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For the system of strongly correlated electrons on a triangular lattice, the possibility of coexisting supercon-
ductivity with the chiral order parameter and the 120°-type noncollinear spin ordering is demonstrated. The
integral self-consistency equation for the superconducting order parameter is derived using the diagram tech-
nique for Hubbard operators taking into account the spin structure, exchange interaction within two coordi-
nation spheres, and intersite Coulomb repulsion.
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1. INTRODUCTION
Recently, the studies exploring the possibility for

the formation of spiral structures in materials with
strongly correlated electrons again became active [1].
The new surge of interest in such studies was initiated
by paper [2], which put forward the suggestion on the
possible formation of the Majorana mode if the super-
conducting phase with the chiral order parameter on a
triangular lattice coexists with the noncollinear mag-
netic ordering. However, Lu and Wang [2] did not
address the issue whether the suggested magnetic
structure indeed allows for the coexistence with the
chiral superconductivity. Since the Majorana-related
problems are quite topical, such analysis appears to be
necessary, the more so that we demonstrate in this
work that the integral self-consistency equations for
the chiral superconducting order parameter are not
satisfied for the magnetic structure suggested in [2].
Therefore, it turns out to be especially important to
find such type of noncollinear magnetic ordering for
which the chiral superconducting phase satisfies the
coexistence conditions, i.e., the chiral order parame-
ter indeed satisfies the coexistence equations. Our
work is focused mainly on such problem.

There is a common opinion that the chiral super-
conducting phase can exist in water-intercalated
sodium cobaltites Na CoO H O including con-
ducting layers with the triangular lattice. The first the-
oretical studies based on the  model for the trian-
gular lattice predicted the chiral  symme-
try type for the order parameter or -wave pairing [3,

4]. For these two symmetry types, the superconduct-
ing gap opens over the whole Fermi surface. This con-
tradicts the nuclear quadrupole resonance (NQR)
measurements. Therefore, it was suggested that these
compounds exhibit superconductivity with other sym-
metry types [5–7].

The arising contradiction was removed in [8],
where it was shown that the inclusion of the pairing
interaction in the second coordination sphere of the
triangular lattice induces a set of nodal points located
within the Brillouin zone even in the case of the

 symmetry type of the superconducting
order parameter. This eliminates the existing discrep-
ancy between the preferable existence of the chiral
superconducting phase for the triangular lattice and
the gapless superconductivity in sodium cobaltites
observed in experiment. Later on, in the framework of
the  model on the triangular lattice, it was
shown that the exchange interaction within both the
first and second coordination spheres in the presence
of the nearest-neighbor intersite Coulomb repulsion
leads to the formation of a new set of nodal points [9].

In this work, we derive an integral equation deter-
mining the Cooper instability in the case of the non-
collinear spin ordering in the framework of the

 model on the triangular lattice using the
diagram technique for the Hubbard operators [10–
12]. The analysis of this equation demonstrates the
possibility of the coexistence of chiral superconductiv-
ity and the 120°-type spin structure. In this situation,
the nearest-neighbor intersite Coulomb repulsion of
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fermions leads to the formation of the chiral supercon-
ducting order parameter described by the superposi-
tion of two singlet and one triplet invariant. Note that,
for the stripe structure of the spin ordering [2], the
phase with the coexisting order parameters also
appears, but the superconducting order parameter
does not correspond to the chiral symmetry of the tri-
angular lattice.

The performed analysis of the Cooper instability in
the limit of strong electron correlations has two char-
acteristic features. One of them is related to the use of
Hubbard operators, for which the commutation rela-
tions are not fermionic. As a result, the system exhibits
the kinematic interaction and the diagrams contain
the end factors [10–14]. The latter factors lead to an
additional contribution to the fermion excitation spec-
trum in the noncollinear phase, which manifests itself
in the calculations of the charge-carrier-density
dependence of the temperature corresponding to the
transition to the phase with the coexistence of chiral
superconductivity and noncollinear spin ordering.
The second characteristic feature is related to the
Hubbard fermions corresponding to the upper Hub-
bard subband, which is formed owing to strong cor-
relations. The presented results demonstrate that the
conditions underlying the existence of the Majorana
modes on the triangular lattice are determined not
only by the type of spin ordering but also by strong
electron correlations playing an important role.

2. GREEN’S FUNCTIONS
AND THE EXCITATION SPECTRUM

AT THE NONCOLLINEAR SPIN ORDERING
We solve the problem concerning the phase with

the coexistence of chiral superconductivity and non-
collinear spin ordering using the  model,
in which the electron states correspond to the upper
Hubbard subband

(1)

The first and second terms in the Hamiltonian
describe the one- and two-electron states in the
atomic representation with the initial energies mea-
sured relative to the chemical potential. The third term
in the Hamiltonian corresponds to the electron
hopping between sites in the triangular lattice. The
parameter  is the probability amplitude for such
hoppings. The fourth term describes the exchange
interaction characterized by the parameter . The
last term in the Hamiltonian is related to the Coulomb
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interaction V between electrons located at the
nearest-neighbor sites. The electron number operator
is .

