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It has been shown that, because of the two-orbital character of the subsystem of holes located at oxygen sites
and the spatial separation of this subsystem from that of spins at copper ions, the superconducting phase in
high-Tc superconductors is stable with respect to the strong Coulomb repulsion of holes located at nearest-
neighbor oxygen sites if the order parameter has the  symmetry. This effect is due to the symmetry char-
acteristics of the Coulomb potential, owing to which the equation determining the Cooper pairing in the

 channel does not include this potential.
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1. INTRODUCTION
It is well known that the Cooper pairing of fermi-

ons caused by the kinematic [1], exchange [2, 3], and
spin-fluctuation mechanisms considered in the Hub-
bard [4–6], t–J [2, 3, 7], or t–J* [8–10] models is sup-
pressed by the intersite Coulomb repulsion V of charge
carriers located at the neighboring sites. This effect is
most pronounced in the d channel [11] and the Coo-
per instability disappears completely at V ~ 1–2 eV
[12]. In the case of the s-wave superconducting phase,
the Cooper pairing still exists at such values of V [4–6]
owing to the stronger kinematic mechanism [1]. There
appears a discrepancy between the theory and experi-
ment: in theory, the Coulomb repulsion suppresses the
d-wave superconducting phase actually observed in
experiment but preserves the s-wave phase, which is
not observed in experiments. This limits the potential-
ities of the mentioned theories in the description of
high-Tc superconductors.

In this work, we demonstrate for the first time that
taking into account the actual structure of the CuO2
plane described by the Emery model [13, 14] elimi-
nates the aforementioned discrepancy. In our theory,
the Fourier transform of the Coulomb repulsion
potential for oxygen holes located at the neighboring
sites falls out from the integral equation for the super-
conducting d-wave phase owing to the symmetry

characteristic of this potential. As a result, the 
phase remains stable in the presence of the strong
repulsion of neighboring oxygen holes. At the same
time, the self-consistency equation for the supercon-
ducting s-wave phase includes the Coulomb contribu-
tion and the s-wave phase turns out to be suppressed.
Therefore, we not only explain the “survivability” of
the d-wave phase but also clarify why the  pairing
rather than s-wave pairing appears in cuprate high-Tc
superconductors in spite of the strong coupling limit
corresponding to the kinematic pairing mechanism.

2. SPIN-FERMION MODEL

For strong electron correlations, when the on-site
Coulomb repulsion energy Ud for holes at one copper
ion is large Ud > Δpd ≫ tpd, the Emery model is reduced
to the spin-fermion model [15, 16]
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2 2−x yd

2 2x yd −

2 2x yd −

2 2x yd −

2 2x yd −

0
ˆ ˆ ˆ ˆ ˆH H J V I= + + +

† †
0 0 0

† †

ˆ ( ) ( )

( ) ,

x k k y k k

k

k k k k k

H k a a k b b

t a b b a

α α α α
α

α α α α

⎡= ξ + ξ⎣

⎤+ + ⎦

∑

CONDENSED
MATTER



386

JETP LETTERS  Vol. 103  No. 6  2016

VAL’KOV et al.

,

,

describing the subsystem of oxygen holes interacting
with the spins located at copper ions. Here,

,

,

(2)

,

.

The Hamiltonian  describes the subsystem of oxy-
gen holes in the momentum representation. Operators

 (akα) create (annihilate) holes with spin α = ±1/2

in the oxygen subsystem with px orbitals and  (bkα)
are similar operators in the oxygen subsystem with py
orbitals. Here, εp denotes the unrenormalized on-site
energy of holes, μ is the chemical potential of the sys-
tem, and the holes hopping between oxygens with the
rate determined by the parameter t. The exchange
coupling between the oxygen subsystem and the sub-
system of localized spins is described by the operator

, Sf is the vector operator of a spin localized at site f,
and σ = (σx, σy, σz) is the vector of the Pauli matrices.
The Coulomb repulsion of holes located at the near-
est-neighbor oxygen sites is described by the operator

,  =  is the operator describing
the number of holes at the oxygen ion located at site
f + x(y)/2, x = (1, 0) and y = (0, 1) are the basis vectors
expressed in units of the lattice constant, and the vec-
tor Δ connects the nearest oxygen ions. The last term
in the Hamiltonian describes the superexchange inter-
action between the nearest localized spins, the magni-
tude of which is determined by the matrix element I.

