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We investigate the electronic structure of the two-dimensional t–J model in a transverse external static mag-
netic field with canted long-range magnetic order using cluster perturbation theory. The distribution of the
spectral weight in the whole range of fields from zero to ferromagnetic saturation is explored. We demonstrate
the possibility of a sharp change in a distribution of spectral weight at the Fermi level associated with the mag-
netic correlations when varying magnetic field.
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INTRODUCTION
The electronic structure and Fermi surface (FS) of

two-dimensional (2D) strongly correlated electron
systems are sensitive to various reconstructions
induced by symmetry breaking, complicating thus
even more the puzzle of electronic properties of such
compounds. Considerable attention is drawn to this
problem by the investigations of quantum oscillations
in high-temperature superconductors (HTSC).

Quantum oscillations in HTSC were first observed
in the hole-underdoped yttrium compounds [1–4],
then in the hole-overdoped Tl2Ba2CuO6 + δ [5–7],
electron-underdoped Nd2 – xCexCuO4 [8], and hole-
underdoped HgBa2CuO4 + δ [9]. The summary data of
these experiments show that oscillation frequencies in
the underdoped and overdoped compounds differ by
an order of magnitude, this way revealing the drastic
transformation of the FS with doping. A similar result
was recently obtained within the strong coupling
approach to the Hubbard model [10]. In general, a
comparable conclusion follows from the experiments
on angle-resolved photoemission spectroscopy
(ARPES) [11]. However, as for hole-underdoped
cuprates, on the one hand, there are Fermi arcs of
ARPES [12, 13] which are consistent with the calcula-
tions within the Hubbard and t–J models resulting in
a hole pocket in the nodal direction [14–19]. On the
other hand, it was shown that Hall and Seebeck coef-

ficients become negative in high magnetic fields [2,
20], indicating at the existence of electron pocket(s).
Recent data [21] on quantum oscillations in
YBa2Cu3Oy for hole doping p = 0.11 agrees with the FS
consisting of a nodal electron pocket (which was first
proposed in [22]) accompanied by two small hole
pockets as it was obtained from the calculations [23]
within the charge-density wave (CDW) phase. Long-
range CDW was in turn reported to emerge in a mag-
netic field [24] in La2 – xBaxCuO4 and YBa2Cu3Oy in
the vicinity of p = 1/8.

Therefore, it is interesting to study the magnetic
field-driven evolution of the FS of 2D strongly cor-
related systems at fixed doping. Although the energy of
reasonably strong magnetic fields is rather small com-
pared to the scale of the electronic structure, it may be
important that strictly speaking, the experiments on
quantum oscillations are accompanied by the change
of symmetry with a net magnetic moment due to an
applied magnetic field, while in the absence of exter-
nal field there is short-range antiferromagnetic
(AFM) order without total magnetization or long-
range AFM. Moreover, the charge ordering in the
vicinity of hole concentration p = 1/8 complicated
the FS even more. Due to the intrinsic interrelation of
electron hopping and underlying magnetic or charge
order in strongly correlated materials the field-
induced change of magnetic symmetry may result in a
strong effect on the electronic structure and Fermi
surface.1 The article is published in the original.
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In this paper, inspired by the experiments on quan-
tum oscillations, we study the evolution of the FS in
the whole range of magnetic fields from zero to satura-
tion field, at which ferromagnetic alignment of spins is
achieved, although for undoped cuprates such fields
h ~ J (where J is the interatomic exchange interaction
between neighboring spins, J ~ 0.1 eV) are far out of
reach of the present experimental abilities. The situa-
tion in hole-doped cuprates becomes extremely com-
plex at doping levels p ≳ 0.05 due to the presence of
incommensurate magnetic and charge-density wave
orders [25]. We do not account for such density wave
phases and investigate only the case of lower dopings
relating to long ranged AFM order or short-range
order with significant correlation length, both relevant
for hole-doped cuprates [26]. Particularly, we examine
whether a constant transverse magnetic field may
cause a noticeable effect on the FS of hole-doped
cuprate superconductors in experimentally achievable
fields by means of the underlying magnetic order,
focusing on the AFM underdoped case at zero tem-
perature in the absence of the field. We apply a slightly
modified version of the cluster perturbation theory
(CPT) [27] to take into account long-range canted
magnetic order and short-range nearest neighbor cor-
relations simultaneously and study the 2D t–J model
[28, 29]. We obtain a radical field-induced evolution
of the FS in the whole range of fields from zero to sat-
uration field (8SJ in the Heisenberg model [30], where
S is the value of on-site spin).