Further on, we assume the existence of the spin
ordering with the wave vector : 

.

To analyze the characteristics of the system both in
the phase with the spiral spin ordering and in the phase
corresponding to the coexistence with superconduc-
tivity, we introduce the Green’s functions [10, 11]

(2)

where  are the Hubbard operators in the Mat-
subara representation, and  is the root vec-
tor [10, 11], determining the transition from the mth
single-site state to the nth single-site state.

The spectrum of cooperative fermion excitations is
determined by the poles of the Green’s function

. The application of the diagram tech-
nique for Hubbard operators [10–12] allows writing
out the set of equations determining this function in
the form of diagrams, which are shown in Fig. 1.

In the diagrams shown in Fig. 1, the double thin
line with two open arrows corresponds to the function

 describing the propagation of the Hub-
bard fermion with spin up and thin lines with open
(spin up) and closed (spin down) arrows describe the
bare propagator , 
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Fig. 1. Set of equations for fermion Green’s functions cor-
responding to the collective excitations at the spiral spin
ordering.
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. The wavy lines with arrows denote
the Fourier transforms of the hopping integrals ,
whereas the wavy lines in the last term on the right-
hand side of the equations correspond to the Fourier
transforms of the exchange interaction . The exis-
tence of the noncollinear spin ordering in the system
manifests itself in the presence of the function

 describing the propagation of a
fermion associated with the change in the spin projec-
tion. This function corresponds to the double thin line
with the open and closed arrows. Here, the incoming
and outgoing momenta differ by the spin structure
vector . The large closed triangle put into the circle
is associated with the Fourier component correspond-
ing to the structure of spin ordering. The direction of
such arrow determines the addition or subtraction of
the  vector characterizing the structure. The other
notation is conventional [13, 14].

The system of diagrams corresponds to the equa-
tions

(3)

where . By solving this set of equa-
tions, we find

(4)

(5)

where ξp = ξ0 + (n/2)tp. Two branches of the fermion
excitation spectrum are given by the expressions

(6)

3. COOPER INSTABILITY IN THE PHASE 
WITH THE NONCOLLINEAR SPIN 

ORDERING
For finding the superconducting transition tem-

perature and determining the symmetry of the order
parameter, it is sufficient to write in the linear approx-
imation the relation between the anomalous Gorkov
Green’s function  and the anomalous
components of the mass operator. The graphical rep-
resentation of this relation is shown in Fig. 2.

The encircled parameters  and  correspond to
the anomalous components of the mass operator. The
explicit expression for the function  (with
two closed arrows) involved in this equation can be
found from the expression for  based on
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the symmetry considerations. Indeed, the change in the
spin projection in the expressions for the diagonal with
respect to spin normal Green’s functions is accompa-
nied by the inversion of the  vector. Moreover, the
definitions of the Green’s functions in the atomic rep-
resentation and of their Fourier transforms directly
imply the relation .
Having in mind everything mentioned above, we find

(7)

(8)

Using the obtained expressions, we find the linearized
relation between the anomalous Green’s function and
the anomalous components of the mass operator
( )

(9)

The graphical representation for  is shown in
Fig. 3. We can see that the expression includes not
only the anomalous function  considered
above but also the anomalous function .
Its explicit form can be found using the aforemen-
tioned symmetry. As a result, we obtain

. Writing out the
graphical representation for  and taking into
account the symmetry properties, we find that

. Using these properties and the
explicit expressions for the normal Green’s functions,

Q
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Fig. 2. Linearized representation for the Gorkov Green’s
function.

Fig. 3. Diagrams for the anomalous component  of
the mass operator.
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we can obtain after the summation over the Matsubara
frequencies the integral equation for the supercon-
ducting order parameter

(10)

where the kernel is given by the expression

The existence of the noncollinear spin ordering mani-
fests itself in the term containing the product RqRq−Q,
which appears in the integral equation for the super-
conducting order parameter.

4. EFFECT OF THE NONCOLLINEAR 
MAGNETIC ORDERING

ON THE FORMATION OF CHIRAL 
SUPERCONDUCTIVITY

In the absence of noncollinear spin ordering, the
exact solution of integral equation (10) corresponds to
the  symmetry type and can be written as
a superposition of two chiral invariants [9]:

(11)
where

(12)

(13)

It is well known [15] that triplet anomalous ampli-
tudes in the presence of a spin density wave in super-
conductors arise along with singlet pairings. This
stems from the broken time-reversal symmetry in a
magnetically ordered state and manifests itself via the
admixture of triplet invariants.

According to these facts, the solution of the integral
self-consistency equations (10) for the 120°-type mag-
netic ordering with ,  can be rep-
resented as a linear superposition of three chiral
invariants
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where the basis function
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corresponds to the chiral -wave symmetry for the tri-
angular lattice. Let us emphasize that the triplet
invariant is induced only when the Coulomb intersite
interactions turn out to be involved in the case of non-
collinear magnetic ordering. Without such interac-
tions,  in the phase with the coexistence of super-
conductivity and the 120°-type magnetic ordering is
determined by Eq. (11).