Further on, we use the well-established values of
the involved parameters [12, 17, 18]: tpd = 1.3 eV, Δpd =
3.6 eV, Ud = 10.5 eV, Up = 4 eV, Vpd = 1.2 eV, and V =
1–2 eV. For these parameters, the exchange interac-
tion is I = 0.136 eV (1570 K), which is in good agree-

( ) †ˆ ( )if q k
k f q

fk

JJ e u u
N

−
α αβ β

α
αβ

= ∑ S σ

2 2

ˆ ˆˆ ˆ ,
2x x f mf f

f fm

IV V n n I
+ + +Δ

Δ

= =∑ ∑S S

0 ( ) ( )( ) (1 cos )x y p x yk kξ = ε − μ + τ +

(2 4 )cos cos
2 2

yx
k

kkt t= τ −

2

cos cos ,
2 2

1 ,
2

yx
k k k

pd pd

pd d pd pd

kku a b

t
U V

β β β= +

⎛ ⎞Δ
τ = −⎜ ⎟Δ − Δ −⎝ ⎠

24
1

( ) 2
pd pd p

pd p d pd pd

t U
J

U U V
⎛ ⎞Δ +

= +⎜ ⎟Δ + − Δ −⎝ ⎠

4

2

4 1 2
2( )

pd

d pd ppd pd

t
I

U UV

⎛ ⎞
= +⎜ ⎟Δ +Δ + ⎝ ⎠

0Ĥ
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Ĵ

V̂ ( )/2ˆ f x yn + ( )/2,ˆ f x yn + σσ∑

ment with the data on high-Tc cuprate superconduc-
tors [18]. For the hopping integral, we use the value
t = 0.1 eV.

It is important that the exchange coupling constant
between the localized and itinerant spins calculated
according to Eq. (2) is large, namely, J = 2.4 eV ≫ τ ≈
0.1 eV. Therefore, in the description of the holes at
oxygen sites, it is necessary to take into account their
strong coupling with the subsystem of spins located at
copper ions. This problem is solved using the follow-
ing basis set of operators [19, 20]:

, (3)

where the third operator “entangles” the spin and fer-
mion subsystems.

3. EQUATIONS FOR THE NORMAL 
AND ANOMALOUS GREEN’S FUNCTIONS

For consideration of the conditions for the Cooper
instability, basis (3) is supplemented by the operators
(  = –α)

. (4)

The set of equations for the normal (Gij) and anoma-
lous (Fij) Green’s functions obtained by the method
described in [21, 22] can be represented in the form
(j = 1, 2, 3)
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Functions Gi2 and Gi3 are determined in a similar way

with the only difference that  is replaced by  and

, respectively. The anomalous Green’s functions
can be defined as
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For Fi2 and Fi3, we use the same type of notation
according to the second subscript. The functions
involved in (5) are determined by the expressions

 (6)

Here, np denotes the hole density per oxygen ion and
γ1k = (coskx + cosky)/2, γ2k = coskxcosky, and γ3k =
(cos2kx + cos2ky)/2 are invariants for the square lat-
tice. In the course of deriving (5), we assume that the
state of localized moments corresponds to the quan-
tum spin liquid. In this case,  =  =  = 0

and the correlation functions Cj =  satisfy the
relations

, (7)

where rj is the position of a copper ion within the jth
coordination sphere.

From (5), it follows that the spectrum of the Fermi
excitations in the normal phase is determined by the
solution of the dispersion equation

 (8)

and is characterized by three branches, ϵ1k, ϵ2k, and ϵ3k
[23]. The ϵ1k branch with the minimum at a point close
to (π/2, π/2) arises owing to the strong spin-fermion
coupling, which initiates both the exchange interac-
tion between a hole and the nearest-neighbor copper
ions and the spin-correlated hoppings. Both upper
bands, ϵ2k and ϵ3k, are separated by an appreciable gap
from the lower band ϵ1k; therefore, the dynamics of
holes when their density np is low is determined by the
characteristics of the lower band ϵ1k.

The introduced order parameters Δj,k are related to
the anomalous averages by the following expressions
(C1x(1y) = C1cos2(qx(y)/2)):
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Here,  =  and Ik = 4Iγ1k.

4. SET OF EQUATIONS
FOR THE SUPERCONDUCTING ORDER 

PARAMETERS
To find the conditions for appearance of the Coo-

per instability, we write the anomalous Green’s func-

tions in terms of the  parameters in the linear
approximation
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Then, we use the spectral theorem [24], find the
expressions for the anomalous averages, and eventu-
ally arrive at the closed set of uniform integral equa-
tions for the superconducting order parameters

(12)

where

Set of equations (12) is used to determine the criti-
cal temperature of the transition to the superconduct-
ing phase having a given type of symmetry.