BRIEF OVERVIEW OF THE METHOD

Let us consider the t–J model on a 2D square lat-
tice in an applied constant magnetic field omitting the
Peierls phase [31], since we are not interested in the
effect of quantum oscillations itself here. The Hamil-
tonian reads

 (1)

where ci,σ and  are the annihilation and creation
operators, respectively (obeying quasi Fermi statistics
[32] due to the doublon prohibition by strong electron
correlations) of a particle (electron or hole with
respect to the chosen representation) with spin σ on
the site i; ni =  is the particle number opera-
tor; ti,j is the hopping integral; J is the nearest-neigh-
bor exchange integral related with the on-site Cou-

lomb repulsion in the Hubbard model as J = ; Si is

the spin operator; and h is the energy of a magnetic
field.
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Cluster perturbation theory is a hybrid technique,
which provides an effective way to obtain the spectral
function within the models for strongly correlated sys-
tems. Within CPT, the first step is to cover the lattice
by translations of a cluster. Thus, the full Hamiltonian
is represented as H = Hc + Hcc, where Hc and Hcc are
the intracluster and intercluster parts. The intracluster
interaction Hc is treated by means of exact diagonal-
ization to obtain the cluster Green’s function. Inter-
cluster interactions are considered then within the
Hubbard-I approximation to obtain the site-depen-
dent lattice Green’s function. Finally, one artificially
restores the translational invariance of the electron
Green’s function by transiting to the original Brillouin
zone. In such formulation, CPT was proposed for the
Hubbard model [27, 33]. In comparison to Quantum
Monte Carlo [34] Hubbard-I approximation is quali-
tatively expected to work in the regime of strong elec-
tron correlations t ≪ U. Since the t–J model is a low-
energy effective model for the Hubbard model with
parameter J ~ t2/U, the approximation should be
applicable for the t–J model at J ≪ t.

Here, we apply a modification of the theory called
norm-conserving CPT (NC-CPT), which allows us to
keep control over the total quasiparticle weight during
the calculation [35, 19], covering the lattice with
translations of a 2 × 2 square cluster. We also intro-
duce the mean fields to consider the canted spin struc-
ture, in the same manner as it was done in the papers
[36, 37] for the Heisenberg model. In the presence of
a constant transverse magnetic field applied along the
z-axis there are two components of magnetization,
namely, an in-plane staggered part σx and a uniform
part along the field σz. The inclusion of mean fields is
consistent with the general logic of generalizing CPT
in the case of long-ranged order and is needed to break
the symmetry of local part Hc. Particularly, such pro-
cedure was shown to produce a correct spin-wave
spectrum for the 2D Heisenberg antiferromagnet [36].

Finally, let us introduce the parameters of the t–J
model used to obtain the results presented below. We
will use the values of hopping integrals t, t' and t",
between the sites of the first, the second, and the third
coordinate spheres similar to the obtained by fitting
the tight binding dispersion curves to the Fermi sur-
faces of ARPES on LSCO compound: t ~ 0.25 eV, t' ~
–0.15t, and t'' ~ –0.5t' [12]. We measure the energy in
units of t implying t = 0.25 eV. We fix J = 0.333t (U =
12t in the Hubbard model), so it corresponds to the
typical values J ~ 0.1 eV for hole-doped cuprates [38].
This value does not seem to be very small compared to
the hopping integral. Nevertheless, the comparison of
the spectral weight distribution in the Hubbard and
t‒J models points at qualitative applicability of the t‒J
model taken with this value of the exchange parameter
[39]. Another important parameter is hole doping p. It
should be pointed out that in the t–J model at fixed J
and zero field an increase in p reduces the Neel tem-
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perature, so it goes to zero at some value pc [40]. For
the relevant parameters pc is similar to the values
observed in cuprates, where pc ~ 0.03 [38]. Performing
calculations at zero temperature, we simply fix a small
value of doping p < pc, assuming long-range order.