The splitting in the kernel of the integral equation
allows obtaining the set of three algebraic equations
determining the relations between the amplitudes in

:

(16)
The coefficients in this set of equations are given by
the expressions

(17)
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(19)

Here, .
If the spin structure is characterized by the vector

, the performed analysis demonstrates that
the Cooper instability also takes place, but  is
determined by a more complicated expression

Here, the coefficients , , and  are determined
not only by the symmetry of the triangular lattice but
also by the parameters of the model.

These features of the superconducting order
parameter in the phase with the coexistence of super-
conductivity and the noncollinear magnetic order
should significantly affect the conditions favoring the
formation of Majorana modes.
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It is well known that the 120°-type noncollinear
magnetic ordering becomes favorable for the triangu-
lar lattice in the Heisenberg regime at  [16,
17]. Bearing this in mind, below we consider the phase
corresponding to the coexistence with the 
noncollinear magnetic ordering.

5. DEPENDENCE OF THE TEMPERATURE 
CORRESPONDING TO THE TRANSITION 

TO THE COEXISTENCE PHASE 
ON THE CHARGE CARRIER DENSITY

The equation determining the temperature of the
transition to the phase with the coexistence of the
120°-type magnetic order and superconductivity fol-
lows from the compatibility condition for Eqs. (16)

(20)

In the analysis of this equation, it is important to
take into account the intersite Coulomb interaction.
Because of strong suppression of the pairing interac-
tion [18, 19] between the nearest-neighbor sites owing
to the Coulomb repulsion, the main contribution to
the superconducting channel comes from the
exchange interaction in the second coordination
sphere. Here, we assume that it is possible to neglect
the Coulomb interaction between the next nearest
neighbors owing to the screening effects. Therefore,
the temperature corresponding to the onset of the
noncollinear magnetic ordering determined mostly by
parameter  is much higher than the superconducting
transition temperature related to the  exchange.

The results of the calculation of the superconduct-
ing transition temperature to the phase with the chiral
order parameter as a function of the density  of
two-electron states in the regime under discussion are
illustrated in Fig. 4. These results were obtained with
the parameters , , ,

, and  (parameters character-
izing the hoppings to the second and third coordina-
tion spheres). All parameters related to the energy are
measured in units of the nearest-neighbor hopping
parameter . Earlier, the importance of the distant
hoppings for the description of electron bands in
cobaltites was demonstrated in the framework of the
tight-binding approximation with t1 ≈ 0.2 eV [8].

In Fig. 4, the solid line demonstrates the behavior
of the temperature of the transition to the phase with
the coexistence of superconductivity and the 120°-
type magnetic order. The similar plot in the absence of
the noncollinear magnetic ordering is shown by the
dashed line. We can see that the induced magnetic
order does not suppress the Cooper instability and
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even increases the superconducting transition tem-
perature.

It is well known that the long-range antiferromag-
netic order in strongly correlated electron systems
often leads to the suppression of the superconducting
pairing [20, 21]. In the case of the noncollinear 120°-
type magnetic structure, such effect is absent because
the solution of the integral equation for the supercon-
ducting order parameter exists even when the critical
temperature of the magnetic ordering far exceeds the
superconducting transition temperature. Moreover,
the phase with the coexistence of chiral superconduc-
tivity and the 120°-type magnetic structure occurs in
the range of relatively low temperatures.

6. CONCLUSIONS

The study of Hubbard fermions on the triangular
lattice at the noncollinear spin ordering demonstrates
that the Cooper instability in such system is apprecia-
bly affected by the combined action of the 120°-type
spin structure and intersite Coulomb interactions. At
the same structure but without the Coulomb interac-
tion or with this interaction but without spin ordering,
the superconducting order parameter  can be repre-
sented as a sum of two chiral invariants. Under the
combined effect of these two factors, the Cooper
instability takes place in respect to the phase in which

 is described by the superposition of three chiral
invariants. Note in this connection that a significant
effect of the intersite Coulomb interaction on the sym-
metry type of the superconducting phase manifests

Δ p

Δ p

Fig. 4. Onset temperature for the chiral superconductivity
versus the density of two-electron states for the triangular
lattice. The solid line demonstrates the behavior of the
temperature of the transition to the phase with the coexis-
tence of superconductivity and the 120°-type magnetic
order and the dashed line corresponds to the supercon-
ducting transition temperature in the absence of the non-
collinear magnetic order.
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itself, for example, in the Kohn–Luttinger mechanism
of superconductivity [22–24].

The results obtained in this work are quite import-
ant for the search for systems exhibiting the Majorana
modes. Until recently, it was commonly accepted that
the Majorana modes can arise in the systems with the
singlet type of superconductivity only if the spin–orbit
coupling is included in the consideration. In [2], it was
emphasized that the noncollinear magnetic order on
the triangular lattice can favor the formation of edge
states with zero energy. The performed analysis of the
Cooper instability in the case of the noncollinear spin
ordering demonstrates that the chiral structure of 
remains only for the 120°-type spin ordering. Hence,
the Majorana states should be sought just for such spin
ordering. The corresponding results will be presented
elsewhere.
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