
511

ISSN 1063-7761, Journal of Experimental and Theoretical Physics, 2016, Vol. 123, No. 3, pp. 511–519. © Pleiades Publishing, Inc., 2016.
Original Russian Text © V.I. Kuz’min, S.V. Nikolaev, S.G. Ovchinnikov, 2016, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 150, No. 3, pp. 592–601.

Effect of Canted Antiferromagnetic Order on the Electronic Structure 
in the t–J* Model within the Cluster Perturbation Theory

V. I. Kuz’mina*, S. V. Nikolaeva, b, and S. G. Ovchinnikova, b

a Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036 Russia
b Siberian Federal University, Krasnoyarsk, 660041 Russia

* e-mail: kuz@iph.krasn.ru
Received April 4, 2016

Abstract—The electronic structure in the two-dimensional t–J* model with canted antiferromagnetic order
in an external magnetic field has been calculated within the cluster perturbation theory. In zero external field,
the evolution of the Fermi surface with n-type doping has been obtained in good agreement with experimental
data on cuprate superconductors. It has been shown that the inclusion of short-range correlations can result
in a nonmonotonic dependence of the spectral weight distribution at the Fermi level on the external magnetic
field. In contrast to the case of electron doping, such changes in the case of hole doping can be expected at
experimentally achievable fields.
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1. INTRODUCTION

Strongly correlated electron systems possess inter-
relation between the electronic and magnetic (as well
as charge) structures, which is most clearly manifested
at transitions of the system between states with differ-
ent spin or charge orders. In view of this circumstance,
the relation between Fermi surfaces reconstructed
from angle-resolved photoemission spectroscopy
(ARPES) data [1–5] and experiments on quantum
oscillations [6–14] with high-temperature supercon-
ductors is of particular importance. The ARPES data
concerning the Fermi surfaces of cuprates are usually
in agreement with calculations within strong electron
correlation models. The frequencies of quantum oscil-
lations obtained at hole doping p ≈ 0.11 are an order of
magnitude lower than those at p ≈ 0.31. A similar result
was obtained within the strong coupling perturbation
theory for the Hubbard model [15]. However, in con-
trast to ARPES experiments, experiments on quantum
oscillations are performed in strong magnetic fields
which can exceed 60 T. This means that the electronic
structures observed in these two types of experiments
can correspond to different regimes. In particular, it was
reported that a long-range charge order emerges in a
magnetic field in the La2 – xBaxCuO4 and YBa2Cu3Oy
compounds at hole doping p ≈ 1/8 [16]. Quantum
oscillation data [17] for YBa2Cu3Oy at doping p ≈ 0.11
for a Fermi surface with an electron pocket in the
nodal direction and two hole pockets near it are in
agreement with calculations within a phase with a
charge density wave [18].

Thus, it is of interest to study changes in the elec-
tronic structure of strongly correlated electron systems
in the external magnetic field at a fixed doping; such a
study is reported in this work. The situation with
cuprates at doping p ≳ 0.05 is very complicated
because of the presence of incommensurate magnetic
and charge orders [19]. We focus on the cases of hole
doping p ≲ 0.03 and electron doping n ≲ 0.15. In these
cases, there is a long-range antiferromagnetic order or
a short-range order but with a large correlation length
[20, 21]. Under these conditions, it can be expected
that the external field can affect the electronic struc-
ture through a magnetic subsystem, which is an anti-
ferromagnet canted in the external field. It is known
that the Néel temperature in the t–J model [22, 23]
decreases with an increase in doping and vanishes. In
particular, it was shown that the transition in the case
of hole doping corresponds to values for cuprates [24].
In our approach, the magnetic order is preset and we
consider zero temperature. For this reason, we will
study below the evolution of the electronic structure
with the variation of the magnetic field at fixed levels
of p- and n-type doping at which the long-range mag-
netic order exists in cuprates.

