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A new optical state at the boundary of a chiral medium whose dielectric tensor has a helical symmetry is
described analytically and numerically. The case of zero tangential wavenumber is considered. The state
localized near the boundary does not transfer energy along this boundary and decreases exponentially with
the distance from the boundary. The penetration of the field into the chiral medium is blocked at wavelengths
corresponding to the photonic band gap and close to the pitch of the helix. The polarization of light near the
boundary has the same sign of chirality as the helical symmetry. It is shown that the homogeneous environ-
ment or a substrate should exhibit anisotropic metallic reflection. The spectral manifestation of the state is
determined by the angle between the optical axes of the media at the interface. A state at the interface between
a cholesteric liquid crystal and an anisotropic metal–dielectric nanocomposite was considered as an example.
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A surface state that can be observed at the normal
incidence of light on a surface is called the optical
Tamm state [1]. Localized light can be treated as being
trapped near the interface between two mirrors, which
are media at whose interface light is reflected. There
are various types of mirrors, including metallic and
photonic-crystal, that can reflect normally incident
light. Photonic-crystal reflection in media that do not
have the mirror symmetry of optical properties but
have a continuous helical symmetry of the dielectric
tensor is particularly remarkable. We call these media
chiral. An example of such media is a cholesteric liquid
crystal consisting of oriented molecules whose prefer-
able direction is twisted in space as a helix [2]. Another
example is a twisted tilted sculptured thin film [3].
Screw periodicity results in the diffraction (bulk
reflection) of only light circularly polarized in the
direction corresponding to the twisting of the helix. In
contrast to nonchiral (mirror symmetric) photonic
crystals, light with opposite circular polarization is not
diffracted.

Optical Tamm states were detected both at the
interface between two nonchiral media [1] and at the
interface of two chiral mirrors [4] in the form of defect
modes. However, as far as we know, optical Tamm
states have not yet been obtained at the interface
between chiral and nonchiral mirrors. Difficulty
appears because the isotropic mirror changes the
polarization of light and a diffracting wave of the chiral

photonic crystal is transferred to a nondiffracting
wave. As a result, the wave undergoes no more than
two cycles of reflections and, then, leaves the bound-
ary of the mirror [5]. In this work, we attempt to avoid
the described difficulty by means of an anisotropic
substrate. We consider the case of normal incidence
where the energy transfer along the surface is absent
and the wave vector does not have a tangential
component.

We represent the anisotropic substrate as a uniaxial
crystal with the optical axis directed along the  axis
and the medium itself fills the  half-space, where
the field is decomposed into the extraordinary and
ordinary waves. The equation for waves propagating in
the direction opposite to the direction of the  axis has
the form

(1)
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where  and  are the complex projections of the
electric and magnetic field strengths, respectively;

 is the wave vector in vacuum; and  are the
extraordinary and ordinary refractive indices of the
substrate, respectively.

The eigenwave for a chiral medium can be
described as follows [2]:

(2)

Here, A and B are the complex amplitudes of waves
that are circularly polarized along the helix and travel
forward and backward along the  axis, respectively.
The angle of twisting of the optical axis 
is measured from the  axis in the direction of the 
axis;  is the wave vector of twisting of the
optical axis;  is the pitch of the helix; and the wave
vector  is given by the expression

The components of the dielectric tensor have the form
.

The wave vector  of a diffracting wave is imaginary
in the band gap given by the inequalities

(3)

The strengths of the waves  and  in the band gap
have the same length and their phase difference 
depends on the frequency and varies from  to :

For further consideration, it is convenient to exclude 
by representing equations in the form

,x yE ,x yH

κ = ω/c ,
0
e on

( )( )

( )( )

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦−

⎡ ⎤
⎢ ⎥+ τ κ
⎢ ⎥= + ϕ − ω

−⎢ ⎥
⎢ ⎥− + τ κ⎣ ⎦

⎡ ⎤
⎢ ⎥− − τ κ
⎢ ⎥+ − ϕ − ω .
⎢ ⎥
⎢ ⎥− − τ κ⎣ ⎦

�

�

1
( )/

exp ( )

( )/
1

( )/
exp ( )

