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INTRODUCTION

It is known that Cooper pairing occurs between
electrons with states which transform into each other
under the time�reversal operation. In materials with
long�range magnetic order, such symmetry is broken.
This is one of the reasons for the competition between
superconductivity and magnetic ordering. In ferro�
magnetic materials, for example, singlet superconduc�
tivity is either suppressed or leads to the transforma�
tion of ferromagnetic ordering, in particular, into a
spiral magnetic structure [1].

Fundamentally different behavior is observed in
antiferromagnetic materials. The symmetry in them is
broken with respect to time reversal; however, states,
which are connected to each other by successive oper�
ations of time reversal and translation to a vector con�
necting ions of different sublattices in the magnetic
unit cell, have the same energy [2]. These states can
participate in the formation of the Cooper instability
in antiferromagnetic compounds. With this in mind, it
is said that antiferromagnetic superconductors have a
special type of symmetry.

There are many examples of materials where
superconductivity occurs in the presence of long�
range antiferromagnetic order. These include, for
example, the rare�earth ternary borides and chalco�
genides, some cuprate high�temperature supercon�
ductors, iron pnictides, and heavy�fermion com�
pounds. In recent years, compounds based on rare�

earth intermetallic compounds (for example, CeIn3,
CeRhIn5, or CePt2In7 from the group CenTmIn3n + 2m)
have attracted considerable interest. In these com�
pounds, a microscopically homogeneous phase of the
coexistence of superconductivity and antiferromag�
netism (mixed phase), that is, the broken time�rever�
sal symmetry phase, is observed at low temperatures
[3, 4]. There are several reasons that determine the rel�
evance of the study of superconductivity with time�
reversal symmetry broken by magnetic ordering. First,
the proximity of the superconducting phase to the
antiferromagnetic phase in the phase diagram and the
emergence of a mixed phase of antiferromagnetism
and superconductivity in a number of materials are the
most important properties of high�temperature super�
conductors. Second, the relationship between the two
types of ordering ensures that the external influence
on, for example, the magnetic subsystem of such
materials makes it possible to control their supercon�
ducting properties. Third, it was recently suggested
that in layered compounds with trigonal or hexagonal
symmetry, the coexistence of chiral superconductivity
and noncollinear magnetic order contributes to the
formation of Majorana bound states [5, 6].

Intensive experimental studies of CeRhIn5 led to
the determination of a number of unusual properties
of this heavy�fermion compound. At atmospheric
pressure, this compound is an antiferromagnet with a
Néel temperature of 3.8 K [7]. The application of
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external pressure leads to the suppression of antiferro�
magnetism and causes the emergence of superconduc�
tivity. A number of experiments on nuclear quadrupole
resonance and neutron diffraction prove that in
CeRhIn5, a microscopically homogeneous phase of
coexistence of superconductivity and antiferromag�
netism occurs up to the critical pressure, at which the
antiferromagnetism is destroyed [8, 9].

The mechanism of superconductivity in cerium
heavy�fermion systems is still a subject of intense
debate. One of the possible nonphonon mechanisms is
a magnetic mechanism caused by the magnetic nature
of interaction and spin fluctuations [10, 11]. Alterna�
tive nonphonon mechanisms of superconductivity are
directly associated with possible fluctuations of non�
magnetic nature near the quantum critical point of
heavy�fermion metals. In [12], it is assumed that the
appearance of the Cooper instability is associated with
strong valence fluctuations. With respect to cerium
heavy�fermion compounds, it has often been sug�
gested that the formation of superconducting pairs is
due to fluctuations near the local quantum critical
point, at which the Kondo regime is established upon
the destruction of antiferromagnetism [13]. Recently,
however, based on the quantum Monte Carlo method
for the periodic 2D Anderson model with frustrated
hybridization interaction, it was shown that antiferro�
magnetic spin fluctuations made the main contribu�
tion to the d�wave superconductivity emergence in
compounds Ce�115 (CeRhIn5, CeCoIn5) [14].

