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Abstract—Components of the fields scattered by a periodic planar strip structure of thin magnetic films pos-
sessing a uniaxial magnetic anisotropy in the plane have been calculated using the phenomenological model.
Regularities in the dependence of these fields on the design parameters of the structure have been studied.
The results obtained agree with the numerical analysis of the micromagnetic model of this structure. It has
been shown that, near the edges of strips magnetized orthogonally to the major axis, the components of the
scattered field can exceed the external magnetizing field by a few orders of magnitude. This fact makes it pos-
sible to design highly efficient magnetoresistive elements on the basis of a strip structure of magnetic films
and thin semiconductor films.
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1. INTRODUCTION
As is known, magnetoresistive materials are

employed in magnetometers of weak fields and various
sensors [1], including nanosized sensors based on thin
magnetic films (TMF) for studies of biological objects
[2]. TMF magnetoresistive elements serve as the read-
ing heads in magnetic memory devices; they also serve
as a basis for newly developed microelectronic
devices, e.g., magnetic isolators [3]. The giant magne-
toresistive effect is inherent in the widely used multi-
layered film structures consisting of magnetic and
nonmagnetic layers [3, 4]; they can also find wide
application in controlled microwave devices [5]. How-
ever, despite a relatively large variation in the resis-
tance, which can reach ~100% [5], the control of such
structures requires relatively strong control magnetic
fields on the order of 104 Oe. This drawback is absent
in a magnetoresistor consisting of a semiconductor
film upon the surface of which a periodic structure of
parallel strips of a magnetically soft material is applied
[6]. The scattered fields in such a structure, which are
the subject of this work, can exceed by a few orders of
magnitude the external control magnetic field and, as
a result, significantly increase the variation in the
resistance of the semiconductor film.

As is known, near a ferromagnetic body magne-
tized orthogonally to the surface, the magnitude of the
field in Gaussian units is on the order of 2πM, where
M is the saturation magnetization of the material. This

property is employed in electromagnets with cores of
magnetically soft materials, which can generate suffi-
ciently strong fields at relatively lower expenditures of
energy. Indeed, the coils of an electromagnet magne-
tize the core to saturation, which can result in a con-
stant magnetic field of up to ~4πM in the gap between
the poles. A similar increase in the magnetic field is
observed in small gaps of a periodic structure of strip
elements formed by thin magnetic films. Moreover,
such structures have important advantages over mas-
sive magnets. They are capable of remagnetizing for a
few nanoseconds in a relatively weak magnetic field
(slightly stronger than the field of uniaxial magnetic
anisotropy of the film), as a rule, not exceeding a few
oersteds. It is this effect that is employed in magneto-
resistors on the basis of a semiconductor film with a
lattice (raster) TMF structure [6]. Theoretically, such
magnetoresistors can serve as an active element not
only in magnetometers and sensors, but also in various
microwave devices, including those with electrically
controlled characteristics.

However, thin-film structures have an essential
drawback: the fields on the order of 4πM are concen-
trated in them in a very small volume, determined by
the film thickness. Nevertheless, since modern tech-
nologies make it possible to produce periodic struc-
tures with gaps of a few nanometers, the importance
and urgency of studies of scattered fields in a periodic
array of magnetic strip elements is beyond doubt. The
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results of such studies enable one to formulate basic
requirements to materials and geometrical parameters
of multilayered structures for the development of new
magnetoresistive element on their basis.

2. CALCULATION

Consider a plane one-dimensional periodic struc-
ture consisting of parallel magnetic thin-film strips
infinite in the direction of the y-axis (Fig. 1a). The
strips have a thickness T, width W, and the gap of
width S between them. The structure is produced of a
magnetically soft material with a saturation magneti-
zation M, and the magnetic film possesses an induces
uniaxial magnetic anisotropy in the plane, which is
characterized by the field Ha ≪ 4πM. Suppose that the
structure is found in a constant magnetic field H0 ori-
ented at an angle θH to the y-axis (Fig. 1b), the easy
magnetization axis of the uniaxial magnetic anisot-
ropy is oriented at an angle θa, and the equilibrium sat-
uration magnetization of the film is oriented at an
angle θM.