5. TEMPERATURE OF THE TRANSITION
TO THE SUPERCONDUCTING  PHASE

For the superconducting phase with the 
symmetry of the order parameter, where

, (13)

it follows from Eqs. (12) that Δ1k = 0 and Δ2k = 0
because the kernels of the integral equations for 
and  include the function ϕk – q and the corre-
sponding integrals with respect to q vanish.

The form of the integral equation for the supercon-
ducting order parameter  suggests that the contri-
bution of the intersite Coulomb potential to the kernel
of the integral equation vanishes in the case of the d-
wave phase. This is due to the symmetry properties of
the integrands and manifests itself after the summa-
tion over the internal variable. As a result, we arrive at
the conclusion that the Coulomb repulsion of holes
located at the neighboring oxygen sites does not sup-
press the superconducting phase with the  type
of the symmetry of the order parameter.

Taking into account the aforementioned facts, we
find that the equation determining the dependence of
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the critical temperature on the charge carrier density
has the form

, (14)

where

 (15)

In the figure, we illustrate the results obtained by solv-
ing Eq. (14). The comparison of the presented plots
demonstrates that taking into account the intersite
Coulomb interaction leads only to slight and nonuni-
form, with respect to the charge carrier density, mod-
ification of the Tc(x) dependence. These insignificant
changes are related to the renormalization of the on-
site energy of holes due to the Coulomb repulsion at
the oxygen ions rather than to the renormalization of
the coupling constant.

6. CONCLUSIONS
The main result of our work concerns the answer to

the question formulated immediately after theoretical
works based on the exchange, kinematic, or spin-fluc-
tuation mechanisms of the Cooper pairing in high-Tc
superconductors. The point is that the calculations
performed in the framework of the effective model
with the simple unit cell (the Hubbard, t–J, and t–J*
models) indicated a strong suppression of supercon-
ductivity with the  symmetry of the order param-
eter if the Coulomb repulsion between fermions at
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neighboring sites was taken into account. In contrast,
the superconducting s-wave phase initiated by the
kinetic mechanism suggested by Zaitsev remains sta-
ble but with a significantly reduced critical tempera-
ture. There appears a discrepancy between theory and
experiment: the experiment exhibited the -wave
superconductivity, whereas it was suppressed in the
theory by the Coulomb repulsion of neighboring fer-
mions. At the same time, the theory predicted a rela-
tive stability of the superconducting s-wave phase with
respect to the intersite repulsion of fermions, but this
phase has not been observed in experiments.

For the first time, we have shown that the key issue
leading to the elimination of such discrepancy between
the theory and experiment is the inclusion of the actual
structure existing in the CuO2 plane. It turns out that
the Fourier transform of the Coulomb potential van-
ishes in the set of integral equations self-consistently
determining the order parameter of the superconduct-
ing phase with the  symmetry. Therefore, the
Coulomb repulsion of holes located at the neighboring
oxygen sites does not suppress the Cooper pairing in
the d channel. On the contrary, the Coulomb potential
is involved in the equation for the s-wave supercon-
ducting phase leading to its suppression. Note that the
difference in the contributions of the Coulomb interac-
tion to the conditions of the formation of supercon-
ducting phases with different types of symmetry of the
order parameters also manifests itself in the Kohn–
Luttinger theory of superconductivity [25].

In our case, the spatial separation plays the key
role; i.e., two types of oxygen orbitals spatially sepa-
rated from the spins at copper ions are taken into
account. Hence, it becomes evident that the theories
of high-Tc superconductivity based on the models
using the lattices with a simple unit cell instead of the
actual crystal structure are not applicable for the ade-
quate theoretical treatment of the specific features
characteristic of cuprate superconductors.

In conclusion, let us focus on the “symmetry cause”
responsible for the absence of such contribution to the d
channel of the Cooper pairing, which is related to the
Coulomb repulsion of holes located at the nearest-
neighbor oxygen ions. In conventional superconduc-
tors, the contribution of the Coulomb potential is
renormalized owing to the electron–phonon interac-
tion, whereas in high-Tc superconductors, the elimina-
tion of the Coulomb repulsion for the  phase
occurs as a result of the complexity of the unit cell and
the specific features of the Fourier transform of the
Coulomb potential. This suggests a concept important
for the actual implementation of the task-oriented
search for novel materials with the high-Tc supercon-
ducting phase. Such materials should have a quite com-
plicated unit cell. Moreover, their crystal lattice should
have the structure for which the Fourier transform of
the Coulomb repulsion between fermions located at the

nearest-neighbor sites has the symmetry leading to the
vanishing of the contribution to the integral equation
for the superconducting order parameters. Just this sit-
uation takes place in cuprate superconductors.
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