A significant feature of cerium compounds of the
CeRhIn5 type is their quasi�two�dimensional struc�
ture [7]. It is known that for a quasi�two�dimensional
Heisenberg antiferromagnet, the Néel temperature is
determined by the formula 
where J is the parameter of exchange between the
nearest ions in the xy plane, parameter K sets the value
of the exchange interaction between the nearest
neighbors along the z axis, and с is a constant depend�
ing on the type of lattice [15]. This equation indicates
a decrease in the transition temperature compared
with the isotropic case. For CeRhIn5, the exchange
parameters were estimated, J = 0.74 meV and K =
0.1 meV, based on experimental data on neutron
spectroscopy and using the Heisenberg model [16].
The consideration of hybridization can renormalize
these parameters. In this context, estimation of the
Néel temperature for quasi�two�dimensional heavy�
fermion antiferromagnets, taking into account the
hybridization process, is an important task.

The periodic Anderson model is commonly used as
a base model for the heavy�fermion systems, espe�
cially in the regime of variable valence [17]. Based on
obtaining an effective Hamiltonian for the periodic
Anderson model, it is demonstrated that the exchange
interaction between localized electrons can be
induced by high�energy hybridization processes, while
low�energy contributions characterize the regime of

( )( )N ln ,T J J K c= π +

mixed valence [18]. This exchange interaction leads to
the induction of Cooper pairing and the appearance of
a mixed phase [19]. This determines the nature of the
magnetic mechanism of the Cooper instability with
d�wave pairing in two�dimensional systems of rare�
earth elements with broken symmetry with respect to
the time�reversal operation [20].

In the present paper, the temperature dependences
of the order parameters in the antiferromagnetic and
mixed phases with broken time�reversal symmetry are
determined for quasi�two�dimensional intermetallic
compounds of cerium within the extended periodic
Anderson model, based on the diagram technique in
atomic representation [21, 22]. In developing the the�
ory, we take into account that the superconducting and
antiferromagnetic orderings are induced by the same
exchange interaction in the subsystem of localized
electrons. Accounting for hybridization in the theory
of the mean exchange field leads to a rather high criti�
cal temperature for the antiferromagnetic phase [23];
therefore, in this paper, the necessary renormalization
is carried out based on the spin�wave theory of a
heavy�fermion antiferromagnet. The Néel tempera�
ture and the temperature of transition to the broken
time�reversal symmetry phase, which is characterized
by the coexistence of superconductivity and antiferro�
magnetism, are in good agreement with the values
determined experimentally for cerium systems (for
example, CeRhIn5). The advantages of the developed
theory in comparison with other works in this field lie
in the fact that description of the antiferromagnetic
phase is carried out within the framework of spin�wave
theory taking into account hybridization between
localized and itinerant electrons, without using the
concept of fully localized electrons. This approach
gives a unified description of both the antiferromag�
netic and mixed phase in heavy�fermion systems at
finite temperatures.

MODEL AND METHOD

We write the Hamiltonian of the effective periodic
Anderson model, which takes into account the
exchange interaction of quasi�localized electrons in a
subsystem, as

(1)

The term of the Hamiltonian

,

(2)

describes noninteracting localized and itinerant elec�
trons in a lattice with two antiferromagnetic sublat�
tices F and G. To describe the quasi�two�dimensional�
ity of heavy�fermion intermetallic compounds, we
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introduced summation over index j = 1, 2, which
numbers the plane along the z axis in the unit cell. A G�
type antiferromagnetic structure (classification [24])

will be considered in the paper. The Hamiltonian 
is diagonal in the representation of Bogolyubov oper�
ators  and  which act on the itinerant states in
the lower and upper antiferromagnetic subbands,
respectively. The formation of two subbands is caused
by doubling of the unit cell and a reduction in the Bril�
louin zone upon the appearance of long�range antifer�
romagnetic order. The initial energy values of Bogoly�
ubov quasiparticles in К space are determined by
equations  and  The fol�
lowing designations are used:  ε0 is the
on�site energy of an itinerant electron, μ is the chem�
ical potential, and functions tk and Γk are determined
as the Fourier transforms of hopping integrals in the
sublattices and between them. It is assumed that elec�
tron hopping is only possible in the xy plane, and the
parameter of hopping between the nearest neighbors
along the z axis is negligible.