Assume that the strip elements have no domain
structure; i.e., the magnetization vector M(x, y, z) is
homogeneous in the bulk of them. Then, the planar

components of the magnetization vector are expressed
by the formulas

 (1)

In the case of an infinite film, the value of the angle θM
is the solution of the equation [7]

 (2)

Introduce the scalar potential determining the
scattered field:

 (3)
This potential satisfies Poisson’s equation

 (4)
Introduce the quantity ρ = –4πdivΜ, which is

often called the bulk density of magnetic charges. In
the case of uniformly magnetized strip elements, the
magnetic charges ρ are located only on that part of
their surface on which the normal component Mn of
the magnetization vector M suffers a jump. From Eq.
(4) and the condition of continuity of the normal com-
ponent of the magnetic field Bn on the interface of two
media, it follows that the surface density of magnetic
charges on the edges of the magnetic strips is expressed
as

 (5)
where the plus sign corresponds to the right edge of the
magnetic strip and the minus sign, to the left one.

It is worth listing the element of symmetry of the
given problem. First, the array of magnetic strips is
homogeneous along the y-axis. Therefore, the sought
potential φ may be a function of only two coordinates,
namely, x and z. Second, in the direction of the x-axis,
the array of strips is periodic. Therefore, the potential
φ(x, z) has a period W + S along the x-axis. Third, the
structure has two planes of symmetry, periodically
repeating along the x-axis and orthogonal to it. These
planes divide each strip element and each gap between
strips into two equal parts, left and right. Each plane of
symmetry is located at the same distance from charges
of opposite signs. Therefore, the potential φ vanishes
on the planes of symmetry. Thus, for finding the scat-
tered field H(x, z), it suffices to obtain the solution to
Eq. (4) for the potential φ(x, z) within one elementary
cell, i.e., in the two-dimensional region

 (6)

and then periodically continue this solution to the
entire array of strip elements.

The potential must vanish on the left and right
boundaries of the elementary cell, i.e.,

 (7)

and, outside the surface, the potential φ(x, z) is a har-
monic function.

sin , cos .x M y MM M M M= θ = θ

0
1sin( ) sin2( ) 0.
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Fig. 1. (a) Array of magnetic strips and (b) the model of a
strip with uniaxial magnetic anisotropy in the plane.
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On the surface of the edge of a strip element
(‒T/2 ≤ z ≤ T/2, x = W/2), the volume charge density
is determined by the surface charge density ρs and, in
the general case, for the interval –T/2 ≤ z ≤ T/2, by
the expression

 (8)

The solution to Poisson’s equation (4) in elemen-
tary cell (6), which has the form of an infinite strip
with two boundaries is significantly simplified if one
conformingly maps the cell onto a semi-infinite region
with one boundary. To this end, we denote the coordi-
nates z and x by  and , respectively (Fig. 2a). As a
result, the boundaries of the elementary cell will pass
through the points A, B, C, D, E, and F so that the
points A, B, and C will belong to the upper boundary
of the cell and the points D, E, and F, to its upper
boundary. Figure 2b shows, in the new coordinates u
and v, a half-plane region onto which an elementary
cell with the boundary passing through the points A',
B', C', D', E', and F ' is mapped.

To find the conformal map, it is necessary associ-
ate each point having real coordinates  and  in
Fig. 2a with a complex number  =  + i  and associ-
ate each point in Fig. 2b having real coordinates u and
v with a complex number w =  u + iv. In Fig. 2, the

( , ) ( /2).sx z x Wρ = ρ δ −

x� y�

x� y�
z� x� y�

conformal mapping of the regions is performed by the
analytic functions [8]

 (9)

It is easy to check that, in conformal map (9), the
points A, B, C, D, E, and F in Fig. 2a correspond to the
points A', B', C', D', E', and F ' in Fig. 2b.

