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In the framework of the spin-fermion model, to which the Emery model is reduced in the limit of strong elec-
tron correlations, it is shown that the fermion quasiparticles in cuprate high-Tc superconductors (HTSCs)
arise under a strong effect of exchange coupling between oxygen holes and spins of copper ions. This underlies
the spin-polaron nature of fermion quasiparticles in cuprate HTSCs. The Cooper instability with respect to
the d-wave symmetry of the order parameter is revealed for an ensemble of such quasiparticles. For the nor-
mal phase, the spin-polaron concept allows us to reproduce the fine details in the evolution of the Fermi sur-
face with the changes in the doping level x observed in experiment for La Sr CuO . The calculated T–x
phase diagram correlates well with the available experimental data for cuprate HTSCs.
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1. INTRODUCTION
The studies of high-Tc superconductors (HTSCs)

suggest the existence of strong correlations between
the charge and spin degrees of freedom existing in
these materials. For example, the pseudogap state in
underdoped copper oxides [1, 2] and the d -wave
symmetry type of the superconducting order parame-
ter [3, 4] are usually attributed to such correlations.

The theoretical concepts concerning the nature of
the Cooper instability in HTSCs and, in particular,
those invoking the role of spin−charge fluctuations in
the whole mechanism of the superconducting pairing
have mostly been developed in the framework of the
Hubbard model [5–7], as well as using the  and

 models [8–11]. Their specific feature is that a
single fermion system possesses both charge and spin
degrees of freedom.

At the same time, the actual structure of the CuO
plane in cuprate HTSCs is characterized by the spatial
separation of spins at copper ions and oxygen holes. In
addition, the real unit cell includes two oxygen ions.
These facts complicate the description of the energy
structure of the fermion excitations; moreover, as was
recently learned, they significantly affect the contri-
butions of the Coulomb interaction to the supercon-
ducting pairing of different symmetries. The actual
significance of this statement is related to establishing
the correspondence between the symmetry type of the

superconducting order parameter observed in experi-
ment and that following from the theory [12]. It is well
known that these features determined by the structure
of the CuO  plane are adequately described by the
three-band p–d model [13–15]. The comparison of
theoretical results obtained in the framework of such a
model with the experimental data suggests an import-
ant role of hybridization between d states at each cop-
per ion and p states of the four nearest-neighbor oxy-
gen ions. Therefore, the holes appearing because of
the doping are accompanied by the formation of a
strongly coupled spin–fermion state, namely, a
Zhang–Rice singlet [16]. Hence, the theory of the
normal and superconducting states in cuprates should
include this spin–fermion coupling.

The attempts undertaken in this direction were
based, for example, on the projection technique used
to reduce the dynamics of oxygen holes to the dynam-
ics of fermions in the subspace of the aforementioned
singlet states. The goal was to obtain the Hubbard
model or the single-band  model as an effective
model describing the electronic structure of the CuO
plane [17].

However, such scenario implies an important
drawback coming from the absence of the spin-cor-
related hoppings in the  model, whereas a more
accurate analysis leads to such hoppings [18] playing a
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significant role in the formation of the spectral char-
acteristics of fermion quasiparticles.

This discrepancy is lifted if we take into account
that the true relations between the parameters of the
three-band p–d model correspond to the strong cor-
relation limit. Then, the implementation of the opera-
tor form of perturbation theory [19] allows construct-
ing the effective Hamiltonian , for which the Hil-
bert space involves only the homopolar states of
copper ions. In this case, the hybridization effects
become transformed to the additional effective inter-
actions. Among them, the strong spin−fermion cou-
pling between the spins of copper ions and those of
oxygen holes is the most significant one. The Hamil-
tonian  thus obtained corresponds to the
spin−fermion model [20–22]. It is important that
such model retains both two hole subsystems and the
spatial separation between copper ions and the men-
tioned subsystems of oxygen holes.

In the framework of the spin−fermion model, the
spin-polaron scenario for the formation of charge
excitations in the normal phase of cuprate HTSCs was
developed [23–25]. In these studies, the concept of
spin polaron was implemented on the basis of the
Zwanzig–Mori projection technique [26, 27]. The key
issue of such a theory is that the basis set of operators
includes the operator adequately representing the
strong spin−charge coupling. Within this approach,
the spectrum of spin-polaron hole excitations was cal-
culated and the important role of the direct oxy-
gen−oxygen hole hoppings was revealed [23]. In the
framework of the self-consistent Born approximation,
the spectral intensity of spin polarons was calculated
and the quasiparticle peak was found close to the bot-
tom of the dispersion curve for unrenormalized holes
at the point ( ) [24]. In addition, the changes in
the spin-polaron band were analyzed including the
coupling of a local polaron to an antiferromagnetic
spin wave having the wave vector  [28].