The Hubbard operator  belonging to a Wan�
nier cell m is expressed in terms of atomic states in the

usual way, that is,  =  The action of the
Hubbard operator on an arbitrary state of cell m is

given by expression  =  where  is
the Kronecker delta. Notation  determines the
state without electrons in cell m. The state with one
electron at a site, having a spin projection of  is
designated as  The algebra of the Hubbard oper�
ators and their commutation relations are described in
more detail in the original paper [25]. The finite value
of the Coulomb repulsion of electrons localized at the
site is considered by perturbation theory, whereby the
exchange interaction between localized electrons was
induced in the system [18]. Sites designated by index f
refer to the F�sublattice, for which  =  in the
presence of antiferromagnetism. The sites of the G
sublattice are numbered by index g, and for them the

equality of  is true.

The energy of localized levels for the F� and G sub�
lattices can be written as

(3)

Equation (3) takes into account a mean�field
“exchange” correction to the initial energy of local�
ized electrons E0: nL is the average number of electrons
at a localized level, J0 is the total value of the exchange
interaction between an f electron and electrons occu�
pying neighboring sites in the xy plane, and K0 is the
sum of the exchange parameters of the f electron and
its nearest neighbors along the z axis. Function η

σ
,

dependent on σ, is determined in the usual way: η
σ
 =

1 if σ = ↑, and η
σ
 = –1, if σ = ↓.
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The operator of the hybridization interaction after
expansion over quasi�momenta is convenient to repre�
sent in the form

(4)

where  =    is the block
matrix, that is

(5)

In the definition of matrix (5),  is the zero matrix 2 ×
2, and Vk and Wk are the Fourier transforms of the
hybridization integrals in the xy plane in the sublat�
tices and between them, respectively.

The effective antiferromagnetic coupling between
localized electrons is described by the third term of the
Hamiltonian, which can be written as

(6)

It is expected that the exchange interaction occurs in
the subsystem of quasi�localized states only between
the nearest neighbors both in the xy plane and along
the z axis. This is reflected in the equation through the
inclusion of the indices of sites f and g at the summa�
tion sign in angle brackets. In this expression, each of
the operators describes the deviations from its mean

value by equation  Sjm is the quasi�spin
vector operator of the localized subsystem, the com�
ponents of which are associated with the operators of

atomic representation by the equations 

  =  The operator of the
number of localized electrons at site f is determined as

 = 

We will use the Matsubara Green’s functions in the
atomic representation, which in general terms are
determined from equation

(7)

where  is the four�dimensional coordinate
including three spatial coordinates of Rm and imagi�
nary time τ, and γ and ν are the root vectors for the
Hubbard operators. The root vector uniquely deter�
mines the original pair index (n, n') of the Hubbard
operator, so it is often designed as  The dimen�
sion of the root vector coincides with the dimension of
the basis of atomic states, and the ith component of
the root vector is written in a simple universal form as
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 =  The advantages of introducing the
root vectors are described in detail [22]. The super�
script A indicates the affiliation of the spatial coordi�
nates Rm of the Hubbard operator taking the first posi�
tion in the definition of Green’s function to a particu�
lar sublattice; that is,  if  and  if

 Similarly, index A' uniquely determines to
which sublattice the second operator of Green’s func�
tion belongs. The definition of Green’s function
includes the Hubbard operators in the Heisenberg rep�

resentation, that is,  = 
The angle brackets in Eq. (7) mean thermodynamic
averaging with the density matrix

 in which  is the
inverse temperature (hereinafter, the temperature is
measured in energy units). The standard transition to

the interaction, wherein  =

 leads to Green’s function
taking the form

(8)

where  is the scattering

matrix and  =  +  The Fourier transfor�
mation and expansion over quasi�momenta of the
Matsubara Green’s function can be written as