This work continues work [25], where we studied
the evolution of the electronic structure of the t–J
model at hole doping in the external magnetic field
within the mentioned magnetic mechanism. It was
shown that a change in the magnetic field by a value of
about 0.01J (approximately 10 T) does not usually lead
to a significant modification of the electronic struc-
ture; a noticeable evolution occurs at changes in the
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range of approximately (0.1–1)J. However, the spec-
tral weight distribution on the Fermi surface can
change sharply near a certain field hc, which depends
on the parameters of the model and can be near 0.01J.
Consequently, the Fermi surfaces corresponding to
regimes of ARPES and experiments on quantum
oscillations can be noticeably different. In this work,
as a reason for such a phenomenon, we discuss in
detail crossover in multielectron states forming the
band structure of quasiparticles. We study the effect of
the magnetic order on the electronic structure of
n- and p-type cuprates within the full effective low-
energy model for the Hubbard model in the second
order of perturbation theory in the parameter t/U, i.e.,
the t–J model with three-center interactions [23]
(we denote it as t–J*). The effect of three-site terms in
the paramagnetic phase is manifested primarily in the
high-energy part of the spectrum [26]. However, in
the presence of an antiferromagnetic background, the
probability of hoppings for the nearest neighbors
decreases because such hoppings require spin f lip.
On the contrary, the nearest correlated three-site hop-
pings do not perturb the antiferromagnetic environ-
ment because they occur within the antiferromagnetic
sublattice. Then, a significant effect of the three-site
interactions on the electronic structure at low energies
is not excluded in the antiferromagnetic case.

The article is organized as follows. The cluster per-
turbation theory in the X-operator representation for
the t–J* model, as well as an approximation used to
consider the magnetic phase, is briefly described in
Section 2. Crossovers in multielectron states, which
can be responsible for fast changes in the spectral
weight distribution, are discussed in Section 3. Sec-
tions 4 and 5 present the results concerning the effect
of the external magnetic field on the electronic struc-
ture of the t–J* model for the p- and n-type doping,
respectively. In the case of electron doping, we also
discuss the doping-induced evolution of the electronic
structure in zero field. The main conclusions of this
work are presented in the final section.

2. MODEL AND METHOD
Since the effect of the magnetic field on the elec-

tronic structure is taken into account in this work
exclusively through the magnetic order, we include the
Zeeman term and neglect the orbital contribution.
The corresponding Hamiltonian of the t–J* model in
the external magnetic field has the form

Ht–J* = Ht–J + H3 + HZ. (1)

Here,
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where  and ci, σ are the quasi-fermion creation and
annihilation operators for a particle with the spin σ at
the ith site, respectively;  = –σ; ti, j is the hopping
integral; J is the indirect exchange integral related to
the Coulomb repulsion parameter in the Hubbard
model as J = 4t2/U; and Si is the spin operator; and

where h is the energy of the magnetic field.
To calculate the spectral weight in the t–J* model,

we used the cluster perturbation theory based on the
exact diagonalization method [27, 28]. In the cluster
perturbation theory, short-range interactions are
taken into account within a finite cluster, whereas
long-range interactions are taken into account by per-
turbation theory. Within the cluster perturbation the-
ory, the initial lattice is covered by translations of a
cluster with chosen size and shape. Then, the exact
diagonalization of the cluster is performed and the
cluster Green’s function is calculated. Further, the
intercluster interactions are taken into account by per-
turbation theory in the Hubbard-I approximation.
After that, Fourier transformation to the paramagnetic
Brillouin zone is performed with the use of the long-
wavelength approximation to obtain the Green’s func-
tion of the lattice G(k, ω) [28]. We use the version of
the cluster perturbation theory based on the X-opera-
tor technique, i.e., the so-called norm-conserving
cluster perturbation theory [29, 30]. In this approach,
the full Hilbert space of the cluster is taken into
account, which makes it possible to control the total
spectral weight of quasiparticles in all stages of calcu-
lation. In order to appropriately take into account the
presence of canted antiferromagnetism, we specify the
corresponding symmetry of cluster states by means of
the introduction of a mean field as was done in [31, 32]
for the Heisenberg model.

We cover the lattice by translations of a 2 × 2 square
cluster in the translation directions of the initial square
lattice. The cluster of four sites allows taking into
account the main qualitative features of the spectral
weight distribution. It was shown that a five-site clus-
ter in the paramagnetic case makes it possible to
achieve almost quantitative agreement for the spectral
weight distribution in the Hubbard model with the
quantum Monte Carlo results [33]. It is reasonable to
expect that the Hubbard-I approximation is more effi-
cient in the antiferromagnetic case than in the para-
magnetic phase because of a larger contribution of
long-range effects.