RESULTS IN NEAREST-NEIGHBOR 
APPROXIMATION

First, we discuss the nearest-neighbor case to
reveal the main features. In what follows, the amount
of doping is p = 0.02. To obtain the figures presented
below, the delta-function was approximated by a
Lorentzian with a half-width δ for presenting our
results in an ARPES-like manner with finite resolu-
tion effects. This parameter is chosen to reproduce the
experimental ARPES linewidth.

Figure 1 demonstrates the spectral weight (SW)
distribution in the low Hubbard band for different val-
ues of a magnetic field; the expectation values of spin
projections with respect to the cluster Hamiltonian are
also shown. The corresponding density of states
(DOS) is presented in Fig. 2. It is illustrative to con-
sider the modification of the electronic structure start-
ing from the ferromagnetic case. At h = 4J, for the

spin-up component we observe the dispersion law
specific to a spatially homogeneous phase. Spectral
weight is uniform along the dispersion curve. The
bandwidth is 8t; there is one Van-Hove singularity in
the DOS. For spin-down projection there is a narrow
band with low SW and without SW at the Fermi level,
except the effect of artificial broadening. Decreasing a
magnetic field down to h = 3J, for example, we
observe how the spin-up dispersion is modified by the
admixture of different spin states, which causes the
redistribution of spectral weight with several dips in
the high-energy DOS and decreases the bandwidth.
The shape of a spin-down dispersion curve is pretty
similar to the spin-up one, but inverted with respect to
the ω-axis. It looks like a shadow band in the two-sub-
lattice system. We should emphasize the decreasing
SW scale for spin-down component with increasing
magnetic field. Decreasing a magnetic field further
down to h = 0.5J when magnetic moments form a
slightly tilted AFM structure, at low energy for spin-up
component we can recognize the picture similar to a
dispersion strongly affected by spin f luctuations as was
obtained within different methods [18, 41–46]. The
whole band can be considered as split into two major
subbands in agreement with quantum Monte Carlo
calculations [34]. The distributions of SW and DOS

Fig. 1. (Color online) Electronic spectral function along the symmetric directions of the Brillouin zone in the low Hubbard band
within the t–J model for different values of a magnetic field h for the (a) spin-up and (b) spin-down components. The spectral
lines are approximated by the Lorentzian function with broadening δ = 0.1t. Energy is measured in units of hopping integral t.
Color-bars represent the correspondence of the colors to the values of the spectral function. Here and below, the dashed line
denotes the position of the Fermi level and we fix the value of the exchange integral J = 0.333.
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for different z-projections of spin at this value of field
are similar.

Figure 3 shows the field-induced reconstruction of
the FS with spectral line broadening and SW averaging
over the energy window similar to ARPES. We see no
qualitative changes when varying a magnetic field
from zero to h ≈ 0.56J. Between h = 0.56J and h =
0.57J, as is evident from Fig. 3, the FS undergoes a
sharp modification for both spin projections due to a
change of the ground state of a cluster in the Hilbert
subspace with 3 particles with a jump in magnetiza-
tion. We emphasize that such small variations of a
magnetic field lead to negligible changes in the low-
energy electronic structure, except this case. Increas-
ing a magnetic field further up to h ~ 3J, we see a grad-
ual formation of a well-defined hole pocket around (π,
π) with a uniform SW distribution along its arc for
spin-up component. For spin-down at the same fields
one can see a gradual redistribution of SW at the Fermi
level towards the similar hole pocket around (0, 0), but
with small SW. Fields from h ≈ 3J to 4J give no quali-
tative changes for spin-up component at the Fermi
level. Spin-down SW at the Fermi level disappears
near saturation.

