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Singular points of the autocorrelation function on the imaginary time axis that is averaged over the location
of spins in the magnetically dilute spin lattice with isotropic spin–spin interaction at a high temperature have
been studied. For the autocorrelation function in the approximation of the self-consistent f luctuating local
field, nonlinear integral equations have been proposed which reflect the separation of the inhomogeneous
spin systems into close spins and other spins. The coordinates of the nearest singular points have been deter-
mined in terms of the radius of convergence of the expansion in powers of time, the coefficients of which have
been calculated from recurrence equations. It has been shown that the coordinates of singular points and,
consequently, the wings of the autocorrelation function spectrum at strong magnetic dilution are determined
by the modulation of the local field by the nearest pairs of spins leading to its logarithmic concentration
dependence.
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The wings of spectra of correlation functions play
an important role in the description of slow processes
of the establishment of equilibrium in inhomogeneous
spin systems. The problems of ergodicity, thermaliza-
tion, spin transport, and many-body localization are
currently being solved [1–4]. The shape of a wing is
exponential if the spin autocorrelation function has
singular points on the imaginary time axis [5–7]. The
coordinate of the singular point, which determines
this exponent, was calculated for regular spin lattices
in [6–9]. In this work, as in [5–10], systems with iso-
tropic spin–spin interaction are considered, although
the same approach can also be applied to more com-
plicated systems with anisotropic interaction [9, 11–
13]. To the best of our knowledge, the variation of the
coordinate of the singular point of the autocorrelation
function at magnetic dilution has not yet been consid-
ered and is studied in this work. We note that the
authors of [10] replaced the inhomogeneous system by
the regular lattice of spins at the average distance.
However, the validity of such replacement is doubtful,
since the calculation of the central part of the spec-
trum of the autocorrelation function [1, 14–18]
showed the importance of allowance for the inhomo-
geneity of the spatial distribution of spins during the
determination of the spectrum shape.

We consider a paramagnet with the isotropic spin–
spin interaction

(1)

where  is the α component (α = x, y, z) of the vector
spin operator at the ith site, I = 1/2, and bij is the
spin‒spin coupling constant. In the local magnetic
field produced by the spins of the environment, the
time-dependent contribution is on the same order of
magnitude as the static contribution. Anderson and
Weiss [19] proposed to describe this f luctuating field
by a Gaussian random process in the presence of a
large number of neighbors of each spin. Blume and
Hubbard [5] proposed a simple equation for the self-
consistent inclusion of this field

(2)

for the autocorrelation function
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The autocorrelation function can be expanded in a
series in powers of time

, (4)

the coefficient M2n of which is the 2nth moment of the
spectral density of the autocorrelation function.

The Gaussian local magnetic field of the general
form causes the rotations of spins around different
axes. In the strict consideration, it is necessary to take
into account the time sequence order of rotations,
which leads to the necessity of corrections to Eq. (2),
in which only the first term of the cumulant expansion
is retained. Résibois and De Leener [20] proposed a
self-consistent nonlinear integral equation for the
autocorrelation function with the kernel presented in
the form of a series. Retaining the first term, we have

(5)

The common property of self-consistent nonlinear
equations for the autocorrelation function is the exis-
tence of singular points of solutions on the imaginary
time axis, near which

(6)

The analysis in [6, 7] showed that the functions FB(t)
and FR(t) on the imaginary time axis serve as the majo-
rant functions for the strict solution F(t) in the Gauss-
ian self-consistent field; therefore, the coordinates of
the singular points satisfy the inequalities

(7)

where

(8)

We study how the coordinate of the singular point
of the autocorrelation function varies at magnetic
dilution. We take the initial regular lattice and substi-
tute diamagnetic atoms for magnetic ones at the ran-
domly selected sites. We assume that the occupation of
different sites is independent and the probability of the
maintenance of the magnetic atom at the site is equal
to the average concentration of magnetic atoms c =
NM/N, where NM is the number of magnetic atoms and
N is the total number of lattice sites. Dilution changes
the magnitudes of moments. As an example, we pres-
ent the second and fourth moments [21]:
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which are expressed in terms of lattice sums:

(10)

In the general case, the 2nth order moment contains
the lattice sums with the number of summations from
1 to n. The lattice sum containing m + 1 lattice indices
is multiplied by cm. Equations (2)–(5) are derived
under the condition that the contribution proportional
to  in M2n exceeds the other contributions. It is
clear that this condition at weak dilution (c ~ 1) can
still be fulfilled and the coordinate of the singular
point of the autocorrelation function is expressed in
Eqs. (8) in terms of the concentration-dependent sec-
ond moment M2 given in Eqs. (9).