For an antiferromagnet in the external magnetic
field directed along the z axis perpendicular to the
plane, there are two magnetization components–the
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in-plane antiferromagnetic component and the con-
stant component along the field. It is convenient to
orient the x axis along the antiferromagnetic compo-
nent (  = 0). We first regroup terms in Hamilto-
nian (1):

(4)

where f and g are the cluster indices,  is the Heisen-
berg part of the intercluster interaction, hccc includes
three-center hoppings connecting three clusters, and

 includes all remaining terms of the Hamiltonian.
To introduce mean fields acting on the cluster, we
identically transform the term  as

(5)

where
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In Eqs. (5)–(7) and below, the subscripts i and j spec-
ify sites within the clusters and σx =  and σz = 
in Eqs. (7) are the order parameters. Then, we rede-
fine the terms in Eq. (4) in order to include the mean
field in the local part hc:
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Below, we follow the standard scheme of the norm-
conserving cluster perturbation theory [29, 30]. We
define the X-operators Xα ≡ Xpq = |p〉 〈q| on the com-
plete basis of cluster states. Thus, the electron is repre-
sented as a linear combination of Hubbard fermions
each describing a local excitation from the initial state
|q〉 with n electrons to the final state |p〉 with n – 1 elec-
trons. This representation allows a significant reduc-
tion of the number of eigenstates taken into account in
the local Hilbert space. To control this procedure, we
use the sum rule presenting the total spectral weight of
the electron. The quantity specifying the spectral sum
rule is defined as

(10)

where the sign ± corresponds to the spin projection
along/against the field, n0 is the concentration of
empty sites, and nσ is the concentration of particles
with the spin σ. We introduce the quantity fi, σ in order
to conserve only those Hubbard fermions that have a
significant spectral weight and, thereby, to signifi-
cantly reduce the computation time:

(11)

where summation involves only the transitions that are
retained, γi, σ are the matrix elements of the operators
ciσ in the X-operator representation and

(12)

is the filling factor. When all transitions are taken into
account in Eq. (11), fi, σ = Wσ. In this work, fi, σ ≥
Wσ ‒ 0.001.

As usual in the cluster perturbation theory, the
intercluster interactions are considered in the Hub-
bard-I approximation. The Green’s function

which is defined in the reduced Brillouin zone, is cal-
culated from the matrix equation

(13)

where D0(ω) is the cluster Green’s function, the matri-
ces T( ) and T*( ) are due to the disconnection of
Green’s functions appearing at the calculation of
commutators with the kinetic term and term responsi-
ble for three-site hoppings between two clusters, and
the matrix V appears similarly from the exchange con-
tribution and three-site hoppings connecting three
clusters. The electron Green’s function in the para-
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magnetic Brillouin zone is reconstructed by the for-
mula [28]

(14)

where Nc is the number of sites in the cluster.
Figure 1 shows the spectral weights obtained disre-

garding three-center correlated hoppings in compari-
son with that obtained taking into account these hop-
pings in zero magnetic field. Here and below, the
energy of quasiparticles ω is measured in units of |t| ~
0.25–0.4 eV [3, 5], where t is the hopping integral
between the nearest neighbors. We also take into
account hoppings between the second t' and third t"
neighbors. The delta function at the poles of the
Green’s function is approximated by a Lorentzian
with a finite half-width δ for the representation of
spectral weight distributions in the form similar to that
of ARPES data. The electronic structure in the lower
(or upper) Hubbard band can be generally represented
as a structure split into two bands in agreement with
quantum Monte Carlo results [34]. The low-energy
part of the electronic structure shown in Fig. 1, which
was calculated within both the t–J and t–J* models, is
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characteristic of dispersion in the presence of spin
fluctuations [35–41]. As in the paramagnetic phases,
the main differences between the results obtained with
and without the inclusion of the three-center interac-
tions are manifested at the high-energy scale, whereas
no significant changes are observed in the low-energy
structure in the presence of antiferromagnetism too.
However, differences in the weight distribution can
significantly affect the position of the Fermi level and,
consequently, the form of the Fermi surface. The
described difference is revealed in this work, but the
main conclusions of work [25] hold, as will be shown
below.

