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Random Matrix Analysis of the Monopole Strength Distribution in 208Pb∗
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Abstract—We study statistical properties of the 0+ spectrum of 208Pb in the energy region Ex ≤ 20 MeV.
We use the Skyrme interaction SLy4 as our model Hamiltonian to create a single-particle spectrum and to
analyze excited states. The finite-rank separable approximation for the particle–hole interaction enables us
to perform the calculations in large configuration spaces. We show that while the position of the monopole
resonance centroid is determined by one-phonon excitations of 0+, the phonon–phonon coupling is crucial
for the description of the strength distribution of the 0+ spectrum. In fact, this coupling has an impact on
the spectral rigidity Δ3(L) which is shifted towards the random matrix limit of the Gaussian orthogonal
ensembles.
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1. INTRODUCTION

Nuclear Giant Resonances (GR) are the subject
of numerous investigations over several decades [1].
Some of the basic features such as centroids and
collectivity (in terms of the sum rules) are reasonably
well understood within microscopic theories [2–4].
As yet we have no answer to the question how a
collective mode like the GR dissipates its energy.

According to the accepted wisdom, GRs are es-
sentially excited by an external field through a one-
body interaction. It is, therefore, natural to describe
these states as collective 1p–1h states. Once excited,
the GR progresses to a fully equilibrated system via
direct particle emission and by coupling to more com-
plicated configurations (2p–2h, 3p–3h, etc.). The
former mechanism gives rise to an escape width. It is
expected that the decay evolution along the hierarchy
of more complex configurations till compound states
determines spreading widths. A full description of
this decay represents a fundamental problem which
is, however, difficult to solve (if even is possible at
all?) due to existence of many degrees of freedom
for many-body quantum system such as a nucleus.
Therefore, to gain an insight into the nature of GR
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spreading we have to introduce various approxima-
tions or a model, which validity depends on a primal
feasibility.

In general, the description of GR properties is
based on the analysis of the electromagnetic strength
distribution in an energy interval which is large
enough to catch hold of basic GR features that is
under investigation. An obvious requirement to
the model consideration is to use configurations
with various degrees of complexity. Evidently, the
more complex configuration is considered, the more
cumbersome task should be solved. Therefore, a
natural question arises: what type of a particular
complex configuration should be enough in order to
understand the gross structure of a particular GR
which data are available in modern experiments? In
addition, once this complex configuration is defined
one can further ask about statistical properties of
states that compose the GR strength distribution.
As a result, one could illuminate the role of various
correlations that diminish the importance of a specific
excitation that determines the centroid position of a
specific GR.

To answer these questions we will employ two
approaches. On the one hand, the random matrix
theory (RMT) [5–9] provides necessary tools to shed
light on the spectral properties and the distribution of
transition-strength properties, when specific features
become not of a primary importance. The RMT
assumes only that the nuclear Hamiltonian belongs
to an ensemble of random matrices that are consistent
with the fundamental symmetries of the system. In
particular, in the case of the time-reversal symmetry,
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the relevant ensemble is the Gaussian orthogonal en-
semble (GOE). On the other hand, to understand the
fragmentation of high-lying states it is necessary also
to exploit nuclear structure models that are based on
the microscopic many-body theory, where the effects
of the residual interaction on the statistics must be
studied in large model spaces. Introducing a residual
interaction in general implies a transition to GOE
properties above some excitation energy [10].

The quasiparticle–phonon model (QPM) [4] offers
an attractive framework for such studies. The separa-
ble form of the residual interaction of a model Hamil-
tonian allows to diagonalize it in a space spanned by
states composed of one, two, and three phonons con-
sidered in the random-phase approximation (RPA).
We would like to mention here the RMT analysis
of statistical properties of a pygmy dipole resonance
within the QPM, based on the Woods–Saxon poten-
tial [11]. It is desirable, however, to use a unified ap-
proach in which a mean field and a residual interaction
are treated on the same footing in order to avoid any
artifacts [12, 13]. For our purposes we choose the
modern development of the QPM, the finite rank sep-
arable approximation (FRSA) [14–16]. The FRSA
follows the basic QPM ideas, but the single-particle
(sp) spectrum and the residual interaction are calcu-
lated with the Skyrme forces. This approach enables
us to consider a coupling between the one- and two-
phonon components of the wave functions [17]. It was
successfully used to study the properties of the low-
lying states and giant resonances within the RPA and
beyond [14–19].