(9)

Further, it is convenient to use the four�dimensional
vector 

The problem of finding the temperature depen�
dence of the antiferromagnetic order parameter is
reduced to determination of the Fourier transform

 in the expansion of the scattering matrix into
a series. The designation Fj is introduced to show that
Green’s function is based on operators belonging to
the F sublattice and related to the j plane of the unit
cell. The difficulties in solving this problem are con�
nected in a general way to the need to describe a quasi�
two�dimensional structure with two sublattices and to
consider simultaneously exchange and hybridization
interactions. It is expected that the exchange interac�
tion between localized electrons is responsible for
long�range antiferromagnetic order. If the localized
level is completely full (the Fermi level lies above the f
level), the system is close to the behavior of a Heisen�
berg antiferromagnet in terms of magnetic properties.
It is believed that when a localized level is partially
filled, the main effects determining the temperature
dependence of the antiferromagnetic order parameter
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are caused by hybridization processes. In this regard,
for the qualitative study of the impact of hybridization
on the main characteristics of a heavy�fermion anti�
ferromagnet, such as spin�wave stiffness, the antifer�
romagnetic order parameter, and the Néel tempera�
ture, it is sufficient to limit ourselves to the Tyablikov
approximation when considering the “exchange”
contributions to the quasi�spin Green’s function [26].
This approximation can significantly simplify the

Dyson equation for 

It is convenient to introduce the matrix Green’s

function 

(10)

It is known that the matrix Green’s function decom�

poses into the product of  where  is a
component matrix of the force operator [27]. The

equation for finding the matrix function  can be
represented as

(11)

The graphic form of Eq. (11) is shown in Fig. 1.
The thick solid line indicates the desired matrix func�

tion  The dashed line corresponds to a diagonal

matrix  the components of which determine the
bare quasi�spin Green’s function for the F� and G sub�

lattices, respectively:  = 

 =  where  + 

The wavy line determines the interaction matrix 
which includes the Fourier transforms of the exchange
integrals. In the applied approximation of nearest

neighbors, the exchange interaction matrix  can be
represented as

(12)

where  Kq =

The graphic element in the form of a circle in Fig. 1

corresponds to the matrix  containing the compo�
nents of a mass operator irreducible by the Larkin
method [28]. Only corrections for the hybridization
interaction are taken into account in the mass opera�

tor. The “triangle” in Fig. 1 is the matrix  with the
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components of the force operator, which take into
account both the bare end factors of the spin Green’s
function and corrections related to the hybridization
interaction.

Because the processes of the hopping and hybrid�

ization of electrons are limited by the xy plane, 

 are the nonzero components of the mass and
force operators, where A, B = F, G and components
with various j are equal to each other. In this regard,
the subscript j can be omitted. We introduce conve�

nient designations  +   =

   (for brevity, the dependence

on q of the components of the mass and force opera�
tors is not specified). The values of dAB in this approach
are analogues of the components of the mass operator
irreducible by Dyson. The appearance of additional
terms KAB is due to the quasi�two�dimensional struc�
ture of the lattice. As previously noted, in the compo�
nents  and  of the force operator, both the bare
end Heisenberg factors and the corrections caused by
the hybridization interaction, that is,

  are taken into
account. Consideration of the mass and force opera�
tors leads to the following expression for the inverse
matrix:

(13)

Then, the denominator of the Green’s functions, determining the spin�wave spectrum, can be written as

(14)