In this review, we report recent studies of the char-
acteristics of cuprate HTSCs that were based on the
spin-polaron concept and supported by the Russian
Foundation for Basic Research.

The first set of results deals with the further devel-
opment of the spin-polaron approach to the analysis
of the normal phase. In particular, we have obtained
for the first time the explicit expressions describing the
energy spectrum of spin-polaron quasiparticles. By
the analysis of spectral curves, we demonstrate the
spin-polaron genesis of these quasiparticles. We
describe the evolution of the Fermi surface in the spe-
cific La Sr CuO  compound within a wide range of
doping levels . Here, the only fitting parameter of the
theory is the integral for hole tunneling between the
nearest oxygen ions.

The second set of results is related to the formula-
tion of the theory of superconductivity for cuprates in
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the framework of the spin-polaron approach. For the
first time, we reveal the Cooper instability with respect
to the d -wave order parameter in the ensemble of
spin-polaron quasiparticles. It is shown that the
exchange interaction between the spins at copper ions
plays the role of the coupling constant. The phase dia-
gram obtained correlates well with the experimental
data.

2. HAMILTONIAN OF THE SPIN-FERMION 
MODEL FOR THE CuO  PLANE

It is well known that the SU(2)-invariant spin-fer-
mion model evolves from the three-band Emery
model in the limit of strongly correlated electrons.
This limit occurs when the mixing parameter 
between the p states of oxygen ions and d states of cop-
per is much smaller than (i) the energy difference

 between these states and (ii) the energy
of the onsite Coulomb repulsion  for two holes at a
copper ion. The Hamiltonian of the spin-fermion
model can be written in the form [20, 21]

(1)

where

The first term in Eq. (1) describes the energy of
coupling between a doped hole and an oxygen ion.
The energy  is measured from the chemical potential

. The operator  in the spinor represen-
tation corresponds to the creation of a hole at the th
oxygen ion.

The second term in Eq. (1) corresponds to direct
hoppings of holes between the nearest oxygen ions
connected by vectors . The hopping intensity is
determined by the tunneling integral . Its sign is
related to the function , depending on the orienta-
tion of the line connecting the oxygen ions between
which the hopping occurs. The vector  spans four val-
ues  and  (where 
are the vectors corresponding to the four nearest
neighbors in the copper lattice) and connects the
oxygen ion at the lth site to the oxygen ion nearest to
it at the ( )th site. For the chosen phases of
the oxygen orbitals,  and
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The third and fourth terms in Eq. (1) come from
the second-order processes in terms of the hybridiza-
tion parameter . The operators arising here describe
the hoppings of a hole between oxygen ions directly
adjacent to a copper ion. The vectors  and  inde-
pendently acquire four values  and
connect the copper ion at the th site to the four near-
est-neighbor oxygen sites located at positions .
In Eq. (1), , where  takes into
account the effect of relations between the phases of
the copper and oxygen orbitals on the hybridization
processes. For the usually employed orbitals,

.

The operator  in the fourth term in Eq. (1) has
the form , where  is the spin moment
operator at a copper ion located at the fth site and

 is the vector of the Pauli matrices.
Therefore, in contrast to the second and third terms
describing the usual hole hoppings, the fourth term in
Hamiltonian (1) takes into account the hoppings
accompanied by the spin-flip processes. Such hop-
pings result in the correlated change in the spin projec-
tion not only at the hole but also at the copper ion.
Such contributions substantially affect the formation
of the structure characteristic of the spin-polaron
spectrum of elementary excitations.

The last term in Eq. (1) describes the exchange
interaction between the spins of copper ions. The
magnitude of the exchange coupling between the spins
located at the fth and mth sites is determined by the
parameter . Further on, we take into account only
the interactions between spins located within two
coordination spheres

(2)

Here,  denotes the exchange integral for the nearest-
neighbor spins and  ( ) is the exchange
integral for the next-nearest-neighbor spins. It is con-
venient to express the coupling constants in terms of
the frustration parameter  and the effective exchange
integral :

(3)

The parameter  can be related to the hole density x
per copper atom [25].

The subsystem of spins localized at copper ions is
considered in the state of quantum spin liquid, which
is characterized by spherical symmetry in the spin state
[29–31]. This means that the spin correlation func-
tions  satisfy the relations

(4)
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where  is the radius of the th coordination sphere.