By means of this approach and by the RMT tools
we attempt in this paper to understand the complex
structure observed in the 0+ spectrum of the doubly-
magic nucleus 208Pb in the region of the isoscalar
giant monopole resonance (ISGMR). This strength
distribution is extensively studied in many experi-
ments [20–23]. The experimental properties have
been described within the RPA with the Skyrme in-
teractions (for a review see, for example, [24]). In
this system the effect of the anharmonicity is expected
to be small. Contrary to the expectations, we will
show the importance of the phonon–phonon cou-
pling (PPC) effects for the statistical properties of the
spectrum calculated with the aid of the Skyrme SLy4
interaction, taken as an example.

2. THE MODEL

For the analysis of the doubly magic nucleus we
impose a spherical symmetry on the sp wave func-
tions in our HF calculations. The continuous part
of the sp spectrum is discretized by diagonalizing
the HF Hamiltonian on a harmonic oscillator basis.
The cut-off of the continuous part is at the energy of

100 MeV. As the parameter set, we use the Skyrme
force SLy4 [25] which was adjusted to reproduce the
nuclear matter properties, as well as nuclear charge
radii, binding energies of doubly-magic nuclei. The
residual particle–hole interaction is obtained as the
second derivative of the energy density functional with
respect to the particle density. By means of the stan-
dard procedure [26] we obtain the familiar RPA equa-
tions in the 1p–1h configuration space. The eigen-
values of the RPA equations are found numerically as
the roots of a relatively simple secular equation within
the FRSA [14]. Since the FRSA enables to us to use
the large 1p–1h space, there is no need in effective
charges.

Using the basic QPM ideas in the simplest case of
the configuration mixing [4], we construct the wave
functions from a linear combination of one- and two-
phonon configurations states as

Ψν(JM) =

{∑
i

Ri(Jν)Q+
JMi (1)

+
∑

λ1i1λ2i2

P λ1i1
λ2i2

(Jν)
[
Q+

λ1μ1i1
Q+

λ2μ2i2

]
JM

}
|0〉,

where Q+
λμi|0〉 is the RPA excitation having energy

ωλi; λ denotes the total angular momentum, and
μ is its z projection in the laboratory system. The
ground state is the RPA phonon vacuum |0〉. The
normalization condition for the wave functions (1)
yields∑

i

R2
i (Jν) + 2

∑
λ1i1λ2i2

(P λ1i1
λ2i2

(Jν))2 = 1. (2)

The variational principle leads to a set of linear equa-
tions for unknown amplitudes Ri(Jν) and P λ1i1

λ2i2
(Jν)

[17]:

(ωJi − Eν)Ri(Jν) (3)

+
∑

λ1i1λ2i2

Uλ1i1
λ2i2

(Ji)P λ1i1
λ2i2

(Jν) = 0,

∑
i

Uλ1i1
λ2i2

(Ji)Ri(Jν) (4)

+ 2(ωλ1i1 + ωλ2i2 − Eν)P λ1i1
λ2i2

(Jν) = 0.

The rank of the set of linear equations is equal to
the number of one- and two-phonon configurations
included in the wave function (1). To resolve this set
it is required to compute the coupling matrix elements

Uλ1i1
λ2i2

(Ji) = 〈0|QJiH
[
Q+

λ1i1
Q+

λ2i2

]
J
|0〉 (5)
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between one- and two-phonon configurations (see
details in [17]). Evidently, the nonzero matrix ele-
ments Uλ1i1

λ2i2
(Ji) result in the inclusion of the PPC

effects. Equations (3) and (4) have the same form
as the QPM equations [4]. It is important to stress,
however, that the sp spectrum and the parameters of
the residual p–h interaction are calculated with the
chosen Skyrme forces, without any further adjust-
ments.

