) undoped quantum AF
order exhibits at zero temperature the AF long-range order
(LRO) that is completely destroyed by a surprisingly low
doping. It is very reasonable to assume that the strong electron
correlations are at work in this case. Technically, the lightly
doped regime is pretty hard to address because, precisely
under this condition, the constraint of no double electron
occupancy (NDO) is fully at work. This implies that, due
to the strong on-site Coulomb repulsion, two lattice electrons
cannot hop onto one and the same lattice site regardless of
their spin projection. Such a local restriction on a structure
of the Hilbert space is very hard to implement analytically
in a reliable and controlled manner. Alternative slave-particle
mean-field theories that treat the local NDO constraint only
globally predict a nonphysically large value of the critical
doping [1].

The NDO constraint drives the theory into a strong-
coupling regime, which calls for proper technical tools. Some
progress can be achieved by employing the earlier established
mapping of the t-J model of strongly correlated electrons
onto the Kondo-Heisenberg model at a dominantly large
Kondo coupling [2]. Being a slave-particle theory, such an
approach possesses however a few important advantages over
the conventional slave-particle theories.

First of all, the strength of electron correlations is now
encoded into a single global parameter—a Kondo coupling.
Varying its magnitude enables us to get important insights
into in what way the strong electron correlations affect the
underlying physics. In particular we show that the local NDO
constraint is responsible for a rapid destruction of the AF
quasi-LRO (QLRO) with doping. If the NDO constraint is
ignored the QLRO is restored. The critical hole concentration
at which the AF QLRO disappears acquires a reasonably low
value.

Additionally, the proposed spin-dopon theory explicitly
takes into account the dual nature of the constrained lattice
electrons. In the underdoped cuprates, one striking feature is
the simultaneous localized and itinerant nature of the lattice
electrons. Such a duality appears as an explicit manifestation of

the local Mott physics and is shown to be a direct consequence
of the local NDO constraint.

Moreover, the itinerant-localized model provides a conve-
nient new set of coordinates well suited for numerical simu-
lations. Specifically, one can vary the strength of the electron
correlations by simply varying a single global parameter—
the (Kondo) coupling between the itinerant and localized
electrons. In particular, classical Monte Carlo simulations for
large clusters have been successfully used in studying the
electron spin correlations in the full Ising version of the 2D
t-J model in the spin-dopon representation [3]. It has been
shown that the AF LRO disappears already at the doping of
the order of a few percent. It has also been demonstrated that
the NDO constraint is responsible for the smearing out of the
magnetic order. However, these results were obtained within a
simplified model with the transverse components of the on-site
electron spin being self-consistently neglected.

In the present paper, we apply the quantum Monte Carlo
(QMC) simulations to explore the quantum spin dynamics of
the underdoped cuprates within the standard SU(2) invariant
2D t-J model. We intend to explore the issue as to whether
or not the NDO constraint still plays a dominant role in the
disruption of the magnetic order in the lightly doped regime.
One should however keep in mind that the QMC method
restricts us to dealing with finite temperatures and finite lattice
clusters. As a result, this approach cannot capture a true LRO
in two dimensions. Since the AF correlation length remains
finite, we consider a finite-size system away from the critical
point. A full theory of such systems is not available yet.
However, at sufficiently low doping, the correlation length
is much larger than a characteristic cluster size. This manifests
itself as a QLRO. What is important is that the QMC method
enables us to observe a rapid destruction of the QLRO with
increasing doping and the formation of the short-range order
(SRO) instead. We explicitly demonstrate that the local NDO
constraint plays a dominant role in destroying the magnetic
order at finite doping in the standard t-J model.

II. MODEL

To start with, let us briefly review the Kondo-Heisenberg
model approach to strongly correlated electron systems.
The canonical t-J model Hamiltonian of strongly correlated
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electrons reads

Ht-J = −
∑
ijσ

tij c̃
†
iσ c̃jσ + J

∑
ij

(
�Qi · �Qj − 1

4
ñi ñj

)
, (1)

where c̃iσ = ciσ (1 − ni,−σ ) is the projected electron operator,
�Qi = ∑

σ,σ ′ c̃
†
iσ �τσσ ′ c̃iσ ′ is the electron spin operator, ñi =

ni↑ + ni↓ − 2ni↑ni↓, and �τ is the Pauli vector, �τ 2 = 3/4. In
the underdoped cuprates, one striking feature is a simultaneous
display of both the localized nature and the itinerant nature of
the lattice electrons, c̃iσ . To take both these aspects of the
constrained electrons into consideration, on equal footing,
Ribeiro and Wen proposed a slave-particle spin-dopon rep-
resentation of the projected electron operators in the enlarged
Hilbert space [4]:

c̃
†
i = 1√

2

(
1

2
− 2�Si · �τ

)
d̃i . (2)

In this framework, the localized electron is represented by
the lattice spin �S ∈ su(2) whereas the doped hole (dopon) is
described by the projected hole operator, d̃iσ = diσ (1 − nd

i−σ ).