In addition, , ( ).
To simplify the form of Hamiltonian (1) and,

hence, the further calculations, we perform the uni-
tary transformation of the fermion operators

, where . After this transforma-
tion, the factors  appear in the terms
containing -operators in Eq. (1). These factors com-
pensate the signs determined by the functions  and

; therefore, we can omit the sign functions in (1).
After the unitary transformation , the
Hamiltonian of the spin−fermion model takes the
form

(5)

To obtain the expressions describing the spectrum and
the spectral intensity as functions of the wave vector 
for the untransformed Hamiltonian, it is sufficient to
perform the shift  at the end of calculations.

Further on, we take the following commonly used
parameters:  eV,  eV,  eV,
and  eV [32–34]. Then, we have  eV
and  eV. In this theory, the tunneling integral
 is the fitting parameter, which we will choose on the

basis of comparison with the experimental data for
La Sr CuO  [35].

3. FERMION STATES IN THE LIMIT 
OF STRONG CORRELATIONS

To prove the spin-polaron nature of fermion quasi-
particles arising within the CuO  plane at low doping,
let us consider a solution of the Schrödinger equation
for a single hole using the variational technique. We
will take into account that, according to the Mermin–
Wagner theorem [36], the undoped 2D subsystem of
localized spin moments corresponds to the state 
without the long-range magnetic order at any tem-
perature as low as is wished. For the antiferromagnetic
exchange coupling, this state has the characteristics
[37]

(6)

The assumption concerning the singlet nature of the
state exhibited by the 2D system under study at a non-
zero temperature is based on the Marshall theorem
[38] stating that a set of an arbitrarily large but finite
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lattice and are antiferromagnetically coupled with
each other has a singlet ground state.

Taking into account the symmetry characteristics
of the Hamiltonian, we find that, for any irreducible
representation of the translation group , the single-
hole state  with the spin projection  can be writ-
ten in the form

(7)

where  are both the usual creation operators of a
hole on the oxygen subsystem and the combinations of
the products of the hole creation operators and the
operators corresponding to the localized subsystem
(see below).

Using the stationarity condition for the energy
functional with the additional constraint

, we employ the Lagrange method and
find that the excitation energies  (
and  are the energies corresponding to the 
and states, respectively) and factors  are deter-
mined by the set of linear homogeneous equations

(8)

where

(9)

(10)

The numerical calculations demonstrate that the opti-
mum (for attaining the minimum energy with the
minimum set of basis operators) description of the sin-
gle-hole sector is achieved with three families of the
operators

(11)

used to construct the operators in the crystal momen-
tum representation

(12)

For each  and , operators determine three states:
 . It is easy to check the orthogonal-

ity of these states taking into account conditions (6):
.

Calculating matrix elements (9) and (10), we find
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Here,  ( ) are the invariants corresponding
to the square lattice: ,

 and .
The spin correlation functions , , and  in

Eqs. (13) and (14) are defined in the same way as in
Eq. (4) with the only difference that the averaging of
spin operators is performed over the  states,

, rather than over the thermody-
namic ensemble. In Section 4, we discuss in detail the
choice of the correlation functions .

The results of numerical calculations presented in
Figs. 1 and 2 demonstrate the importance of the inter-
action between the charge and spin degrees of free-
dom, as well as the spin-polaron character of the lower
branch in the spectrum of single-hole states. In
Fig. 1a, we illustrate the energy spectrum of the sin-
gle-hole states for the values of the crystal momentum
located at the main diagonal of the Brillouin zone.
This spectrum is obtained with the use of only two
operators,  and . In fact, these branches
describe the spectrum of holes which do not interact
with the subsystem of spin moments of copper ions.

The addition of the third operator, , to the vari-
ation procedure results in the important qualitative
changes seen in the spectrum of the single-hole states
that was obtained with the three-operator basis and is
shown in Fig. 1b by solid lines. The main difference is
the appearance of the split-off branch with the mini-
mum at a point close to . The lowering in the
energy of such single-hole states is related to the term
in the Hamiltonian proportional to ~J, which
describes both the exchange interaction between the
hole and the nearest copper ions and the spin-cor-
related hoppings. Just the inclusion of the operators
explicitly taking into account this strong spin–fermion
correlation in the basis ensures a significant energy
gain. This is also accompanied by the renormalization
of two initial spectral branches.

The physical reason for the formation of spin-
polaron states is similar to that giving rise to the spin
polaron in the exactly solvable problem concerning a
single electron with the f lipped spin in the ferromag-
netic host material at the antiferromagnetic type of s–
d exchange coupling between the electron spin and the
localized spin moment [39].
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For the crystal momentum spanning other direc-
tions of the Brillouin zone, the qualitative changes in
the energy spectrum of single-hole states hold.