( )/

x

y

y

x

E
H
E
H

q
A i qz z t

i
i q

q
B i qz z t

i
i q

z
ϕ = τ + ϕ�( )z z

x y
τ = π2 /p

p
q

= τ + κ − τκ + δ κ τ .2 2 2 2 22 /4q e e

,⊥ = ± δ�e e

q

τ ω τ< κ = < .
+ δ − δce e

A B
Φ

0 π

+ Φ κ − τ / κ −= = ,
δ

2 2
( ) ( )i qA e

B
e

− Φ κ + τ / κ −= = .
δ

2 2
( ) ( )i qB e

A
e

q

κ ε + δ − Φ κ = τ − ,
κ ε + δ + Φ κ = τ + ,

exp( ( ))

exp( ( ))

i q

i q

and taking the sum of these two equations:

(4)

It is convenient to divide all wave vectors and refractive
indices by the average refractive index of the chiral
medium; i.e., the refractive index of the substrate is

(5)

To derive Eq. (4), we use the small anisotropy approx-
imation . In this approximation, the ratio of the
amplitudes of the electric and magnetic field strengths
is approximately unity: . The matching
conditions for fields at the interface can be obtained by
directly equating strengths given by Eqs. (1) and (2) at
the  interface at the time :

(6)

(7)

Here, . Four unknowns in the
substrate are expressed in terms of  as

(8)

Physically,  is the amplitude reflection coefficient of
the substrate. Expressing  in terms of each of the
refractive indices, we arrive at the known Fresnel
equations for the ordinary and extraordinary waves:

(9)

One of these waves is reflected in antiphase. Conse-
quently, a diffracting circular wave is reflected to a dif-
fracting wave. The substrate satisfying the condition of
inversion of the refractive index  is a polariza-
tion-conserving anisotropic mirror [6].

The found solution given by Eq. (8) ensures phase
matching. After the reflection from two mirrors, the
wave should return to the initial state in the same
phase, ensuring constructive interference and reso-
nance. The phase shift is compensated by the angle ϕ
between the optical axes at the interface because the
angle of spatial rotation about the direction of propa-
gation for circularly polarized light is equal to the
phase of the wave. A smooth variation of this angle by

 at double reflection changes the phase by  and
makes it possible to ensure phase matching at the
interface between the mirrors.

The frequency of the optical Tamm state can be
found from the second matching condition given by
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Eq. (7) ensuring phase matching, which can be repre-
sented in the form

where  is the complex phase of the amplitude reflec-
tion coefficient , which is defined up to

. Substituting this expression for  in the choles-
teric liquid crystal into Eq. (4), we obtain the fre-
quency of the optical Tamm state as a function of the
angle :

(10)

Expression (10) determines the spectral manifestation
of the optical Tamm state inside band gap (3) of the
chiral medium. It is a dispersion relation because the
tangential wave vector of the described optical Tamm
state is zero and cannot determine the frequency of the
state. Solution in the case of a nonzero tangential wave
vector is beyond the scope of this work.

Another condition of the existence of the optical
Tamm state is the localization of the field near the inter-
face. Localization on the side of the chiral medium is
ensured by the imaginary wave vector  in the band
gap. Localization on the side of the substrate requires
that both refractive indices have a positive imaginary
part, which corresponds to damping at chosen signs of
the complex factor . However, in the
approximation under consideration, the condition of
inversion of the refractive indices  provides
the condition . For this reason, for
Eqs. (8) to be consistent with localization, only the
limiting case of a small imaginary part where the Q
factor of the state and the localization length simulta-
neously tend to infinity is correct. A finite imaginary
part of the refractive index of the substrate leads to
losses through nondiffracting polarization and
through metallic-type absorption.

We construct a localized state by the Berreman
numerical method. A chiral medium is a right-handed
cholesteric liquid crystal with the anisotropy 
and the normalized pitch of the helix  nm;
the thickness of the layer is five pitches of the helix. A
substrate is a nanocomposite of silver spheroids that
are oblate in the  direction and are placed in a matrix
with the refractive index equal to the average refractive
index of the chiral medium. The Maxwell–Garnett
formula makes it possible to select the parameters of
the nanocomposite such that  and

 at a certain frequency in the visible
range [6]. Let . The dispersion of the nano-
composite is disregarded. The condition  is
valid, which substitutes the condition of inversion of
the refractive index following from the analytical solu-
tion given by Eq. (8). The asterisk stands for complex
conjugation. The proposed substitution ensures the
relations  and  between the
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amplitude reflection coefficients of the substrate. As a
result, reflection to diffracting polarization is consis-
tent with conditions (7) and (10). The reflection phase
is  because the amplitude of reflection is a posi-
tive real quantity. At , an optical Tamm state
does not appear.