Any analytic function of a complex variable, Φ( ),
is a harmonic function of the coordinates  = Re  and

 = Im . Therefore, the real function φ( , ) describ-
ing the scalar potential of a magnetostatic field will be
sought in the form

 (10)
The potential of a single infinitely thin ribbon of

width d  with a linear charge dq = ρsd , passing
through the coordinate w1 = w(  + iW/2) orthogo-
nally to the w-plane, is defined as [8, 9]

 (11)
The function dφ1(w) is the real part of an analytic

function in the entire region w, except a unique iso-
lated singular point w = w1. Therefore, it is harmonic
with respect to both the coordinates u, v and the con-
formingly mapped coordinates , . The magnetic
field strength H corresponding the potential dφ1(w)
vanishes only at w → ∞. If there is another infinite rib-

bon passing through the coordinate  and carrying
the charge –dq, the total potential of the ribbons is
zero on the boundary of the w-domain; i.e., at Imw = 0:

 (12)

Since the boundary of the w-domain is a map of the
boundary of the z-domain, potential (12) satisfies both
boundary conditions in the -plane, i.e., vanishes
on the boundaries (–∞ <  < ∞,  = 0) and (–∞ <

< ∞,  = (W + S)/2). As a result, calculating the
gradient of the potential, we find the components of
the magnetic field produced by the charges ±dq by for-
mula (3):

 (13)

Carrying out the differentiation with respect to  in
(13), we obtain

 (14)
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Fig. 2. Conformal mapping of domains. Dashed rectangles
represent cross sections of magnets. Gray color empha-
sizes the region of an “elementary cell” of the periodic
structure.
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To find the magnetic field from all charges on the
boundary of the strip element, it is necessary to inte-
grate (14) with respect to  from –T/2 to T/2 at =
W/2. Using (9), after the integration and the return

1x� 1y�

from the temporary coordinates ,  to the original
coordinates z, x, we obtain

(15)

x� y�

( , ) 2 Re , ( , ) 2 Im ,z x x xH x z M H x z M= − Φ = Φ

 (16)
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

exp 2 exp exp 2 exp
ln .

exp 2 exp exp 2 exp

z ix T iW z ix T iW
W S W S W S W S
z ix T iW z ix T iW

W S W S W S W S

+ − − + +⎡ ⎤ ⎡ ⎤π − π π − π
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦+ + + +Φ =

+ − + + −⎡ ⎤ ⎡ ⎤π − π π − π
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦+ + + +

Formulas (15) and (16) enable one to calculate the
components of the fields scattered by a periodic lattice
of magnetic strip elements at any point of space,
including the regions near the strip elements and gaps
between them.

3. STUDYING THE DEPENDENCES 
OF THE SCATTERED FIELDS 

ON THE DESIGN PARAMETERS
OF THE MAGNETIC STRIP STRUCTURE
The method for calculating the components of the

fields scattered by a periodic array of magnetic strips
was implemented in a computer program for the
numerical analysis of the above-considered structure.
Using this program, regularities of the behavior of the
scattered fields on the parameters of the structure
magnetized in the plane orthogonally to the major axis
of the strips (H > Ha) were studied [10]. The lines in
Fig. 3 represent the coordinate dependences of the
longitudinal (parallel to the plane), Hx, and transverse
(orthogonal to the plane), Hz, components of the scat-
tered field, plotted for the considered structure for two
values of the gaps between magnetic strips, S = 1 and
0.2 μm; the magnetic strips had the width of W = 2 μm
and thickness of T = 0.1 μm. The TMF material was
permalloy with a saturation magnetization of M =
800 G. The fields were calculated at a distance of z0 =
0.05 μm from the upper surface of the magnetic films.
We see that the maximum absolute values of the fields
are approximately the same and the extrema of the
transverse component are located across from the
edges of the magnetic strips, where zeros of the longi-
tudinal component of the field are observed. It should
be noted that the component Hx preserves fairly large
values almost in the entire gap between strips.

The reliability of the results obtained is confirmed
by their good agreement with the results of numerical
analysis of the micromagnetic model [11, 12] of the
considered structure, which are represented in the
same figure by dots. As is known, this method has
proved its worth not only by its high efficiency and suf-
ficiently high accuracy but its ability to calculate not
only static by also dynamic characteristics of complex
magnetic objects [13].

