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Abstract—The specific features of quantum oscillations of the magnetization in quasi-two-dimensional wide-
band-gap antiferromagnetic semimetals with a low concentration of charge carriers have been considered
theoretically. It has been shown that, in these systems, the Fermi energy determined from the analysis of the
frequency of the de Haas–van Alphen oscillations according to the standard procedure can differ significantly
from the true value. For the correct determination of the Fermi energy in the canted phase, it has been pro-
posed to analyze quantum oscillations of the magnetization M not as a function of the inverse magnetic field
1/H, but as a function of 1/cosγ, where the angle γ characterizes the inclination angle of the magnetic field
with respect to the plane of the quasi-two-dimensional semimetal.
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1. INTRODUCTION
Compounds in which the dynamics of charge car-

riers is substantially bounded by the planes of the crys-
tal are of great theoretical and experimental interest.
Suffice to say that this class of systems includes high-
temperature cuprate superconductors (for example,
La2 – xSrxCuO4 and YBa2Cu3Oy), heavy-fermion com-
pounds of the 1–1–5 type, CeMIn5 (M = Co, Rh, Ir),
and relatively recently discovered iron-based super-
conductors [1–3].

The problem of the experimental determination of
the shape of the Fermi surface in copper-based high-
temperature superconductors initially was solved
mainly using angle-resolved photoelectron spectros-
copy (ARPES) [4]. Later, with the improvement of the
experimental technology and quality of the samples, it
became possible to measure the Fermi surface by the
methods based on the analysis of quantum oscillations
of the magnetization (de Haas–van Alphen effect [5,
6]) and the electrical conductivity (Shubnikov–
de Haas effect [7]). Both these methods (ARPES and
de Haas–van Alphen effect) have been actively used in
the study of the topology of the Fermi surface in 1–1–
5 heavy-fermion systems [8, 9] and iron-based super-
conductors [10, 11].

When comparing the results obtained by different
experimental methods, quite often there arise discrep-
ancies in the evaluations of the size and shape of the
Fermi surface. For example, in lightly doped

YBa2Cu3Oy, the hole Fermi surfaces obtained in the
ARPES experiments are represented as Fermi arcs [4].
At the same time, from the experiments on quantum
oscillations, it follows that Fermi surfaces are closed
and their sizes amount to approximately 2% of the area
of the Brillouin zone [7, 12]. Moreover, as turned out
[13], these surfaces are the electron Fermi ones, which
is unusual for p-type high-temperature superconduc-
tors. A possible explanation for the appearance of
small pockets of electrons is associated with the trans-
formation of the Fermi surface due to the formation of
charge- and spin-density waves [14].

However, we cannot ignore the fact that a strong
magnetic field in some systems with strong electron
correlations by itself can lead to a transformation of the
Fermi surface. In the case where the magnetic field
strength H is large enough to change the size or topol-
ogy of the Fermi surface, the frequency of quantum
oscillations will no longer correspond to the Fermi
surface in the absence of a magnetic field.

In systems with a strong coupling of the charge and
spin degrees of freedom, there can exist another mech-
anism that is responsible for the inconsistency
between the frequency of the de Haas–van Alphen
oscillations and the size of the Fermi surface in the
absence of a magnetic field. It should be noted that
this mechanism does not imply a substantial transfor-
mation of the Fermi surface. The analysis of the de
Haas–van Alphen effect in wide-band-gap antiferro-
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magnetic (AFM) semimetals [15] revealed that the
canting of the magnetizations of the sublattices in a
magnetic field due to the s–d exchange coupling
results in the motion of the bands of charge carriers.
Under the conditions of the pinning of the chemical
potential, this motion causes a significant change in
the frequency of quantum oscillations in the canted
phase. Although the main emphasis in [15] was made
on the justification of the possibility of the experimen-
tal observation of an abrupt change in the frequency of
the de Haas–van Alphen oscillations at the spin-flip
transition point, from the formulas derived in [15] it
clearly follows that, in the canted phase, the frequency
of the de Haas–van Alphen oscillations will not corre-
spond to the true Fermi surface.

The aforementioned iron-based superconductors
are most similar in the electronic structure to the
AFM semimetals considered in [15]. Undoped iron-
based compounds are compensated semimetals with
the hole Fermi surfaces at the Γ point of the Brillouin
zone and the electron Fermi surfaces at the M points.
At temperatures of ≃100 K, in these systems there is a
long-range antiferromagnetic order. For the descrip-
tion of the experimentally observed diversity of mag-
netic structures, the spin-fermion model was pro-
posed in [16, 17]. The key idea advanced in [16, 17] is
the possibility to divide the 3d electronic states of iron
ions into two groups: the first group includes the dxz
and dyz states, which are considered to be itinerant,
and the second group contains all other d states, which
are assumed to be well localized. In addition to the
kinetic energy of charge carriers, the Hamiltonian of
the spin-fermion model takes into account the super-
exchange interaction between the localized spins and
the Hund’s ferromagnetic coupling between the local-
ized moments and itinerant electrons and holes.
Moreover, the Hund’s coupling is the key one in the
description of the magnetic structure type.