Figure 1a shows the dependence of the local inten-
sity (square of the amplitude of the electric field
strength) on the distance to the boundary for the optical
Tamm state. The local intensity is measured in units of
intensity of the wave that excites the optical Tamm
state, is incident from the right from the chiral medium,
and has left circular polarization. The result of the
direct numerical calculation by the Berreman method is
presented. Wave  propagating to the left includes a
wave exciting the optical Tamm state and, thereby, has
a higher intensity than wave  that is reflected from the
substrate and propagates to the right. In order to avoid
encumbering of Fig. 1a, the total local intensity 
is not shown, which near the boundary is almost seven
times higher than the local intensity of the wave exciting
the optical Tamm state. The contribution from the ordi-
nary wave in the substrate is also unseen on the chosen
scale because this wave is rapidly damped with depth of
the substrate and has a small amplitude of the electric
field strength. To obtain a smooth exponentially
decreasing envelope consistent with Eqs. (1) and (2),
the wave exciting the optical Tamm state should be sub-
tracted from the solution.

Figure 1b illustrates the condition of matching of
the fields at the interface. The polarization ellipse of
the resulting field is elongated in the  direction for
both the electric and magnetic field strengths. Its
major and minor semiaxes in the chiral medium are
proportional to the sum  and difference 
of the amplitudes, respectively. The electric field
strength for the extraordinary wave, as well as the mag-
netic field strength for the ordinary wave, is elongated
in the substrate. The equality of the ratios of the major
and minor semiaxes of the ellipse in the chiral medium
and substrate gives

(11)

This relation is consistent with analytical solution (8).
Figure 2 shows the reflectance from the interface

for light with right circular polarization incident from
the right-handed chiral medium normally to the inter-
face. The dependence (10) of the frequency of the
optical Tamm state on the angle  qualitatively corre-
sponds to a similar dependence on the modulation
phase in a nonchiral photonic crystal (see [7] and ref-
erences therein).

The smooth rotation of the mirrors results in the
shift of the frequency of the optical Tamm state to the
edges of band gap (3). When the optical axes coincide
with each other, the optical Tamm state is at the high-
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frequency edge of the band. The strongest dip in the
reflectance at the angle  corresponds to the
middle of the band. In the cases of excitation by light
with right and left circular polarizations, the reflec-
tance in the dip is 90% (red cross in Fig. 2) and 45%
(Fig. 1a), respectively. This angle is  because
the gradient of the refractive index of the chiral
medium is maximal at an angle of  to the optical
axis and the electric field oriented in this direction
undergoes strong bulk reflection. The optical Tamm
state is shifted to the low-frequency edge of the band
at perpendicular optical axes. For angles larger than

, the dip of the reflectance is absent because con-
dition (10) is not satisfied.

To summarize, the problem of the existence of an
optical Tamm state at the interface between chiral and
nonchiral mirrors at zero tangential wave vector has
been analytically solved. The solution imposes a
strong condition on the parameters of the homoge-
neous substrate at the interface with the chiral mirror

ϕ = π/4

ϕ = π/4

π/4

π/2

where the chiral optical Tamm state can exist. The Q
factor of the state tends to infinity only if the localiza-
tion length tends to infinity. The found optical Tamm
state is localized near the interface and decreases
exponentially on both sides of it. At the passage of the
interface, the phase is controlled by the rotation of the
mirrors in the plane of interface, which is described by
condition (10) serving as the dispersion relation. The
analytical dependence is in agreement with the direct
numerical calculation.

This work was performed within the framework of the
state assignment from the Ministry of Education and
Science of the Russian Federation for R&D at the Sibe-
rian Federal University (assignment no. 3.1276.2014/K).
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Fig. 1. (Color online) (а) Local intensity of the field versus
the distance from the boundary. Line Material corre-
sponds to the orientations of the optical axis in the sub-
strate (straight segment) and in the chiral medium (sinu-
soidal projection on the  axis). (b) Matching of fields at
the interface. The solid and dashed arrows mark the elec-
tric and magnetic field strengths, respectively. The field in
the chiral medium is represented in the form of the circular
waves incident on the interface ( ) and reflected from it
( ). The field in the substrate is decomposed into the
extraordinary ( ) and ordinary ( ) waves.

i

Ex

Ey

Hx

Hy

x

B
A

x y

Fig. 2. (Color online) Reflectance from the interface ver-
sus the angle ϕ between the optical axes at the interface.
The blue dashed straight segments indicate the edges of the
photonic band gap. The red solid line shows analytical
dependence (10). The red cross at  and  cor-
responds to the parameters in Fig. 1a.
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