At c ≪ 1, the situation changes. It is easy to see that
the ratio of the fourth moment to the square of the sec-
ond moment increases with a decrease in the concen-
tration, since the contribution to the moments from
close pairs of spins that includes the lower power of the
small value cm increases at c ≪ 1. Kittel and Abrahams
[15] emphasized that this indicates the narrowing of
the central part of the spectrum. Anderson [14]
showed that the shape of the spectrum becomes
Lorentzian in the limit of strong magnetic dilution.
The variation of the central part of the spectrum in the
whole concentration range was described by Dzhep-
arov [1, 18].

The wings of the spectrum and high-order
moments are determined by the autocorrelation func-
tion near the singularity given by Eq. (6)

(11)

Under dilution, such a contribution to the 2nth
moment with a large combinatory factor should be
multiplied by cn, while the contribution of the lattice
sums with one summation index has the order of mag-
nitude of , where b2 is the constant of the inter-
action between the nearest neighbors, and Z is the
number of the nearest neighbors. This contribution
(contribution from close pairs of spins) becomes less
than the contribution given in Eqs. (11) because of the
large combinatory factor at rather large n values n >
τ0b2/ .

The irregular location of spins, i.e., the presence of
close pairs, close triads, etc., changes the coordinate
of the singular point of the autocorrelation function on
the imaginary time axis. To estimate this change, it is
necessary to find the variation of the self-consistent
equations at the separation of the spin system into
close pairs and other spins (“mass”) [1, 22]. The
known example of the self-consistent approach to sys-
tems with a small number of nearest neighbors is the
Bethe lattice or Cayley tree approximation [23]. In this
approximation, we previously studied the dependence

2 4 2
1 2 3, , .ij ij jk ik ij

j j k j

S b S b S b b b
≠

= = =∑ ∑ ∑

2
nM

0
2 2

2 0

( ) (| | ) | | exp( | |);

2 (2 1)!( ) .n
n

g A

M A n − −

ω ≈ ω → ∞ ≈ ω −τ ω
≈ + τ

2
2~ ncZb

c



JETP LETTERS  Vol. 103  No. 11  2016

ON THE CONCENTRATION DEPENDENCE OF WINGS OF SPECTRA 689

of the coordinate of the singular point of the autocor-
relation function of regular spin systems on the num-
ber of nearest neighbors and the dimensionality of
space [24, 25].

We use the representation of the occupation num-
bers nj of the jth site: nj = 1 and 0 if a spin and a non-
magnetic atom are located at the jth site, respectively
[1, 16–18, 21]. For the systems where the interaction
decreases with the distance according to a power law,
e.g., dipole–dipole [1] or RKKY (Ruderman–Kittel–
Kasuya–Yosida) [10] interaction, each spin formally
interacts with all others. However, the interaction with
Z nearest neighbors is much larger than the interaction
with the distant surrounding [26]. The contribution
from the large number of distant neighbors is taken
into account in the form of the contribution given by
Eq. (2) for the Gaussian local field

(12)

At the same time, the action of the nearest neighbors
is taken into account in the Bethe lattice approxima-
tion under the assumption of the independence of
contributions from Z nearest neighbors:

(13)

where  is the contribution to the variation of the
correlation function of the spin at the jth site from the
direction leading to the fth spin on the Bethe lattice.
The time variation of this function is described by the
equation

(14)

The differences of Eq. (14) from Eq. (5) were consid-
ered in [24]. First of all, Eq. (5) was written for the
complete autocorrelation function given by Eq. (13)
taking into account all links going out of the jth site,
while Eq. (14) was written for the contribution to the
autocorrelation function from one link. Therefore,
only one of the two autocorrelation functions referring
to the operator at the fth site “dressed” by the interac-
tion with its surrounding remained in the kernel of
Eq. (14). In this autocorrelation function, we excluded
the interaction with the jth spin already included in
the explicit form in Eq. (14); as a result, the number of
factors in the product decreased from Z to Z – 1. In
Eq. (5), such a change in the autocorrelation function
is ignored under the assumption of the large number of
neighbors. Finally, the dynamics of spins in different
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directions on the lattice is considered independently in
Eq. (14), while Eq. (5) describes the correlated
dynamics.