Here c̃† = (c̃†↑,c̃
†
↓)t and d̃ = (d̃↑,d̃↓)t .

The physical content of the spin-dopon representation (2)
can be clarified as follows. First of all, we represent the spin
degrees of freedom in terms of chargeless fermions (spinons),
fσ :

S =
∑
σ,σ

f
†
σ ′ �τσ ′σ fσ ,

∑
σ

f †
σ fσ = 1.

Following this, we introduce the operator [2]

D = f↑d̃↓ − f↓d̃↑√
2

,

which destroys the on-site spin-dopon singlet state (holon).
The physical electron operator (2) then reduces to the spinon-
holon decomposition:

c̃†σ = f †
σ D. (3)

This equation appears as a slave-boson representation of the
constrained electron operator in terms of the itinerant and
localized degrees of freedom with the boson being a composite
state. The itinerant boson (holon) appears as a charged spinon-
dopon singlet and it corresponds to a hopping vacancy. The
localized lattice spin is represented by a chargeless spinon state
that transforms as an SU(2) spinor.

The physical on-site Hilbert space is a 3D one that
comprises spin-up states, spin-down states, and a vacancy. In
terms of the projected electron operators, the NDO constraint
to single out the physical Hilbert space takes the form∑

σ

(c̃†iσ c̃iσ ) + c̃iσ c̃
†
iσ = 1. (4)

Only under this condition are the projected electron operators
isomorphic to the Hubbard operators. Within the spin-dopon
representation, the NDO reduces to a Kondo-type interaction
constraint [2],

�Si · �si + 3
4 (d̃†

i↑d̃i↑ + d̃
†
i↓d̃i↓) = 0, (5)

with �si = ∑
σ ′,σ d̃

†
iσ ′ �τσ ′σ d̃iσ being the dopon spin operator.

Equivalently, Eq. (5) can be written in the form D
†
i Di = ñd

i .

At strong coupling (λ � t), the original t-J model (1) is
shown to be equivalent to the lattice Kondo-Heisenberg-type
model [2]:

Ht-J =
∑
ijσ

2tij d
†
iσ djσ + J

∑
ij

�Si

(
1 − nd

i

) · �Sj

(
1 − nd

j

)

+ λ
∑

i

(
�Si · �si + 3

4
nd

i

)
, λ → +∞, (6)

where we have dropped the “tilde” sign of the dopon operators,
as it becomes irrelevant in the presence of the NDO constraint.
The unphysical doubly occupied electron states are separated
from the physical sector by an energy gap of ∼λ. In the
λ → +∞ limit, i.e., in the limit in which λ is much larger
than any other existing energy scale in the problem, those
states are automatically excluded from the Hilbert space.
Despite the global character of the parameter λ, it enforces
the NDO constraint locally due to the fact that the on-site
physical Hilbert subspace corresponds to zero eigenvalues of
the constraint, whereas the nonphysical subspace is spanned
by the eigenvectors with strictly positive eigenvalues. In one
dimension, Eq. (6) reproduces the well-known exact results
for the t-J model [5] (see also the Appendix).

Close to half filling, where the density of doped holes is
small δ := 〈nd

i 〉 � 1, it suffices to change J → J̃ = J (1 −
δ)2. The spin-dopon representation of the t-J Hamiltonian
for the underdoped cuprates then reduces to the Kondo-
Heisenberg lattice model at a dominantly large Kondo cou-
pling [2],

Ht-J =
∑
ijσ

teff
ij d

†
iσ djσ + J̃

∑
ij

(
�Si · �Sj − 1

4

)
+ λ

∑
i

�Si · �si,

(7)
where teff

ij = 2tij + (3λ/4 − μ)δij and λ � t,J .
In the spin-dopon representation (7), the on-site Hilbert

space is spanned by the vectors |σa〉, with σ = ↑, ↓ labeling
the lattice spin projection and a = 0,↑, ↓ labeling the dopon
state. Explicitly they are numerated by an integer p =
1,2, . . . ,6 as given in Table I.