The dependence of the scattered field on the gap
width between strips can be analyzed on the example

of the longitudinal component Hx(S) (Fig. 4). The
dependences were constructed for a structure with
W = 10 μm, T = 0.1 μm, and M = 800 G. The fields
were calculated for the points across from the center of
the strip (1), across from the center of the gap (2), and
across from the edge of the strip (3) for two distances
from the TMF surface: z0 = 0.001 μm and z0 = 0.5 μm.
We see that, for z0 = 0.001 μm, the magnitude of the
longitudinal field across from the center of the gap
(curve 2) in the region of small S exceeds 2 kOe and

Fig. 3. Dependences of planar, Hx (solid lines), and nor-
mal, Hz (dashed lines), components of scattered fields cal-
culated at a distance of z0 = 0.05 μm from the surface of
films with the magnetization of M = 800 G, plotted for two
gap widths S between strips of thickness T = 0.1 μm and
width W = 2 μm. Dots represent the results of micromag-
netic modeling.
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decreases by about a half when the gap width equals
the thickness of the magnetic film. However, with a
further increase in S, the field Hx monotonically
decreases to zero, as expected. In this case, the field in
the point across from the edge of the strip (curve 3) in
the region of small gap widths has a weakly expressed
maximum and exceeds in the gap 4 kOe, decreasing by
half if the gap width equals approximately twice the
thickness of the magnetic film. A further increase in S
also leads to a monotonic decrease in Hx to zero. We
also see that the magnitude of the longitudinal field in
the point across from the center of the strip (curve 1)
is insignificant and depends weakly on the gap width
between strips. The calculation of the fields at the dis-
tance of z0 = 0.5 μm from the TMF surface has shown
that the maxima of the longitudinal fields decrease by
about an order of magnitude. In this case, the depen-
dences Hx(S) exhibit strongly pronounced maxima of
the fields both across from the center of the gap
(curve 2) and across from the edge of the strip
(curve 3); the magnitude of the longitudinal field
across from the center of the strip (curve 1) is small
and depends weakly on the gap width between strips.

Taking into account the fact that, being employed
in a magnetoresistor [6], the magnetic strip structure
under consideration is placed on the surface of a semi-
conductor film whose thickness may be both greater
and smaller than the thickness of the TMF, it is of sig-
nificant practical interest to consider the dependences
of the scattered fields on the distance z0 above the sur-
face of the structure. Figure 5 shows the dependences
of the longitudinal, Hx, and transverse, Hz, compo-
nents of the scattered fields calculated at a distance of
0.1 μm from the edge of the strip across from the gap
(Fig. 5a) and across from the strip (Fig. 5b). The
dependences were plotted for two gap widths S

between the strips of the structure with the film thick-
ness of 0.1 μm and strip widths of 10 μm. The satura-
tion magnetization of the TMF is of M = 800 G. We
see that the longitudinal component across from the
strip and across from the gap has different signs and its
absolute value is smaller than that of the transverse
component. In this case, the behavior of both these
components with an increase in z0 has approximately
the same character but, as the gap width between them
increases from 0.2 to 1.0 μm, the transverse compo-
nent of the scattered field slightly increases and the
longitudinal component decreases.

The dependences presented in Fig. 6 can be used to
estimate the efficiency of the strip structure of thin
magnetic films designed to “amplify” the external
magnetic field. They show the dependences of the lon-
gitudinal component of the scattered fields calculated
near the edges of strips on the basis of micromagnetic
modeling on the external DC magnetic field applied in
the plane of the structure orthogonally to the strips.

Fig. 4. Dependences of the longitudinal component of
scattered field for a structure with W = 10 μm, T = 0.1 μm,
and M = 800 G on the gap width between strips, calculated
for two distances z0 (1) across from the center of a strip,
(2) across from the center of a gap, and (3) across from the
edge of a strip.
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The curves were obtained for several gap widths
between strips, which have the width of W = 10 μm
and thickness of T = 0.1 μm; the plane uniaxial mag-
netic anisotropy of the TMF, whose easy axis is
directed along the strips, is characterized by the field
strength of Ha = 5 Oe and the saturation magnetiza-
tion of the film of M = 800 G.