Let us limit the consideration of the contributions
of the hybridization interaction to the mass and force
operators by the one�loop approximation. Then, arbi�

trary component  of the mass operator  is deter�
mined by two graphs that characterize the processes of
magnon decay into separate fermions from different
electronic subsystems. These diagrams are presented
in Fig. 2. The solid lines with two bold clear or solid
arrows �, � denote the propagators of localized elec�
trons with the projection of the spin momentum ↑ and
↓, respectively. One of four propagators of localized
electrons, designated by index , enters each com�

ponent of the mass operator. A solid line with two thin
arrows � represents any of the four propagators for the
Bogolyubov operators   describing the itinerant
electron subsystem. Thus, each graph is represented as
a sum of four diagrams. The intersection of the three
Green’s functions indicates hybridization interaction
at this point. The exact form of the interaction param�
eter is easily restored with the help of the matrix repre�
sentation of the Hamiltonian (Eq. (4)). The graphs
also present four�dimensional momenta p and q.
Summation occurs by the internal momenta p. It is
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Fig. 1. Dyson equation for the matrix Green’s spin function.
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easily seen that 32 diagrams for the components of the
mass operator can be obtained from the above figures.

For the components of the force operator, in addi�
tion to the bare end factors, 32 diagrams are also intro�
duced (Fig. 3). A solid line with a bold arrow � (or �)
denotes the bare Green’s function of localized elec�
trons with the spin ↑ (↓). Symbols �, � represent the
end Hubbard factors for the respective directions of
the electron spin.

The analytical expression for the FF component of
the mass operator, obtained from Fig. 2, is

(15)

With the matrix representation used in the notation of

the Hamiltonian  the matrix Matsubara Green’s

function  can be introduced, which determines the

propagators of itinerant and localized electrons. The
definition for the electron Matsubara function is

(16)

where  is the matrix representation of Fourier trans�
forms of the normal electron Green’s functions. Each

component  depends on the coordinate of

 As before, it is convenient to present the
full Green’s matrix function in the form of a matrix
product of the propagator and the force operator, that

is, 
The propagators of localized and itinerant elec�

trons will be calculated in the Hubbard�I approxima�
tion. In this approximation, let us derive the inverse

matrix to  from which it is easy to find any of the
electron propagators:

(17)

where   The determinant of
the inverse matrix determines the hybridization elec�
tron spectrum in the antiferromagnetic phase. In the
Hubbard�I approximation, the matrix of the elec�
tronic force operator is diagonal with elements

 along the main diagonal, where  –
 + 

RESULTS AND DISCUSSION

Spectrum of spin�wave excitations. To account for
the main contribution that determines the renormal�
ization of the spectrum of spin�wave excitations, we
restrict ourselves to hybridization corrections in the
first approximation. Then, the solutions of the disper�
sion equation  (Eq. (14)), obtained after ana�
lytical continuation, has the form

(18)

which corresponds to the two branches of the spec�
trum of spin�wave excitations taking into account the
quasi�two�dimensional structure. Here, we intro�
duced the following designations:

(19)

(20)

where  is the bare magnon spectrum without
hybridization interaction, and  is corrections due
to hybridization. The appearance of the acoustic and
optical branches of the magnon spectrum is caused by
the different nature of the rotation of the spin
momenta at the nearest sites along the z axis, taking
into account the quasi�two�dimensionality of the
antiferromagnet: in phase and in antiphase, respec�
tively [29, 30]. The positive sign in Eqs. (19) and (20)
corresponds to the Goldstone branch, designated by
index 1, and the negative sign is for the branch with
index 2, the excitations of which are separated by a
gap. The designations  =   =

 indicates that all components of the mass
and force operators are calculated for the correspond�
ing initial energy of magnons.
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The dependences of the branches of the spin�wave
spectrum on the component of the wave vector 
along the main direction of the magnetic Brillouin
zone (  a

α
 is the parameter of the unit cell

along the respective axis) are shown by solid and
dashed lines (Fig. 4) for a quasi�two�dimensional lat�

q
α

, , ,x y zα =

tice taking into account the hybridization interaction
between localized and itinerant electrons. For com�
parison, the dotted and dash�dotted lines show the
branches of the bare spectrum of spin�wave excita�
tions of localized electrons without hybridization. The
bare localized level lies in the middle of the lower anti�
ferromagnetic subband of the Fermi spectrum; the
total concentration of electrons in the system is fixed
at ne = 1.2; and the exchange parameters J = 0.008|t1|
(t1 is the hopping amplitude of itinerant electrons
between neighboring sites) and K = J/10. The value of
|t1| in cerium heavy�fermion compounds is estimated on
the basis of the ab�initio calculations and is 0.1–0.3 eV.
The parameters are selected so that the chemical
potential crosses the low dispersion band of heavy fer�
mions, separated from the remaining bands by the
hybridization and antiferromagnetic gaps [31, 32]. It is
seen that taking into account hybridization processes
with the intensity V = 0.3|t1| leads to an increase in the
spin�wave stiffness for the acoustic branch and an
increase in the energy of spin excitations.