The excitation operator of the ISGMR is defined
as

M̂L=0 =
A∑

i=1

r2
i . (6)

The wave functions (1) allow us to determine the

transition probabilities
∣∣∣〈0+

ν |M̂L=0|0+
g.s〉

∣∣∣2. The ma-

trix elements for direct excitation of two-phonon
components from the ground state are about two
orders of magnitude smaller as compared to the
excitation of one-phonon components [4]. Therefore,
they are neglected in our calculation of the transition
probabilities. The RPA analysis of the ISGMR
shows that 96% of the non-energy-weighted sum
rules (NEWSR) are located in the energy region
Ex = 10.5−18 MeV. To build the wave functions (1)
of the excited 0+ states up to 20 MeV we take into
account all one- and two-phonon configurations
[λπ

i1
⊗ λπ

i2
]RPA that are constructed from the 0+, 1−,

2+, 3−, and 4+ phonons with energies below 25 MeV
for computational convenience. The high-energy
configurations plays a minor role in our calculations.
It is noteworthy that the pair-transfer mode (see,
e.g., [27, 28]) is outside the present work.

Properties of the low-energy two-phonon 0+

states are reflected in the deviation from the harmonic
picture for the multiphonon excitations [29, 30]. It
is interesting to study the energies, and reduced
transition probabilities of the [2+

1 ]RPA, [3−1 ]RPA, and
[4+

1 ]RPA states which are the important ingredients
of our calculations of the two-phonon 0+ states of
208Pb. The results obtained within the one-phonon
approximation are compared with the experimental
data [31, 32] in the table. There is a satisfactory de-
scription of the reduced transition probabilities. The
overestimate of the experimental energies indicates
some missing mechanisms. In our consideration we
consider the PPC as the one that might improve the
description.

The strength distribution of ISGMR is displayed
in Fig. 1. Both experimental [22] and theoretical
results show the fragmentation and splitting of the
ISGMR strength. The coupling between the one-

Energy and B(Eλ) values for up-transitions to the λπ
1

states in 208Pb (Experimental data are taken from [31, 32])

λπ
1

Energy, MeV B(Eλ; 0+
g.s → λπ

1 ), e2 bλ

Exp. RPA Exp. RPA

3−1 2.62 3.6 0.611 ± 0.012 0.93

2+
1 4.09 5.2 0.318 ± 0.016 0.34

4+
1 4.32 5.6 0.155 ± 0.011 0.15

and two-phonon states yields a noticeable redistri-
bution of the ISGMR strength in comparision with
the RPA results. In particular, the coupling decreases
the NEWSR till 78% in the ISGMR region (Ex =
10.5−18 MeV). Also, the PPC induces the 1-MeV
downward shift of the main peak. There are the low-
energy part, the main peak and the high-energy tail.
The coupling produces a shift of order 11% (7%) of
the NEWSR from the ISGMR region to the high
(lower) energy region. The strength distribution of
the ISGMR obtained within the PPC is rather close
to the experimental distribution [22]. Our analysis
shows that the major contribution to the strength
distribution is brought about by the coupling between
the [0+]RPA and [3− ⊗ 3−]RPA components. We re-
call that the importance of the complex configura-
tions for the interpretation of basic peculiarities of the
ISGMR strength distribution of 208Pb was already
qualitatively discussed in the framework of a simple
model [33, 34]. Our calculations give the same ten-
dency.

We turn now to the mechanism that dominates
in the low-energy part of the 0+ spectrum. There is
no [0+]RPA state below 10.2 MeV. The extension of
the variational space from the standard RPA to two-
phonon configurations result in a formation of the
low-lying 0+ states. The [3−1 ]RPA state is the lowest
excitation which leads to the minimal two-phonon
energies and the maximal matrix elements coupling
between one- and two-phonon configurations. Since
the PPC induces a downward shift of the 0+

1 energy,
the energy state at 6.5 MeV is very close to the
value ∼2�Ω with �Ω = ERPA

3−1
(see table). Our anal-

ysis suggests the dominance (≥85%) of the octupole
[3−1 ⊗ 3−1 ]RPA, [3−1 ⊗ 3−2 ]RPA, and [3−1 ⊗ 3−3 ]RPA con-
figurations in the wave functions of the excited 0+