Any on-site operator A can then be identically written in
the form Ai = ∑

pq〈p|Ai |q〉Xpq

i , where Xpq := |p〉〈q|.
Since we are interested in the large λ limit, it seems

appropriate to separate the Hamiltonian in the following way:
Ht-J = Hλ + Hz + Hint, where

Hλ = λ
∑

i

∑
pq

(
3

4
〈p|nd

i |q〉 + 〈p| �Si · �si |q〉
)

X
pq

i ,

Hz = J̃
∑
ij

∑
pq

〈p|Sz
i |q〉〈m|Sz

j |n〉Xpq

i Xmn
j ,

TABLE I. The basis states.

|1〉 |2〉 |3〉 |4〉 |5〉 |6〉
|↑ ↑〉 |↑0〉 |↑ ↓〉 |↓ ↑〉 |↓0〉 |↓ ↓〉
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TABLE II. The new basis states.

|1〉 |2〉 |3〉 |4〉 |5〉 |6〉
|↑ ↑〉 |↑0〉 |↑↓〉−|↓↑〉√

2
|↑↓〉+|↓↑〉√

2
|↓0〉 |↓ ↓〉

Hint =
∑
ijσ

∑
pqmn

2tij 〈p|d†
iσ |q〉〈m|djσ |n〉Xpq

i Xmn
j

+ J̃

2

∑
ij

∑
pqmn

〈p|S+
i |q〉〈m|S−

j |n〉Xpq

i Xmn
j + H.c. (8)

In this basis Hλ takes on a nondiagonal form:

Hλ = λ
∑

i

[
X11

i + X66
i + 1

2

(
X33

i + X34
i + X43

i + X44
i

)]
.

(9)

This form is inconvenient for numerical purposes, however.
In the large λ limit, the probability of the updating procedure
involving λ becomes much higher than the others. This leads
to a crucial slowdown of the calculations. To get around
this problem, it is more convenient to go over to the basis
constructed out of the eigenstates of Hλ as given in Table II.

In this case, the Hλ becomes diagonal in the (p,q)
representation:

Hλ = λ
∑

i

(
X11

i + X66
i + X44

i

)
, (10)

where the unphysical spin triplet states |p〉, p = 1,4,6, enter
with eigenvalue λ. The physical vectors |p〉, p = 2,3,5, that
describe the vacancies and lattice spins correspond to zero
eigenvalues of Hλ. Due to the fact that the statistical weights
of configurations with states |p〉, p = 1,4,6, are proportional
to e−βλ, we can exclude these states from calculation, provided
λ is large enough. From now on all the states denoted by |p〉
correspond to those from Table II.

III. METHOD

In our calculations, we use the continuous time worldline
(CTWL) QMC method. Following an appropriate route [6] the
algorithm is modified by adding “worms” in the representation
of the X operators, which corresponds to the addition of a
fictitious term to the Hamiltonian:

Hν =
∑
ipq

νpq

(
Xmn

i + Xnm
i

)
, (11)

where νpq is a set of fictitious amplitudes satisfying νpp = 0
and νpq = νqp which are chosen to improve the convergence.
These terms are included in the nondiagonal part correspond-
ing to the existence of a worm in the configuration. Since
all measurements occur in the absence of the worms, they
do not contribute to the final result. This update allows us
to make calculations more effectively by adding the fictitious
configurations to the true ones. In particular, one is able to run
calculations in the grand canonical ensemble keeping at the
same time the total number of particles under control.

The QMC method is based on the representation of the
partition function in the interaction picture [7]:

e−βHt-J = e−βH0Tτ

[
exp

(
−

∫ β

0
H1(τ )dτ

)]
, (12)

where Tτ denotes the τ -ordering operator, and

Ht-J = H0 + H1,

H0 = Hλ + H diag
z ,

H1 = Hint + Hν + H nondiag
z . (13)

The partition function expansion takes the form

Z = Sp

[
e−βH0

(
1 −

∫ β

0
H1(τ )dτ

+
∫ β

0

∫ τ1

0
H1(τ1)H1(τ2)dτ1dτ2

)
− . . .

]
, (14)

where

H1(τ ) := e−τH0H1e
τH0 .