It is important to note that the split-off lower spin-
polaron band remains with an increase in the number
of basis operators. To illustrate this statement, we
show in Fig. 1b the results of the variational calcula-
tion of the fermion spectrum in the framework of the
basis consisting of eight operators

(15)

where

The first two operators of this basis coincide with the
corresponding operators of basis (11). Each of four
operators  with  describes the correla-
tion of a localized spin with a hole located at one of the
four nearest-neighbor oxygen ions. The last two oper-
ators,  and , describe the correlation of a hole
located at an oxygen ion simultaneously with two spins
located at the two nearest copper ions. The calculated
eight branches of the fermion spectrum are shown in
Fig. 1b by dashed lines. It is important that the disper-
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sion law for the lower branch of the spin-polaron spec-
trum remains nearly unchanged. Hence, the three-
operator basis (11) is sufficient with a high accuracy for
the description of the low-energy part in the spectrum
of fermion quasiparticles.

In the low-doping limit characteristic of cuprate
HTSCs, the chemical potential always lies in the lower
spin-polaron band. For this reason, the problem of
obtaining an explicit expression for the dispersion law

 in this band is quite significant. To solve this
problem, we use the following equation for finding the
dispersion relation:

(16)

whose roots determine the frequencies  for which the
solutions  of Eqs. (8) are nontrivial. Representing
the determinant in Eq. (16) in the explicit form, we
obtain the expression

(17)

where
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For the used set of parameters, it is easy to obtain
approximate solutions of the dispersion equation (17)
describing with a high accuracy the spectral functions
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Fig. 1. (Color online) Energies of single-hole states versus
the crystal momentum along the main diagonal of the Bril-
louin zone at the parameters  eV,  eV,

 eV, and . The spin correlation functions
are , , and . (a) Energy
spectrum  obtained taking into account two operators

 and . (b) Energies of single-hole states 
calculated using (solid lines) the three-operator basis given
by Eq. (11) and (dashed lines) the eight-operator basis
specified by Eq. (15). The lower spectral branches coincid-
ing for both bases correspond to spin-polaron states.
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Fig. 2. (Color online) Partial contributions of basis states
to the single-hole state, corresponding to the lower branch
of the spectrum shown in Fig. 1b. The characteristic
parameters of the model used for calculations of these
plots are chosen to be the same as those corresponding to
the curves in Fig. 1. Here, , ,
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spin-polaron spectrum is determined by the expres-
sion

(19)

where . For the two upper
branches  and  shown in Fig. 1b, we obtain

(20)

Let us discuss the structure of the single-hole state
corresponding to the lower spectral branch  in
Fig. 1b. The spectral weights  and  of the bare
hole states  and  are  and

. The spectral weight of the spin-polaron
basis state is .

In Fig. 2, we show the introduced partial contribu-
tions for crystal momenta lying at four directions of
the Brillouin zone. It is seen that  (upper curves) is
several times larger than  and . This verifies the
spin-polaron nature of the single-hole state corre-
sponding to the lower split-off spectral branch.

4. EVOLUTION WITH THE DOPING
OF THE FERMI SURFACE IN LSCO

In the preceding section, the spectrum of fermion
quasiparticles was calculated by a variational method
taking into account the strong coupling between the
subsystem of localized spins at copper ions and the
spin of an oxygen hole. In fact, we considered only one
hole. In the case of a finite number of holes, it is con-
venient to calculate the spectrum of fermion exci-
tations using the Zwanzig–Mori projection technique
[26, 27]. In addition, this technique in combination
with the formalism of retarded Green’s functions
makes it possible to calculate the necessary thermal
averages and, as is shown below, to describe the Coo-
per instability in the ensemble of spin polarons.

In the framework of the projection technique, we
choose the minimal basis consisting of  operators 
( ), which is assumed to be sufficient for an
adequate description of quasiparticle excitations in the
system. Then, we introduce the two-time retarded
Green’s functions ( )

where the operator  is related to the operator 
through Eq. (12). The equations of motion for the
Fourier transforms of the introduced Green’s func-
tions have the form

(21)