An increase in the magnon energy in the periodic
Anderson model in comparison with the Heisenberg
regime is because the consideration of hybridization
corrections results in an additional mechanism for the
effective exchange interaction between localized elec�
trons along with the interaction which is taken into

account in the Hamiltonian  The components of
the mass operator may both promote the initial anti�
ferromagnetic ordering of localized electrons and sup�

�
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Fig. 2. Diagrams for the components of the mass operator.
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Fig. 3. Diagrams for the components of the force operator.
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Fig. 4. Spectrum of spin�wave excitations of the quasi�two�
dimensional structure along the main direction of the
magnetic Brillouin zone, taking into account (solid and
dashed lines) hybridization and (dotted and dash�dotted
lines) the bare spectrum; ne = 1.2; V = 0.3; E0 = –2; J =
0.008; K = J/10; the energy is given in units of |t1|, where t1
is the hopping amplitude of itinerant electrons between
neighboring sites.
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press it when the hybridization processes induce the
ferromagnetic exchange interaction. The hybridiza�
tion corrections to the force operators lead to renor�
malization of the bare end factors determined by the
antiferromagnetic order parameter.

Qualitatively different behavior of the magnon
spectrum is demonstrated in Fig. 5, when the concen�
tration increased to ne = 1.4. In this case, the quasi�
localized electronic subsystem is almost full. It is seen
from Fig. 5 that the spin�wave stiffness for such
parameters remains almost the same as for localized
electrons. Upon the transition to the short wavelength
region, the spin�wave excitation energy decreases,
indicating the slight suppression of antiferromag�
netism and a decrease in the value of the antiferromag�
netic order parameter due to hybridization.

Temperature 1dependence of the antiferromagnetic
order parameter. The expression for the antiferromag�

netic order parameter is given in the form of

 in which the number of filling in

the quasi�localized subsystem of Hubbard fermions is
related to the Fourier transform of the quasi�spin
Green’s function by equation

(21)

In deriving the last equation, it was assumed that the
spin degrees of freedom played a decisive role in the
formation of magnetic ordering. The analytical form
of the Green’s function, included in Eq. (21), can be
easily obtained with the help of matrix (13).

The following equation was obtained for the anti�
ferromagnetic order parameter, corresponding to the
approximation within which the magnon spectrum
was previously calculated,

(22)

The designations of C and  contain only correc�
tions related to the hybridization interaction. In the
limit of   the equation becomes an equa�
tion for a Heisenberg quasi�two�dimensional antifer�
romagnet [15], as  →  The appearance of
parameter nL in the numerator of Eq. (22) is due to the
possibility of the consideration of partial filling of the
quasi�localized level. It is shown that the main contri�

butions that determine the antiferromagnetic order
parameter are associated with renormalization of the
energy of spin�wave excitations in accounting for
hybridization (Figs. 4 and 5).

The temperature dependence 1of the antiferromag�
netic order parameter is presented in Fig. 6. The points
represent the results of numerical calculation in the con�
sideration of hybridization processes. The solid line indi�
cates the dependence obtained without hybridization.
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Fig. 5. Spectrum of spin�wave excitations of the quasi�two�
dimensional structure along the main direction of the
magnetic Brillouin zone, taking into account (solid and
dashed lines) hybridization and (dotted and dash�dotted
lines) the bare spectrum at an electron concentration of
ne = 1.4.
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Fig. 6. Dependence of the antiferromagnetic order param�
eter on temperature for the quasi�two�dimensional struc�
ture, taking (points) and not taking (solid line) hybridiza�
tion processes into account; parameters are the same as in
Fig. 4.
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The same parameters as in Fig. 4 are selected. It is seen
that the inclusion of hybridization corrections renormal�
izes both the antiferromagnetic order parameter and the
Néel temperature. The hybridization interaction facili�
tates antiferromagnetism, resulting in an increase in the
values of R(0) and TN. The Néel temperature increases
most pronouncedly.