The representation of Eqs. (12)–(14) allows us to consider the
cases of large and small λ on equal footing. In either case, H0

represents the leading contribution to the partition function. In
particular, a quasi-long-range order is restored at small λ, in
which case the SzSz interaction term in H0 becomes of major
importance.

In the CTWL method, the expansion of the partition
function comes in the form of the worldline states in imaginary
time. It is convenient to rewrite the Hamiltonian in a form
suitable for this method:

Ht-J =
∑
i,p

EpX
pp

i +
∑
ij,pq

V
pq

ij X
pp

i X
qq

j

+
∑

ij,pqrs

T
pqrs

ij X
pq

i Xrs
j +

∑
i,pq

νpq

(
X

pq

i + X
qp

i

)
, (15)

where Ep are the eigenvalues of the one-site part of the
Hamiltonian (10), whereas V

pq

ij are the energies of the diagonal
interaction between the states |p〉 and |q〉 on sites i and j ,
respectively. In this form, for each segment of the horizontal
line that lies between τ1 and τ2 in state |p〉, there corresponds
the multiplier e−β(Ep+V )dτ , where V is the average energy of
the diagonal interaction over all neighboring segments and
dτ = τ2 − τ1 is the imaginary time interval of the segment.

To each kink (a segment of the vertical line in Fig. 1)
between sites i and j there corresponds the multiplier
T

pqmn

ij X
pq

i Xmn
j , where T

pqmn

ij are the energies of the nondi-
agonal interaction that corresponds to the state change. Also,
with respect to the worm algorithm, to each discontinuity there
corresponds the multiplier νpqX

pq

i that represents the worm
boundary, where νpq is the above-introduced fictitious energy.

Figure 1 shows the fragments of a typical configuration
occurring during the simulation. The update of the config-
urations occurs according to the Metropolis algorithm [8]
involving a finite number of updating procedures. Those
updating procedures are described in detail elsewhere [6].
However, to increase the convergence as well as to ensure
the ergodicity of the algorithm, this must be also accompanied
by certain additional prescriptions [9].
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FIG. 1. The fragments of typical configurations. Panels show
configurations with (a) and without (b) a worm. In panel (a), the
red color indicates the worldline of the worm; in panel (b), the red
color indicates the loop formed by the worm closing.

The observables are measured in the following way:

〈A〉 :=
∑

MC〈p|Ae−βH |p〉∑
MC 1

, (16)

where A is some operator. Unfortunately in the fermion system
we are faced with the sign problem. This problem is connected
with the appearance of the negative statistical weights during
the calculation:

〈A〉 =
∑

MC〈p|Ae−βH |p〉sign(W )∑
MC sign(W )

. (17)

As a result, the errors increase exponentially with decreasing
temperature, which rules out an acceptable accuracy at low
temperatures. Finally, the adopted algorithm goes through the
following steps.

(i) An initial configuration is generated. In fact, the
initial configuration selection has no impact on the final
result. All possible impacts of this choice are eliminated by
thermalization.

(ii) Possible updating procedures are chosen randomly.
The probabilities of the procedures are not constants but rather
depend on the worms and kinks presented in the current
configuration. It should also be noted that every procedure
has its own inverse. The probabilities of such procedures must
be chosen in accordance with the direct ones.

(iii) The site i and times τ1 and τ2 are chosen according
to the procedure. The site i is chosen directly in the case
of the worm-dependent procedure and randomly otherwise.
The moments of time are calculated in accordance with the
probability density calculated for each case.

(iv) The probability W of accepting a new configuration
is calculated. If W > R, where R is a random number from
the interval [0,1], the new configuration is accepted. If the
updating procedure is interrupted due to the impossibility
of the updates, it corresponds to the case W = 0. However,

such interruptions are part of the statistics and they occur in
accordance with the detailed balance principle.

(v) In the case where the system has no worms regardless
of the accepting of the new configuration, the statistics is
supplemented by the new data and the procedure goes back to
step (ii), otherwise the procedure goes to step (ii) without the
supplementing of data.

Furthermore, by the fact that the CPU time depends linearly
on the lattice size and the average sign remains large enough,
which helps to keep errors in acceptable limits, the simulation
can be made at a relatively large lattice size. All numerical
results were obtained for a 20 × 20 lattice cluster with the
periodic boundary condition. However, this size is not ideal to
ensure that the finite-size effects have no significant effects on
the result. To make these effects totally negligible the size of
the lattice cluster should be extended to at least 30 × 30.