= ε + , = − − − ,
2

1
0

( )
2 4

k k k
p k k k

k

Q Q RE k x x B
x

= − −2
0 /2 /4k k k kx Q Q B

2( )E k 3( )E k

= ε + −

− + .∓

2
3

2

( ) ( )/2

( ) /4 /

p k k

k k k k

E k Q x

Q x R x

1( )E k
1kP 2kP

+
σ 〉1 |kA G +

σ 〉2 |kA G = α 2
1 1| |k kP

= α 2
2 2| |k kP

= α 2
3 33 3| |k kP K

3kP
1kP 2kP

n jfA
= , ,1j … n

, = , ,1i j … n
+ +, = 〈〈 〉〉 = − θ 〈 , 〉 ,( ) ( )| (0) ( ) [ ( ) (0)]ij ik jk ik jkG k t A t A i t A t A

jkA jfA

+ +
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where

(22)

Projecting the commutation relation  onto the
chosen operator basis, we obtain

(23)

where  and

(24)
In Eqs. (22) and (24), the angular brackets denote the
thermal averaging over the Gibbs ensemble, whereas
the averaging of similar matrices in Eqs. (9) and (10) is
performed over the ground state  of the system.
However, the matrix elements of  and  cal-
culated in the low-density limit coincide for both
kinds of definition and are given by Eqs. (13) and (14).
Further on, we assume that the matrix elements of

 and  are defined according to Eqs. (22) and
(24).

Substituting (23) into equations of motion (21), we
obtain the closed set of equations for the Green’s func-
tions. In the matrix form, this system reads

(25)

where  is the identity matrix.
The quasiparticle spectrum is determined by the

poles of the Green’s function  and can be calcu-
lated using the dispersion equation

(26)
In particular, if we choose operators (11) as the basis
operators, Eq. (26) coincides with Eq. (17).

In this section, using the projection technique, we
demonstrate the efficiency of the spin-polaron
approach by applying it to the angle-resolved photo-
emission spectroscopy (ARPES) data reported in [35].
In that work, the doping-induced transformation of
the Fermi surface in La Sr CuO  (LSCO) was ana-
lyzed in detail in the doping range from , at
which LSCO is an underdoped insulator, to ,
where LSCO undergoes a transition to the state of
normal metal. To characterize the Fermi surface, the
authors of [35] introduced the Fermi momentum 
equal to the distance from the  point in the
Brillouin zone to the point where the Fermi surface
intersects with the nodal line. The authors of [35]
determined  as a function of x and demonstrated the
transformation of the Fermi surface topology from the
electron to hole type at a threshold value of the doping
level.

Here, we assume for simplicity that the Coulomb
repulsion is . Under this condition, in the
Hamiltonian of spin-fermion model (5), we have
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,*̂[ ]ikA
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 eV and  eV. We choose three opera-
tors (11) as the basis operators. The Green’s functions
determined from Eq. (25) can be represented in the
form

(27)

As was mentioned above, for cuprate HTSCs, only the
lower polaron band with the dispersion law 
shown in Fig. 1b comes into play. Two other bands
with  and 3 are separated from  by a wide
band gap.

An important feature of the used approach is that
the correlation functions , , and  (determining
the matrix elements  and  according to Eqs. (13)
and (14)), as well as the gap  in the spectrum of
magnetic excitations near the  point of the Brillouin
zone, are determined simultaneously in the frame-
work of the spherically symmetric self-consistent
method developed for a frustrated antiferromagnet
[29–31, 37]. Here,  is a linear function of the

inverse correlation length . On the other hand,
according to the neutron scattering and nuclear mag-
netic resonance data (see, e.g., [40, 41]),  is deter-
mined by the doping level . In LSCO, it increases by
several times with  ranging from 0.03 to 0.3. Accord-
ing to this, the values of frustrations specified by us
(see table) correspond to the case where the spin gap
increases by a factor of 2.5 at the growth of the frustra-
tion parameter from  to .

In the table, we present the spin correlation func-
tions calculated by such a technique for five values of

τ = .0 23 = .1 88J

,

=

,ω = , , = , , .
ω −∑

3
( )

1

( )
( ) 1 2 3

( )

n
i j

ij
nn

z k
G k i j

E k

=1( )nE k

= 2n 1( )E k

1C 2C 3C
ijK ijD

Δ ( )Q p
Q

ΔQ
−ξ 1

−ξ 1

x
x

= .0 15p = .0 3p

the frustration parameter , which we relate to five
values of the doping level .

For LSCO, the Fermi energy can be determined by
equating the number of bare holes  to the doping
level . The number  at small values of  is equal to
the spectral density  inte-
grated over the Brillouin zone and summed over .

In Fig. 3, we illustrate the distribution of the spec-
tral density over the Brillouin zone. At the  point, we
have , but the spectral weight grows steeply
with the shift from this point and saturates at
approaching the antinodal  line.