Concerning averaging of Eqs. (12)–(14) over the
random location of spins, we note that the separation
of close and distant spins depends on the problem to
be considered. For the calculation of the center of the
spectrum, the decay of the correlation function on the
real time axis is studied. Here, the scale is the width of
the spectrum, which is proportional to the concentra-
tion and is on the order of magnitude of the interaction
between spins at average distances [1, 13–18]. Contri-
butions to the correlation function from the terms
containing pairs at smaller distances (“close” pairs)
decay owing to fast time oscillations. Therefore, the
number of such locations in the initial regular lattice
(the number of close spins) increases with dilution and
is much larger than the coordination number of this
lattice. On the contrary, calculating the wings of the
spectrum, we study the increase in the correlation
function on the imaginary time axis. In this case, the
contribution of the close pairs increases monotoni-
cally; therefore, the nearest neighbors of the initial lat-
tice should be taken as close spins.

On the basis of the aforesaid, we take a simple
model spin system, where each spin has a few number
Z of nearest neighbors with the same coupling con-
stant b2 = b/ , and introduce the notation cδ2 = M2

– cZb2 for the total contribution of distant neighbors.
Averaging Eqs. (12)–(14) over the random location of
spins in the independent-site-occupation approxima-
tion, we obtain the equations
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obtain the following recurrence equations for the coef-
ficients:

(18)

where Yn, Dn, and Kn are the coefficients of terms of
order 2n in the expansions of the respective functions
in the form of Eq. (4) and  is the corresponding
coefficient for [Y(t)]Z – 1. Solving Eqs. (18) numeri-
cally, we determine the coordinate of the nearest sin-
gular point in terms of the radius of convergence of
series (4) for Y(t) calculated by the d’Alembert’s for-
mula as the limit of the ratio of the neighboring terms
of this series. The calculation results are shown in
Figs. 1 and 2.

Figure 1 shows dependences of the coordinate of

the singular point  on δ2/b2 at
three concentrations c = 1, 0.1, and 0.01. At δ2/b2 ≫ 1,
the curves converge to the limit τB = 2.221/  (8).
Figure 2 shows the corresponding concentration
dependence τ0 ~ 1/  at δ2/b2 = 30. At lower δ2 values
and at strong dilution c ≪ 1, the concentration depen-
dence of the coordinate of the singular point of the
autocorrelation function becomes logarithmic

(19)

which is represented by the line segments in logarith-
mic scale in Fig. 2. Such a dependence is due to the
presence of close pairs of spins. Their contribution
oscillating rapidly on the real time axis
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 becomes a rapidly increasing contri-

bution  ~ cosh(bτ) ~ exp(bτ)/2 on the imagi-
nary time axis t = iτ. However, one pair does not give
a singularity. The singular point of the solution of non-
linear equation (17) arises at the combination of sig-
nals of many pairs, which occurs under the condition
of the fast increase in Y(t) (16), i.e., at  > 1.
As a result, the observed dependence of the coordinate
of the singular point is obtained in the form of
Eq. (19). It can be seen in Fig. 2 that the coefficient a
decreases with an increase in δ2 because the function
D(t) also contributes to the increase in the kernel of
Eq. (17) and reduces the τ0 value. The coefficient a
also decreases with an increase in Z, since the increase
in the exponent of Y(t) results in the increase in the
kernel of Eq. (17). On the other hand, such an increase
in the exponent leads to the weakening of the depen-
dence on δ2 at Z = 5 in comparison with that at Z = 3.

Thus, under magnetic dilution, the central part of
the spectrum of the autocorrelation function is trans-
formed from the shape described by the Gaussian
curve with exponential wings to the shape described by
the Lorentzian curve with exponential wings. The
width of the spectrum is a linear function of the con-
centration [1, 13–18], whereas the exponent of the
wing is a logarithmic function of the concentration:

(20)

Physically, this means that a high frequency arises in
the system because of the summation of the frequen-
cies of many pairs (k ~ ω/b) owing to the modulation
of the local field. The probability of the formation of
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Fig. 1. Coordinate of the singular point versus δ2/b2 at Z =
3 and at three concentration values (numbers near curves).

Fig. 2. Concentration dependences of the coordinate of
the singular point (in b–1 units) at Z = (solid lines) 3 and
(dashed lines) 5 at δ2/b2 = (from top to bottom) 0, 0.03, 3,
and 30.
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one pair is c; correspondingly, the probability of the
formation of k pairs is ck. At the increasing in the mod-
ulation frequency, the number of average local fre-
quencies ωloc ~  summed in the regular lattice is
k ~ ω/ωloc. The above analysis provides the following
conclusion. It is known that the distances between the
majority of spins in magnetically diluted systems are
close to the average distance. These spins play an
important role in the establishment of equilibrium
between parts of the system and determine the center
of the spectrum of the autocorrelation function. How-
ever, the far wing of the spectrum is determined by
clusters of close spins, the probability of the formation
of which is small, but the contribution to the modula-
tion frequency is large.
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