1 , 0+
2 ,

and 0+
3 states, respectively. The collective character

of the 0+
1 state is mainly due to their coupling to the

ISGMR, produced by the [0+
4 ]RPA state. In particu-

lar, the wave function normalization of the 0+
1 state

contains 4% of the [0+
4 ]RPA. This small change in
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Fig. 1. The PPC effect on the isoscalar monopole strength distribution in 208Pb. Panel (a): experimental strength distribution
is taken from [22]. Panels (b) and (c) correspond to the calculations within the RPA and taking into account the PPC,
respectively.

structure has a large impact on the
∣∣∣〈0+

1 |M̂L=0|0+
g.s〉

∣∣∣2
value, see Fig.1. The lowest two-phonon 0+ state
was first observed as the lowest-spin member of the
[3−1 ⊗ 3−1 ] multiplet in [35]. This fact was confirmed
by the QPM analysis [30].

3. SPECTRAL STATISTICS

Let us study statistical properties of the 0+ spec-
trum up to 20 MeV. We examine the spectra cal-
culated with and without the PPC effects, i.e., the
cases of U 
= 0 and U = 0, respectively. Figure 2
displays the PPC impact on the 0+ energies. As was
mentioned above, the coupling shifts down the part of
0+ states and modifies the level density. To elucidate
the role of the residual interaction we also consider
the 0+ spectrum of unperturbed 1p–1h and 2p–2h
states (see Fig. 2a). Note that the level density of
the unperturbed 3p–3h states is much smaller than
the 2p–2h ones. As can be seen from Fig. 2, the
difference between the unperturbed p–h and the U =
0 spectra is remarkable. The downward shift of the
U = 0 spectrum is due to the residual interaction in
the RPA framework. The coupling does not lead to
visible spectrum changes. However, it brings impor-
tant correlations that affect the spectral statistics.

The three spectra are analyzed within the RMT
that enables us to study the statistical laws governing

fluctuations that, in general, can have very different
origins. Starting from the spectrum Ei, one can con-
struct the staircase function N(E) which is defined as
the state number below the energy E. The function
N(E) can be separated in a smooth part S(E) and
the fluctuating part Nfluct(E), where the integral of
Nfluct(E) is zero. The function S(E) can be deter-
mined either from semiclassical arguments or using a
polynomial for N(E). To get a constant mean spacing
of levels, we employ the unfolded spectrum defined by
the mapping xi = S(Ei). Note that the values si =
xi+1 − xi are introduced as the spacings. We use two
typical measures to analyze the fluctuation properties
of unfolded spectrum: the nearest-neighbor spac-
ing distribution (NNSD) and the spectral rigidity of
Dyson and Metha, the Δ3 statistics [36].

Due to the unfolding we have
∞∫
0

sP (s)ds = 1. (7)

If the unfolded energies xi are in a regular system then
the NNSD is known as the Poisson distribution,

P (s) = e−s. (8)

In the GOE, i.e. the energies are in a chaotic system,
the NNSD is approximately given as the Wigner
distribution [6],

P (s) = (π/2)s exp(−πs2/4). (9)

PHYSICS OF ATOMIC NUCLEI Vol. 79 No. 6 2016



RANDOM MATRIX ANALYSIS 839
 

10

5

E
n
er

g
y
, 
M

eV

(

 

a

 

) (

 

b

 

) (

 

c

 

)

15

Fig. 2. Calculated spectra of the 0+ states of 208Pb. The unperturbed 1p–1h and 2p–2h energies are shown in column (a).
Columns (b) and (c) correspond to the calculations without and with the effects of the PPC, respectively.

As can be seen from Fig. 3, for the unperturbed p–h
spectrum we obtain a behavior close to the Poisson
distribution, expected for uncorrelated energies. For
the case of U 
= 0, the statistics is changing to the
GOE limit. This fact indicates the onset of correla-
tions that redistribute a [0+]RPA strength over two-
phonon components constructed by phonons with the
other multipolarities. Indeed, the comparison of the
NNSD without and with the coupling illuminates this
fact evidently. At U = 0 the spectrum is characterized
by the Poisson (uncorrelated) statistics. The coupling
between the one- and two-phonon components mod-
ifies the spectrum, and the NNSD becomes close to
the Wigner surmise.