RESULTS IN CASE OF NON-NEAREST 
HOPPING

Let us discuss the case of more realistic model
parameters for cuprates. In our calculations with the

2 × 2 cluster, it is possible to account for second-
neighbor hopping processes by means of exact diago-
nalization. Third neighbors are also taken into
account, but in terms of perturbation theory. In the
previous section, we observed the most crucial change
of the low-energy structure happening when the sub-
space of clusters with three particles changed its
ground state at the critical field hc. It appears that in
case of hole doping an increase in second-neighbor
hopping integral t' leads to a decrease in hc so that at
t' ≈ –0.16t critical field goes to zero. Thus, it is possible
to observe significant field-induced modification of
the FS at fields corresponding to experimentally
achievable ones, as presented, for example, in Fig. 4,
where more realistic hopping parameters are used. For
h = 0.02J there is a pseudogap-like picture with a dip
of SW in the antinodal direction for both spin-up and
spin-down components. The picture is almost the
same as in zero field. When a magnetic field is
increased by 0.01J, the angular SW distribution for
spin-up component becomes almost uniform at h =
0.03J, while spin-down one transforms to a more pro-
nounced pseudogap form. Here, we observe the sharp
changes in dispersion as the consequence of an exact
account for short-range correlations within a cluster. It

Fig. 2. (Color online) Density of states for the same
parameters as in Fig. 1. Blue solid and red dash-dotted
lines hold for spin-up and spin-down components, respec-
tively.

Fig. 3. (Color online) Electronic spectral function at the
Fermi level in the first quadrant of the Brillouin zone for
different values of a magnetic field h for the (a) spin-up and
(b) spin-down components. The Lorentzian broadening
δ = 0.04t is used. The spectral weight is integrated over the
energy window [–1.5δ, 1.5δ].
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might be possible to detect the signatures of such sharp
changes in transport measurements on lightly hole-
doped cuprates.

CONCLUSIONS

To conclude, we presented our calculations con-
cerning the field-induced evolution of the electronic
structure within the t–J model. We have found the
nonmonotonic changes of the electronic structure
(band dispersion, density of states, and Fermi surface)
under increasing magnetic field. From a general point
of view, it results from the intrinsic for strongly cor-
related electrons relation between the electronic and
magnetic structures. When spins of nearest atoms are
parallel, the interatomic hopping occurs without spin
flip similar to free electrons. When nearest spins are
antiparallel, the electron hopping requires the spin f lip
that decreases the hopping probability, decreases the
bandwidth, and in some cases may prohibit the inter-
atomic hopping. Nevertheless, before this work it was
not shown in details how the electronic and magnetic
structure may change in the external magnetic field.
We have obtained two main conclusions: (i) with
increasing magnetic field the sharp change of magne-
tization and electronic structure occurs, (ii) the criti-
cal value of magnetic field strongly depends on the
fine details of the electronic structure. Thus, in a sim-
plified model with only nearest neighbors hopping the
critical filed is unrealistic, hc ~ 0.5J ~ 500 T. Neverthe-
less, in a realistic for cuprates case with non-nearest
neighbors hoppings, the critical value appears to be
much smaller, here the case when hc ~ 0.03J ~ 30 T
was shown for example. As the quantum oscillations
have been measured in cuprates in the external fields
up to 70 T, the electronic structure in such large fields
and in the absence of the field (when ARPES is mea-
sured) may be different and separated by sharp
changes that we have found. It is desired to confirm
our results in calculations with larger clusters, so that

more short-range correlations would be treated
exactly.

This work was supported by the Russian Science
Foundation (project no. 14-12-00061).
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