3. CROSSOVERS IN MULTIELECTRON STATES

The electronic structure in our calculations
depends on the order parameters, which are deter-
mined self-consistently for an individual cluster and
affect cluster wavefunctions specifying in turn the
electronic structure. We consider the expansion of the
wavefunction in the form

(15)

where |n〉 is an eigenfunction of the Hamiltonian of the
cluster; s and m are the total spin of the cluster and its
projection on the z axis, respectively; |s, m〉q are the
eigenfunctions of the cluster operators S2 and Sz

(a cluster operator is given by the expression S =
, where summation is performed over sites in the

cluster); and the index q is due to degeneracy in s and
m owing to the geometry of the cluster.

The dependence of the electronic structure of the
cluster in the subspace with three particles has specific
a feature—crossover of lower levels at the magnetic
field h ≈ 1J in the case of the inclusion of only the
nearest hoppings (see Fig. 2). As is seen in Fig. 3, a
transition occurs from a low-spin state with the domi-
nant component |0.5, 0.5〉 to a high-spin state with the
dominant component |1.5, 1.5〉. The ground state in
this sector is doubly degenerate at fields h < hc and is
nondegenerate at h > hc. This effect can be responsible
for a nonmonotonic behavior of the electronic struc-
ture of quasiparticles. In our case, this effect is due to
the inclusion of short-range correlations in the pres-
ence of the mean field acting on the cluster. The near-
est and next-nearest neighbors can be taken into
account in the 2 × 2 cluster. For this reason, the
parameters t' and J affect the hc value: with an increase
in the amplitudes of the second hoppings and at a
fixed exchange integral, the hc value decreases in the
case of the p type and increases for the n type. With the
model parameters characteristic of p-type cuprates,
we obtain the field hc ~ 0.01J ~ 10 T and, correspond-
ingly, can expect significant changes in the Fermi sur-
face in this region of fields. The crossover field
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Fig. 1. Electron spectral function along the symmetric
directions of the first Brillouin zone in the (a) t–J and
(b) t–J* models at t' = t" = 0, J = 0.25t, and order param-
eters σx ≈ 0.41 and σz = 0. Here and in similar plots below,
the dashed line denotes the position of the Fermi level and
we use the Lorentzian broadening with the half-width δ =
0.1t.
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obtained with the parameters characteristic of the n
type is much higher (hc ~ 1J ~ 1000 T) than experi-
mentally achievable fields.

4. EFFECT OF THE MAGNETIC FIELD 
ON THE ELECTRONIC STRUCTURE, p TYPE

We consider the evolution of the electronic struc-
ture in our approach at p-type doping. For definite-
ness, we use in this section the hopping integral for the
second neighbors t' = –0.15t typical of La2 – xSrxCuO4
[3, 42]. If the exchange integral is J = 0.25t, the cross-
over field is hc ≈ 0.02J, which is of interest for achiev-
able experiments. In this section, hole doping is p =
0.02.

For completeness, we first mention the main char-
acteristics of evolution of the spectral weight distribu-
tion depending on the rearrangement of the magnetic
structure in the external field according to the calcula-
tion within the t–J* model (see Fig. 4). They qualita-
tively coincide with the characteristics obtained disre-
garding three-site hoppings [25]. At a field of 4J, when
the ferromagnetic saturation is achieved [43], the dis-
persion law with a band width of 8t and a uniform
spectral weight distribution over the entire band is
observed for up spin; this dispersion law is inherent in
the spatially uniform phase. For down spin, there is a
narrow band with a small spectral weight at the Fermi
level (see Fig. 4). At a lower field, e.g., h = 3J, the elec-
tron dispersion law is modified owing to the mixing of
different spin states. In this case, the dispersion law for

down spin is similar to that for the shadow subband of
the two-sublattice system. The spectral weight distri-
bution and dispersion law at h = 0.5J and zero field are
qualitatively similar.