In Fig. 4, to illustrate the formation of a f lat-band
region near points in the  space, we highlight the
lower spin-polaron band by  contours
calculated at . The existence of the f lat band
in this region was reported in numerous studies [42–
48]; in particular, such a band was revealed in [35] at

. The data presented in Fig. 4 allow estimat-
ing the effective mass for polaron quasiparticles,

p
x

hn
x hn x

,σ , ,= +1 1
(11) (2 2)( ) ( ) ( )hn k z k z k

σ

Γ
,σ =( ) 0hn k

−X X

X k
=1( ) constE k

= .0 15x

≤ .0 15x

Doping levels  and the corresponding frustration parame-
ters  and the spin correlation functions

0.03 0.15 0.124 0.0950
0.07 0.21 0.075 0.0640
0.15 0.25 0.036 0.0510
0.22 0.275 0.009 0.0450
0.30 0.30 0.0457

x
p

x p 1C 2C 3C

− .0 287
− .0 255
− .0 231
− .0 214
− .0 194 − .0 0222

Fig. 3. Contours of the spectral density  corre-
sponding to bare holes in the lower polaron band on the
first quarter of the  space at the doping level .
The numbers indicate the values of .

X M

X

,σ( )hn k

k = .0 15x
,σ( )hn k

Fig. 4. Contours of the energy  = const in the lower
polaron band within the first quarter of the  space at the
doping level . The numbers indicate the values of

 in electronvolts.

X M

X

1( )E k
k

= .0 15x
1( )E k
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which, as we can see, is strongly anisotropic. For the
nodal  direction, the calculations give the
effective mass , where  is the free
electron mass, whereas in the antinodal  direc-
tion, we have .

The  and  contours
shown in Figs. 3 and 4 are calculated with the value

 eV of the hopping integral for the direct oxy-
gen−oxygen hoppings. This single fitting parameter is
chosen to fit the Fermi surface topology to the ARPES
experimental data [35]. We should emphasize that the
same  value is used to describe the Fermi surface at all
five doping levels x listed in the table.

The Fermi surface calculated simultaneously with
the spin correlation at the five aforementioned doping
levels  are shown in Fig. 5. The Fermi surface topol-
ogy changes from the electron to hole type with the
increase in  as in the experiment.

The calculated doping dependence of  is pre-
sented in Fig. 6 in comparison with that measured in
[35]. We can see that the weak dependence of  on 
is well reproduced in the framework of the suggested
spin-polaron theory: the maximum disagreement
between the experimental and calculated values of 
does not exceed 4%.

5. SELF-CONSISTENT EQUATIONS
FOR THE SUPERCONDUCTING PHASE
The theory describing the superconducting state in

the system of oxygen holes strongly coupled to the
subsystem of localized spin moments of copper ions in
the framework of the spin-polaron approach was for-
mulated for the first time in [49]. For this purpose, it

Γ −( M)
Γ− = .M 1 25 em m em

−(X X)
− = .X X 9 4 em m

,σ =( ) consthn k =1( ) constE k

= .0 094t

t

x

x

Fk

Fk x

Fk

was required to extend the basis operator set so that
anomalous averages could be introduced.

Taking into account the results discussed in the
previous sections, we can easily see that, to obtain the
self-consistent equations for the anomalous averages,
three operators , , and  given by Eq. (12)
should be supplemented by the three operators

(28)

With the basis consisting of six operators specified
by Eqs. (12) and (28) used in the framework of the pro-
jection technique, the set of equations of motion for
Green’s functions (25) and dispersion equation (26)
are now of the sixth order ( ).

In contrast to the previous section, we will not use
here the simplifying condition  and will per-
form our analysis at  eV [32]. It is clear that
the matrix elements  and  with subscripts

 coincide with those calculated before (see
Eqs. (13) and (14)). The matrix  is still diagonal
and its diagonal elements obey the condition

 ( ). It is convenient to
describe the matrix  in the block representation.
The left upper  block is constructed including
only normal averages  ( ). The right
lower block is formed by  with . Here,
we have  for all .

The matrix elements of the right upper block in
 are due to anomalous pairings. In the case under

study, this block included only one nonzero matrix
element . Since the matrix is Hermitian, the
lower left block in  also has only one nonzero
matrix element , coinciding with .