The obtained dependence indicates that the pro�
cesses of hybridization between localized and itinerant
electrons should be taken into account in the descrip�
tion of the experimental data for cerium�based heavy�
fermion intermetallic compounds in the antiferro�
magnetic and mixed phases and in estimation of the
effective exchange parameters.

Mixed phase of superconductivity and antiferro�
magnetism with broken time�reversal symmetry. Previ�
ously, based on the analysis of equations of the
Gor’kov type for the mixed phase of superconductivity
and antiferromagnetism of heavy�fermion systems, in
which the symmetry is spontaneously broken with
respect to time reversal, it was shown that the presence
of antiferromagnetic ordering leads to the significant
modification of the superconducting order parameter
[19]. The formation of the Cooper instability does not
affect the antiferromagnetism. Therefore, knowledge
of the dependence of magnetization R(T) of the anti�
ferromagnetic sublattice on temperature determines
fully the behavior of the superconducting order
parameter in the mixed phase and enables the critical
temperature of occurrence of the Cooper instability in
the presence of antiferromagnetism to be found.

For the model described by the Hamiltonian (1), the
Cooper instability is induced by the exchange interaction
(Eq. (6)) in the subsystem of quasi�localized electrons. It
is believed that the presence of exchange along the z axis
does not affect the Cooper pairing that develops in the xy
plane. The equation for determining the amplitude  of
the superconducting order parameter of d�wave symme�
try, obtained in the Hubbard�I approximation, with the
known dependence of R(T) is

(23)
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where  are the branches of the spectrum of Fermi
excitations in the mixed phase [33],

(24)

(25)

The antiferromagnetic order parameter R is included
in the function of  by means of the average
exchange field which renormalizes the energy of local�
ized electrons in the paramagnetic phase and the bare
end Hubbard factors  of electrons in the antiferro�
magnetic phase. It is easy to show that Eq. (23) has a
solution at T = Tc and  and determines the
superconductivity temperature Tc. Thus, knowing the
dependence of R(T) for the quasi�two�dimensional
structure taking into account the processes of hybrid�
ization, it is easy to determine the critical temperature
and the temperature dependence of the superconduct�
ing order parameter in the mixed phase of cerium�
based heavy�fermion intermetallic compounds.

CONCLUSIONS

In the framework of the extended periodic Ander�
son model, explicitly taking into account the exchange
interaction between localized momenta, we analyzed
the effect of low�energy processes of the hybridization
of localized and itinerant states on the spectrum of
spin�wave excitations, the order parameter, and the
critical temperature in the antiferromagnetic and
mixed phases of quasi�two�dimensional cerium�based
intermetallic compounds such as CeRhIn5. To solve
this problem, corrections to the components of the
mass and force operators of the Matsubara spin
Green’s function, related to the hybridization interac�
tion, were considered. It is shown that taking into
account the mixing of itinerant and localized electrons
leads to a marked change in the Néel temperature.
This is because hybridization induces further effective
exchange interaction in the subsystem of localized
electrons, which not only facilitates the original anti�
ferromagnetic ordering but also suppresses antiferro�
magnetism. Simultaneous consideration of the
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hybridization processes and the quasi�two�dimen�
sional nature of the electronic structure significantly
renormalizes the temperature dependence of the
superconducting and antiferromagnetic order param�
eters and the critical temperatures at which antiferro�
magnetism and superconductivity appear in the bro�
ken time�reversal symmetry phase. The above factors
allowed determination of the temperature of the tran�
sition to the mixed phase, which agrees well with the
experimental data for CeRhIn5.
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