Fig. 2. Magnetic-field dependence of the low-energy part
of the electronic structure of the cluster in the sectors of
the Hilbert space with (a) four and (b) three particles at
J = 0.333t, t' = t"= 0, and p = 0.
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Fig. 3. Coefficients csm defined in Eq. (15) for the wave-
function of the ground state in the subspace with three
electrons per cluster at J = 0.333t, t' = t" = 0, and p = 0.
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The modification of the spectral weight at the
Fermi level in the magnetic field is shown in Fig. 5.
The distribution in zero field has a pronounced maxi-
mum in the nodal direction ((0, π) → (π, π)). Such a
distribution can be conditionally characterized as a
“pocket” because it is similar to the spectral weight
distribution for a Fermi pocket calculated with a sig-
nificant broadening of spectral lines [30]. As in the
case of ARPES, the resulting Fermi surfaces are due to
averaging over an energy range near the Fermi level
rather than simply follow from the single isoenergetic
surface at the Fermi level (see the caption of Fig. 5).
On the other hand, in the field h ~ 3J, there are pock-
ets around the point (π, π) for up spin and around the
point (0, 0) for down spin. The spectral weight is uni-
formly distributed along the edges of pockets and dif-
fers by an order of magnitude for two spin projections.
An increase in the magnetic field to the saturation
value does not qualitatively change the Fermi surface
for up spin, but the weight on the Fermi surface for
down spin almost vanishes (see Fig. 4). In the interval
from h = 0 to h ~ 3J, the spectral weight distribution is
gradually smoothed. The distributions for the domi-
nant spin component for the presented values h =
0.02J and h = 1.9J are insignificantly different. For

down spin, no significant changes are observed in the
interval of fields from h = 0.02J to h ~ 0.2J. Neverthe-
less, owing to the crossover of cluster states, which was
discussed in Section 3, an increase in the field from
h = 0 to h = 0.02J is accompanied by a sharp change in
the spectral weight distribution along the antinodal
direction ((0, π) → (π, π)) for both components,
which, for the projection along the field, can be char-
acterized as a transition from a pocket distribution to
an arc distribution. We assume that, if similar non-
monotonic changes occur in underdoped hole-type
cuprates, they can be detected in transport measure-
ments.

5. EFFECT OF DOPING AND THE MAGNETIC 
FIELD ON THE ELECTRONIC STRUCTURE,

n TYPE
Since n-type cuprates have an antiferromagnetic

order in a wide range of doping up to the optimal level

Fig. 5. Spectral weight distribution at the Fermi level in the
first quadrant of the Brillouin zone (a) in zero external
field for one spin projection and (b, c) in various fields for
(a) up and (b) down spins at the parameters t' = –0.15t, t'' =
0.1t, and J = 0.25t. Here and in similar plots below, we use
the Lorentzian broadening with the half-width δ = 0.04t
and the spectral weight is averaged over the energy window
[–1.5δ, 1.5δ].
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regarding the mean field (σx = 0) at n = 0.2.
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n ~ 0.15, we consider the doping-induced evolution of
the electronic structure in zero magnetic field. In this
section, we use the hopping parameters t' = –0.2t and
t" = 0.1t typical of the Nd2 – xCexCuO4 compound [5]
and a value of 0.333J ≈ 0.1 eV is chosen for the
exchange integral.

The main features of the spectral weight distribu-
tion with and without doping are illustrated in Fig. 6.
The bottom of the band at n = 0 is near the point
(π, 0); it has the largest spectral weight and plays the
main role in the formation of the Fermi surface at low
doping. The dispersion segment near the point (π, π)
is less intense. Doping results in the appearance of a
flat quasiparticle band under the Fermi level. The pre-
sented weight distribution in the lower subband of the
upper Hubbard band (ω ~ –2 to +2) is qualitatively
similar to weight distributions obtained within the
dynamical mean field theory for multiband models of
n-type cuprates [44, 45]. The region near the energy
ω ~ 0 and along the directions (π, 0) → (π, π) and
(π, π) → (π/2, π/2), where the splitting of the disper-
sion law into individual branches is pronounced, cor-
responds to the regions with the pronounced damping
of quasiparticle dispersion in dynamical-mean-field-
theory calculations [44]. According to the calculation
for doping n = 0.2 (Fig. 6c), when the long-range
order is absent, the concave fragment of dispersion
near the point (π, 0) (see Figs. 6a, 6b) is absent and the
gap near the point (π/2, π/2) is almost closed.

The evolution of the Fermi surface with doping in
zero external magnetic field is shown in Fig. 7. At dop-
ing n = 0.05, the main contribution to the spectral
weight comes from electron pockets near the points

(π, 0) and (0, π). A further increase in doping up to the
optimal value (see Figs. 7a–7c) results in an increase
in the spectral weight from holes near (π/2, π/2). At
n = 0.15, the spectral weight has a dip near the so-
called “hot points” typical of optimally doped elec-
tron-type cuprates [5]. The Fermi surface obtained are
in good agreement with the ARPES data [5, 46]. In
order to reproduce the evolution of the Fermi surface
qualitatively consistent with the ARPES data, it was
necessary to take into account both the long-range
magnetic order and short-range antiferromagnetic
fluctuations. Figure 7d also shows the Fermi surface
calculated with n = 0.2 in zero mean field for the case
where the long-range magnetic order should be
destroyed. In this case, the hole surface is large,
whereas both electron and hole carriers contribute to
the spectral weight at the optimal doping and elec-
tron-like carriers make a larger contribution on the
Fermi surface at n = 0.15. Our calculations imply that
a change in the sign of the Hall constant in the normal
state of various n-type cuprates with an increase in
doping [47–49] is due to a change in the magnetic
order.