σ1kA σ2kA σ3kA

+ + +
σ ,− ,σ σ ,− ,σ σ ,− ,σ= , = , = .4 1 5 2 6 3k k k k k kA A A A A A

= 6n

= ∞dU
= .10 5dU

( )ijK k ( )ijD k
, = , ,1 3i j …
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×3 3
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( )ijD k , = , ,4 5 6i j
+ , + = −3 3( ) ( )i j ijD k D k , = , ,1 2 3i j

( )D k

36( )D k
( )D k

63( )D k 36( )D k

Fig. 5. Fermi surfaces in the first quadrant of the Brillouin
zone for five doping levels  indicated near the corre-
sponding Fermi contours.

X M

X

x

Fig. 6. (Color online) Fermi momentum  versus the
doping level . The solid curve connects the values of 
calculated in the framework of the spin-polaron approach.
Open circles denote experimental values of  taken from
[35].
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As a result, we can write the dispersion equation (26)
for the superconducting phase in the form

(29)

where

(30)

In the normal phase,  and Eq. (29) trans-
forms to Eq. (17).

The anomalous average  is expressed in
terms of the sum of a large number of terms, which can
give the solutions of the integral self-consistency
equation corresponding to the different symmetry
types of the superconducting order parameter. In par-
ticular, the terms proportional to the parameter  lead
to the -wave pairing. In view of the available experi-
mental data, we consider only the d-wave supercon-
ducting order parameter. In this case, we can use a
reduced expression for 

(31)

To derive Eq. (31), we used the following relation for
the averages of the operator products, which are not
reduced to the basis operators:

(32)

which is valid for the SU(2)-invariant phase and
allows us to express this average in terms of the aver-
ages involving the basis operators. Only with the use of
this expression does Eq. (31) include the anomalous
average , which plays, according to the
numerical calculations, a crucial role in the formation
of the d-wave superconductivity in the ensemble of
spin-polaron quasiparticles. For the thermal averages
containing the scalar product of spin operators, we
employed the decoupling procedure. This gives rise to
the magnetic correlation function  appearing in the
second term of the right-hand side of Eq. (31).

According to Eq. (31),  can be written as

(33)

ω −ω + ϕ ω ϕ −ω = ,
2

36
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The amplitude  of the superconducting order
parameter can be found from the equation

(34)

where

(35)
and the spectrum of fermion excitations in the super-
conducting phase  takes the form

(36)
Here,

(37)

The self-consistent calculations demonstrate that  is
close to unity within nearly the whole Brillouin zone.

It follows from Eq. (36) that the spectrum of fer-
mion excitations in the superconducting phase is
based on the spin-polaron states. According to this, we
can argue that the Cooper instability under study cor-
responds to the instability of just the spin-polaron
ensemble.

According to the spectral theorem, the equation for
determining the chemical potential  in the supercon-
ducting phase can be written in the form

(38)

where

(39)

and  is the Fermi−Dirac func-
tion.

6. EFFECT OF DOPING ON THE COOPER 
INSTABILITY OF THE SPIN-POLARON 

ENSEMBLE
The doping dependence of the critical temperature

for the transition to the superconducting phase with
the d-wave order parameter is calculated by solving
Eq. (34) along with Eq. (38) determining the chemical
potential.
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The numerical calculations were performed taking
into account that  and  depend on the spin cor-
relation functions  given by Eq. (4) for the first three
coordination spheres . These correlation
functions are determined self-consistently using the
technique described in Section 4. The change in the
density of holes  is taken into account by the modifi-
cation of spin correlation functions , by the dis-
placement of the chemical potential , and by the
renormalization of parameter  playing the
role of a coupling constant (see Eq. (34)).

The exchange integral I is determined using the
formula  obtained in
[50], where the bilayer system YBa Cu O  was stud-
ied. Here,  and  are the exchange integrals for the
ions in the nearest planes and in the planes in the adja-
cent unit cells, respectively. Taking into account a
weak dependence of  on the constants  and ,
which are of the order of  eV, we obtain

 eV (or ) for the Néel temperature
TN = 400 K [51], which is in good agreement with the
available experimental data. The doping dependence
of the critical temperature calculated for this value of

 is shown in Fig. 7. We can see that the famous super-
conducting dome is well reproduced in both the value
of  and the doping range .

The phase diagram represented in Fig. 7 was
obtained with the tunneling integral t =  eV for the
nearest oxygen ions, i.e., the same as that used in Sec-
tion 4 to describe the evolution of the Fermi surface.
In Section 4, the  value was chosen by fitting the
experimental and calculated Fermi surface and 
functions. Here, according to the self-consistent cal-
culations, the integral  significantly affects the posi-

ijK ijD
jC

= , ,1 2 3j

x
jC

μ
= −1 (1 )I I p

= π + ./(log( / ') 3 5)NT I I KK
2 3 +6 x

K 'K

I K 'K
− −3 2–10 10

≈ .0 1I = . τ0 2I

I

cT x

.0 1

t
F( )k x

t

tion of the lower boundary  of the superconducting
dome, corresponding to the low doping levels. It turns
out that the measured value  ≈ 0.05 is achieved just
for  eV. Thus, the comparison of the experi-
mental data with the calculations in the framework of
the spin-polaron approach for both the normal and
superconducting phases leads to the same value

 eV. This value significantly differs from often
used values  eV [32–34, 52].