We see that, for the gap widths between strips of
S = 0.01 μm, the scattered field reaches the value of
Hx = 2.78 kOe, the external magnetizing field being of
12 Oe. In other words, the external magnetizing field
is “amplified” by the magnetic strip structure more
than 230-fold. However, with a 10-fold increase in the
gap widths between strips (S = 0.1 μm), the maximum
gain factor drops to 82; with a gap wider by two orders
of magnitude, when it becomes equal to the strip width
(W = S = 10.0 μm), the gain factor is only of 8.3.
Hence, the structure under consideration, undoubt-
edly, can provide a sufficiently high level of “amplifi-
cation” of the external magnetizing field necessary for
the efficient work of a magnetoresistor [6] but it can be
done with sufficiently narrow gaps between the strips,
comparable or smaller than the thickness of the mag-
netic films. This fact is easily explained by the pres-
ence of demagnetizing fields in the considered peri-
odic strip structure, as a result of which its magnetiza-
tion takes place in fields substantially exceeding the
field of its uniaxial magnetic anisotropy (Ha = 5 Oe):
the magnetizing field corresponds to it only in the case
of a continuous film. As is known, demagnetizing
fields rapidly decrease with a decrease in the gap width
between strips; therefore, the fields in which the mag-
netization of such a structure takes place decrease.

4. CONCLUSIONS

In this work, the components of the fields scattered
by a periodic planar strip structure of thin magnetic
films possessing a uniaxial magnetic anisotropy in the
plane have been calculated by means of a phenomeno-
logical model. The regularities of the behavior of these
fields with variations in the design parameters of the
periodic lattice of magnetic strips have been studied.
The reliability of the results obtained is confirmed by
their good agreement with numerical analysis of the
micromagnetic model of the considered structure. It
has been shown that, near the edges of strips magne-
tized orthogonally to the major axis, the components
of the scattered fields can exceed the external magne-
tizing field by a few orders of magnitude. This fact
makes it possible to create highly efficient magnetore-
sistive elements on the basis of a strip structure of
magnetic films and thin semiconductor films.

As is known [14], the magnetoresistive effect in
semiconductor materials is proportional to the square
of the magnitude of the applied magnetic field; there-
fore, in weak external fields, this effect is negligibly
small. However, as has been shown in this work, a rel-
atively small control magnetic field can be “ampli-
fied” by a few orders of magnitude due to scattered
fields existing in small gaps of a periodic structure of
magnetic film strip elements. Moreover, the use of
film elements with a plane uniaxial anisotropy ori-
ented along the strips makes it possible to vary the
scattered fields gradually from zero to the maximum
by applying a control magnetic field in the plane
orthogonally to the direction of strips. Placing such a
structure above the surface of a thin semiconductor
film, one can observe a substantial change in its resis-
tance under the action of such significant variations in
the scattered magnetic fields. Obviously, the magneto-
resistive effect in such a magnetoresistor can be
enhanced by the use of magnetic films with the maxi-
mum possible saturation magnetization.

It should be noted that the above-considered struc-
tures are capable of remagnetizing for a few nanosec-
onds and in a relatively weak magnetic field. As has
been shown above, this field only slightly exceeds the
field of uniaxial magnetic anisotropy, which, as a rule,
is of a few oersteds. This fact opens the theoretical
possibility of application of the film magnetoresistor
as the active element of not only magnetometers and
sensors but also various microwave devices using the
ferromagnetic resonance in TMF. Obviously, the
characteristics of such devices can be controlled by
varying the external magnetic field.
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Fig. 6. Dependences of the longitudinal component of
scattered fields near the edge of a magnetic strip on the
external DC magnetic field applied in the plane of the
structure orthogonally to strips, plotted for several gap
widths between strips with a width of 10 μm, thickness of
0.1 μm, saturation magnetization of TMF of 800 G, and
anisotropy field of 5 Oe.
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