IV. RESULTS

To estimate the dependence of the AF order from the
doping level we compute the spin-spin correlation function
g(r) for the physical electron operators. This is calculated with

FIG. 2. Panels (a) and (b) show log g(r) for J = 0.2t (a) and J =
0.4t (b) with T = 0.1t . Solid (dashed) lines show results obtained for
t ′ = t ′′ = 0(t ′ = −0.27t, t ′′ = 0.2t), respectively.
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∑
i S

z
i = ∑

i s
z
i = 0 and a fixed number of dopons, δ:

g(r) = 4�−1(r)
∑
ij

∑
pq

〈p|Sz
i + sz

i |p〉〈q|Sz
j + sz

j |q〉

× 〈
X

pp

i X
qq

j

〉
eiK·(Ri−Rj )δ̄(r − |Ri − Rj |), (18)

where K = (π,π ), Ri is the radius-vector of the site i,�(r) =∑
ij δ̄(r − |Ri − Rj |), and

δ̄(x) =
{

1 if |x| � 0.5a,
0 otherwise, (19)

with a being the lattice constant and 〈· · · 〉 means an average
over the spin configurations generated in the QMC run. In all
the figures showing g(r) we use the logarithmic scale for the
vertical axis. Therefore, for the LRO, the QLRO, and the SRO,
the g(r) should be represented asymptotically by a constant, a
logarithmic function, and a straight line, respectively.

Figure 2 displays the electron spin-spin correlators for the
different doping levels. The critical hole concentration varies
from around δc = 0.05 at J = 0.2t to δc = 0.08 at J = 0.4t .
Due to the finite lattice size as well as to finite temperature
effects a true long-range AF order manifests itself as a QLRO
even at a very small doping. The suppression of the true
LRO corresponds to the destruction of the QLRO due to the

FIG. 3. Panels (a) and (b) show log g(r) for J = 0.2t and
δ = 0.05 (a) and J = 0.4t and δ = 0.08 (b) with T = 0.1t and
t ′ = −0.27t, t ′′ = 0.2t .

emergence of the short-range AF correlations. The obtained
values of the critical hole concentrations do not necessarily
coincide with the true ones to be computed at zero temperature
in the thermodynamic limit. However their magnitudes are
reasonably small.

In Fig. 3 we report the spin-spin correlators, log g(r), for
J = 0.2t and J = 0.4t at δc = 0.05 and δc = 0.08 for different
values of λ, respectively. It is clearly seen that the QLRO
is restored as λ decreases. The local NDO constraint plays
the dominating role in the destruction of the long-range AF
state. At λ > 10t , the spin-spin correlation functions become
almost identical to each other. This indicates that finite but large
enough values of λ already provide a reliable description of the
existing strong correlations. In this limit, the high- and low-
energy itinerant fermions cannot be separated out and this is an-
other manifestation of the duality of the lattice electron nature.

It should be noticed that the physical meanings of the Kondo
coupling λ within the conventional phenomenological spin-
fermion model [10] and in our Eq. (7) are completely different
from each other. In the former case, it represents a spin-density-
wave gap that can evolve from small to large values. In our
theory, the only meaningful value of the Kondo coupling is
that of λ � t to take proper care of the NDO constraint.

V. CONCLUSION

To conclude, we investigate the spin-spin correlation func-
tions in the underdoped t-J model numerically by employing
quantum Monte Carlo simulations on finite clusters. Our main
conclusion is that it is the local NDO constraint that is behind
the rapid suppression of the AF QLRO at a surprisingly small
doping level. In contrast, any mean-field global treatment of the
local NDO results in unphysically large values of the critical
hole concentration.

The itinerant-localized duality of the lattice electrons offers
the following explanation of the rapid destruction of the
magnetic order by strong correlations. The localized individual
lattice spins become less correlated with each other due to the
competition between the AF correlations (the characteristic
energy scale ∼J ) and the Kondo screening (∼λ) of the local
spin moments by the conduction dopons. The screening breaks
the AF bonds. In the case where a double occupancy is allowed,
this breaking is not very efficient, since it is then induced by a
small (in this regime) spin-dopon interaction λ.