In Fig. 8  we demonstrate the variation of the band
gap appearing in the spectrum of elementary exci-

cx

cx
= .0 1t

= .0 1t
= . − .0 4 0 6t

Fig. 7. Temperature of the transition to the superconduct-
ing phase with the d-wave symmetry of the superconduct-
ing order parameter. The characteristic parameters of the
model used for the calculation of this plot are chosen to be
the same as those corresponding to the dispersion curves
shown in Fig. 1.

c

Fig. 8. Superconducting gap versus the crystal momentum
in the Fermi contour. The Fermi contour is shown by the
solid line in the horizontal plane. The calculation is per-
formed at  and . The other parameters of
the model are chosen to be the same as those used in Fig. 1.

= .0 125x = 0T

Fig. 9. Doping dependences of the amplitude of the super-
conducting order parameter and the superconducting
transition temperature. The characteristic parameters of
the model used for calculations of these plots are chosen to
be the same as those corresponding to the curves in Fig. 1.

c
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tations for spin-polaron quasiparticles at the Fermi
contour in the superconducting phase. We can see that
the dependence of the band gap on the crystal
momentum in the first Brillouin zone is characteristic
of the d-wave symmetry.

In Fig. 9, to find the relation between the order
parameter  and critical temperature , we
draw their doping dependence. According to this fig-
ure, the amplitude of the order parameter vanishes at

 through a second order phase transition.

7. CONCLUSIONS

The main results of the reviewed studies supported
by the Russian Foundation for Basic Research (proj-
ect no. 13-02-00523) are as follows.

(i) In the framework of the spin-fermion model
including the strong coupling between the spin and
charge degrees of freedom and the actual lattice struc-
ture in the CuO  plane with two oxygen ions per unit
cell, it has been shown that spin-polaron quasiparti-
cles determine the low-temperature features in the
characteristics of cuprate superconductors. For the
spin-polaron concept, the crucial role is played by the
basis operator characterizing a strong correlation
between the subsystem of localized spin moments at
copper ions and the subsystem of holes moving via
oxygen ions.

(ii) It has been shown that the energy band corre-
sponding to the spin-polaron states is located much
lower (by about 3 eV) than the decoupled fermion
states. This determines the stability of spin polarons.

(iii) The self-consistent calculations have demon-
strated that fine details of the evolution of the Fermi
surface in La Sr CuO , which is observed in the
ARPES experiments at doping, are well reproduced
within the developed spin-polaron concept primarily
because of the inclusion of:

(a) the spin-correlated hoppings in the effective
Hamiltonian;

(b) the doping-induced changes in the inverse cor-
relation length ;

(c) the  dependence and the small values of the
residue function for “bare” holes  in the lower
polaron band when determining the Fermi surface.
The treatment of the spin subsystem in the framework
of the spherically symmetric theory is also important
[29–31].

(iv) In the framework of the spin−fermion model,
it has been shown for the first time that the ensemble
of spin-polaron quasiparticles undergoes a cooling-
induced transition to the superconducting state with
the d-wave superconducting order parameter. Here,
the mechanism underlying the Cooper pairing is
related to the exchange interaction, which as a result of

36| ( )|D k cT

cT

2

−2 x x 4

−ξ 1

k
,σ( )hn k

the strong spin−charge coupling transforms to the
effective attraction between spin polarons.

(v) We have obtained simple explicit expressions
both for the spin-polaron spectrum in the normal
phase and for the spectrum of fermion excitations in
the superconducting phase.

(vi) The comparison of the experimental data and
the self-consistent numerical calculations both for the
normal and for the superconducting phase has shown
that the tunneling integral  between the nearest oxy-
gen ions differs from the often-used values and is equal
to  eV. Just at this value of , the  phase dia-
gram obtained in the framework of the spin-polaron
concept and the dependence of  on the doping level

 correlate well with the experimental data for copper
oxides.

This work was supported by the Russian Founda-
tion for Basic Research (project nos. 13-02-00523, 16-
42-240435, and 16-02-00304) and by the Siberian
Branch, Russian Academy of Sciences (project
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