Another measure of correlations is the Δ3 statis-
tics defined as

Δ3(α,L)

= min
A,B

1
L

α+L∫
α

[N(x) − (Ax + B)]2 dx. (10)

It characterizes the deviation of the staircase function
N(x) from a straight line, and the rigid unfolded
spectrum corresponds to smaller values of Δ3, while
the soft spectrum has a larger Δ3. In fact, for a
given L, smaller values of Δ3 imply stronger long-
range correlations between the levels.

For the sake of convenience, the function Δ3(α,L),
averaged over nα intervals (α,α + L)

Δ̄3(L) =
1
nα

∑
α

Δ3(α,L), (11)

can be easily calculated from the number statistics,
n(L), which is the number of levels in an energy
interval of length L

Δ̄3(L) =
2
L4

L∫
0

(
L3 − 2L2r + r3

)
Σ2(r)dr, (12)

Σ2(L) =
〈
[n(L) − 〈n(L)〉]2

〉
. (13)

For an uncorrelated spectrum one has

Δ̄3(L) = L/15, (14)

while for the GOE it is

Δ̄3(L) ≈ 1
π2

(ln L − 0.0687) (15)

in the L � 1 limit. Figure 4 demonstrates the evolu-
tion of the Δ3 measure from the uncorrelated states
to the GOE limit, when the PPC effects are only
responsible for the statistical correlations. These cor-
relations dissolve the collective ISGMR in the sea of
the fragmented two-phonon 0+ components created
by the other multipolarities.

4. SUMMARY

With the aid of a finite rank separable approxima-
tion we have analyzed the strength distribution of 0+

states (Ex ≤ 20 MeV) of 208Pb. To simulate the mean
field we have used the SLy4 Skyrme interaction. To
analyze the 0+ excitations we take into account all
RPA states with λπ = 0+, 1−, 2+, 3−, 4+. Within the
RPA approach the centroid location of the ISGMR is
found at E ∼ 14.7 MeV. On the other hand, we have
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Fig. 3. The nearest-neighbor spacing distribution for
calculated spectra of the 0+ states of 208Pb. The case
of unperturbed 1p–1h and 2p–2h energies is shown in
panel (a). Panels (b) and (c) correspond to the calcula-
tions without and with the PPC effects, respectively. The
dotted line is the GOE limit and the dashed line is the
Poisson statistics.

demonstrated that the coupling between one- and
two-phonon terms in the wave functions of excited
states is crucially important for the interpretation of
the strength distribution of the ISGMR in the energy
interval Ex ≈ 10.5−18 MeV. The results of the calcu-
lated transition-strength distribution are generally in
a reasonable agreement with the experimental data.

The RMT measures such as the NNSD and the
Δ3 function indicate a transition towards GOE as
soon as the coupling is switched on. It appears that
the presence of two-phonon components in our wave
function, in addition to the one-phonon ones, already
enables us to describe the gross strength distribution
of the ISGMR in the experimentally available energy

 

5

 

L

 

0

(

 

c

 

)

(

 

b

 

)

0.5

0

(

 

a

 

)

10

0

 
Δ

 

3

 
(

 
L

 
)

0.5

0.5

Fig. 4. The spectral rigidity Δ3(L) for calculated spectra
of the 0+ states of 208Pb. The case of unperturbed 1p–
1h and 2p–2h energies is shown in panel (a). Panels (b)
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the PPC effects, respectively. The dotted line is the GOE
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interval. We observed that the major contribution
that evolves the system under consideration to the
GOE limit is brought about by two-pnonon compo-
nents of the octupole nature. In fact, their number
exceeds essentially the numbers of two-phonon com-
ponents that are constructed from phonons with the
other multipolarities. A further systematic statistical
studies of the impact of the phonon–phonon cou-
pling on the vibrational spectra and the Eλ-transition
strengths is clearly necessary and is in progress.
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