As λ increases, the screening becomes more effective. Since
1/J � 1/t , the hole dynamics is much faster than the spin one.
The broken AF bonds recover themselves at a much slower rate
than the breaking occurs. As a result, even a small amount of
fast-moving dopons (holes) turns out to be, at a large enough
λ, sufficient to completely destroy the AF LRO.

A further possible application of the present approach might
be to theoretically explore an experimentally observed insta-
bility towards a formation of a charge order in the pseudogap
phase at δ ≈ 0.1 There is strong evidence that the observed
charge order is due to strong electron correlations [11]. The
spin-dopon representation of the t-J model provides a natural
framework to address this problem. By varying λ, we would be
able to vary the strength of the correlations to explicitly explore
the impact of the NDO on the charge order formation. This is
already in progress and results will be presented elsewhere.
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APPENDIX

For the 1D t-J model, the two leading terms of the ground-
state energy expansion in powers of J/t � 1 are known
explicitly. In this appendix, we show that the spin-dopon
model (6) produces exactly the same result.

As the sign of t is irrelevant, we can fix the Hamiltonian (6)
in one dimension to take the form

Ht-J = HJ=0 + Hint, (A1)

where

HJ=0 = : H0 = −2t
∑
ijσ

d
†
iσ djσ

+ 3λ

4

∑
iσ

d
†
iσ diσ + λ

∑
i

�Si · �si, t > 0, (A2)

and

Hint = J
∑
ij

�Si
�Sj

(
1 − nd

i

)(
1 − nd

j

)
. (A3)

The limit λ → ∞ reduces the local Hilbert space to that
comprising a lattice spin-up state |↑〉i = |↑0〉i , a spin-down
state |↑〉i = |↑0〉i , and a vacancy state |0〉i = |↑↓〉i−|↓↑〉i√

2
. We

define the basis of the one-vacancy states as

|i,{σ }〉 = |σ1σ2 . . . 0i . . . σN 〉,

where σk = ↑↓ and {σ } is a multi-index describing an arbitrary
set of the lattice spins. The vacancy state |0〉i is a total spin
singlet defined above.

The ground state at J = 0 is degenerate with respect to
spin. We can therefore choose a FM spin configuration. An
arbitrary one-hole state is then given by

|
〉 =
∑

i

φi |i,{↑}〉. (A4)

The energy of such a state is given by

∑
ij

〈
|HJ=0|
〉 = −
∑
ij

tij φ̄jφi . (A5)

The corresponding Schrödinger equation reads

∑
j

(tij − Eδij )φj = 0. (A6)

The lowest-energy solution for the nearest-neighbor (nn)
interaction reads

φj = 1/
√

Ns, E0 = −2t,

with Ns being the total number of the lattice sites.
To consider a state with N holes one should generalize

Eq. (A4) to include N fermionic (hole) states:

|
N 〉 =
∑

i1,i2,...,iN

φi1,i2,...,iN |i1,i2, . . . ,iN {↑}〉,

where the function φi1,i2,...,iN is antisymmetric with respect
to the index permutation. A corresponding Schrödinger
N -particle equation can be then written out explicitly. Al-
ternatively, one can quantize Eq. (A6) with exactly the same
effect. Namely, the c-valued amplitudes φi are replaced by the
fermion operators

φi → φ̂i =: fi, [f +
i ,fj ]+ = δij .

The N -hole generalization of the Hamiltonian H0 then reads

H0 = −
∑
ij

tij f
+
i fj ,

∑
i

f
†
i fi = N. (A7)

This Hamiltonian describes spinless fermions hopping in a
1D lattice. In the case of the nn interaction, the ground-state
energy becomes

E0 = −2t

π
sin(πδ), δ = N

Ns

= 1

Ns

〈∑
i

f +
i fi

〉
H0

.

The spin degeneracy is lifted by the effective spin-spin
interaction:

H
gr

t−J = −2t

π
sin(πδ) + Jeff

∑
ij

�Si · �Sj + O(J 2), J → 0.

(A8)
We have

Jeff = J 〈(1 − f
†
i fi)(1 − f

†
j fj )〉H0

= J

(
(1 − δ)2 − sin2 π (1 − δ)

π2

)
.

In terms of the electron density ne = 1 − δ, Eq. (A8) becomes

H
gr

t−J = −2t

π
sin(πne)

+ J

(
n2

e − sin2 πne

π2

) ∑
ij

�Si · �Sj + O(J 2), (A9)

which agrees with the Bethe ansatz result obtained for the
canonical t-J model given by Eq. (1) [12].
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