We now consider the magnetic-field-induced evo-
lution of the Fermi surface for n-type cuprates. As was
mentioned above, in the case of electron doping, the
field hc is about J; for the given set of parameters, hc ≈
1.88J. In this case, a jump in the spectral weight hardly
changes the Fermi surface. Figure 8 illustrates the
magnetic-field-induced evolution of the Fermi sur-
face. Fields h ~ 0.1J ~ 100 T provide insignificant
effect. The surface at scale h ~ J is gradually trans-
formed to pockets near the points (0, 0) and (π, π) for

Fig. 7. Spectral weight distribution at the Fermi level in the
first quadrant of the Brillouin zone in zero external field.
Doping level and the corresponding antiferromagnetic
parameters assume the following values: (a) n = 0.05 and
σx = 0.384, (b) n = 0.1 and σx = 0.331, (c) n = 0.15 and σx =
0.28, and (d) n = 0.2 disregarding the mean field (σx = 0).

1.5

1.0

0.5

1.5

1.0

0.5

0.8

1.0

0.5

0.6

0.4

0.2

(c) (d)

(b)(a)

1.5

(0,0)

(π,π)

Fig. 8. Spectral weight distribution at the Fermi level in the
first quadrant of the Brillouin zone in various external fields
h for (a) up and (b) down spins at the doping n = 0.15.
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up and down spins, respectively. This property is man-
ifested in the entire doping range under consideration.

6. CONCLUSIONS

The effect of the magnetic field on the electronic
structure through the interrelation of the magnetic
and electronic subsystems, which is inherent in
strongly correlated systems, has been studied within
the t–J* model. Both hole and electron doping have
been considered. Crossovers in cluster states have been
analyzed and it has been shown that they can be
responsible for a nonmonotonic dependence of the
spectral weight distribution on the Fermi surface on
the external magnetic field. In addition, the electronic
structure with doping has been studied for the n type.
The main conclusions of this work are as follows.

At low hole doping, there are the parameters of the
model at which we have obtained a crossover in mul-
tielectron states and the corresponding sharp change
in the spectral weight distribution at the Fermi level in
the magnetic field hc corresponding to the experimen-
tally achievable value. We have considered the case
with hc ≈ 0.02J ~ 20 T. In the case of electron doping,
the field hc is about J ~ 1000 T and, as a result, signif-
icant changes in the Fermi surface in realistic fields are
not observed. In view of this circumstance, we empha-
size that, in contrast to the case of hole doping, for n-
type doping, the Fermi surfaces reconstructed from
experiments on quantum oscillations [13] in the range
n = 0.15–0.17 qualitatively coincide with the ARPES
Fermi surface [5, 46]. The inclusion of the long-range
antiferromagnetic order, together with short-range
correlations, makes it possible to reproduce the evolu-
tion of the Fermi surface of n-type cuprates, which is
in agreement with the ARPES and quantum oscilla-
tion data [13]. The comparison of the calculations with
and without the inclusion of the long-range antiferro-
magnetic order at zero external magnetic field indi-
cates that the sign of the Hall constant changes at the
transition from the optimally doped state to overdoped
one [47–49] because of the destruction of antiferro-
magnetism. Change in the sign of the Hall constant at
the transition through a quantum critical point should
be revealed in the calculation with a spin-density wave
(SDW) disregarding short-range correlations [50].
This result was not obvious a priori in our approach
because the resulting Fermi surfaces in the magnetic
phase do not directly follow from the potential of the
antiferromagnetic superlattice, as in the SDW
approach; they are rather obtained from the properties
of cluster (multielectron) states. The latter circum-
stance makes it possible to obtain an asymmetric spec-
tral weight distribution with respect to the edge of the
antiferromagnetic Brillouin zone in agreement with
the ARPES data.
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