In this paper, based on the spin-fermion model we
will consider the specific features of quantum oscilla-
tions of the magnetization of itinerant quasiparticles in
quasi-two-dimensional (quasi-2D) compensated
AFM semimetals with the model parameters corre-
sponding to iron-based superconductors. In particular,
we will show that, in the canted AFM phase, due to the
strong Hund’s coupling, the frequency of the de Haas–
van Alphen oscillations is determined not only by the
size of the Fermi surface, but also the dynamics of the
canting of the magnetic sublattices. Consequently, the
recovery of the size of the Fermi surface in the canted
phase directly from the frequency of the de Haas–van
Alphen oscillations will lead to a significant error.

Taking into account, however, that the two-dimen-
sional character of the motion of charge carriers makes
it possible to observe quantum oscillations of the mag-
netization with a variation in the inclination angle γ of
the magnetic field with respect to the plane of the quasi-
two-dimensional semimetal, we will proposed a tech-

nique that makes it possible to correctly reproduce the
size of the Fermi surface. This method is based on the
analysis of the frequency of the magnetization quantum
oscillations as a function of the parameter 1/cosγ.

2. HAMILTONIAN OF A QUASI-TWO-
DIMENSIONAL AFM SEMIMETAL

Charge carriers (electrons and holes), as well as the
subsystem of localized spin moments in an external
magnetic field, will be described on the basis of the
Hamiltonian of the spin-fermion model

 (1)
The first and second terms in expression (1) corre-

spond to the energy operators of non-interacting elec-
trons and holes, respectively. The third term 
describes the localized spin moments interrelated by
the antiferromagnetic exchange coupling. The fourth
term accounts for the Hund’s coupling of the localized
moments with charge carriers: electrons and holes.
The last term in expression (1) corresponds to the Zee-
man energy operator of the system in a magnetic field.

In the second-quantization representation, the
sum of the operators  and  has the form

 (2)

where ελk is the energy of quasiparticles of the type
λ({e, h}) in the state with quasi-momentum k. The
chemical potentials for electrons and holes are μe = μ
and μh = –μ, respectively. The operator (cλkσ) cre-
ates (annihilates) a quasiparticle of the type λ in the
kth state with the projection of the spin moment σ,
which takes on two values ±1/2.

The antiferromagnetic state of a localized spin sub-
system, as is known, can be conveniently described in
the two-sublattice representation. Owing to the
Hund’s coupling, the doubling of the lattice period in
the AFM phase causes a modification of the spectrum
of charge carriers [18]. In order to describe the afore-
mentioned effect, we change over in Hamiltonian (2)
to the Wannier representation and introduce the two
sublattices. As a result, we obtain

 (3)

In expression (3), the sites related to the F sublattice
are denoted by the subscripts f and f ', and the sites
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belonging to the G sublattice—by the subscripts g and
g'. The operators of creation (annihilation) of a quasi-
particles of the type λ with spin σ at the site g belonging
to the G sublattice are denoted by  (dλgσ). For the
operators creating and annihilating the corresponding
quasiparticles at the f site in the F sublattice, we use the
previous notation  (cλfσ). The first two sums in for-
mula (3) describe the quasiparticle transitions within
the same sublattice F or G with the tunneling integrals

 and . The third sum corresponds to transitions
from different sublattices with the hopping parameter

. In this case, we have

 (4)

where δff  ' is the Kronecker symbol and the parameters
εe and εh represent the binding energies of electrons
and holes at the f site, respectively. The determination
of the function tλ (g, g') follows from formula (4) after
the change f → g.

The third term in Hamiltonian (1), which takes
into account the exchange interaction in the localized
spin subsystem, is describe in the framework of the
Heisenberg model

 (5)

Here, Sf(g) is the vector operator of the spin moment at
the f(g) site in the F(G) sublattice, Iff ' and Igg' are the
exchange interaction integrals for the spin moments
from the same sublattice, and Kfg is the parameter corre-
sponding to the exchange interaction energy of the spins
from different sublattices. In order to implement the
long-range AFM order, all the aforementioned
exchange parameters should be positive. Note that, with
respect to the magnetic properties, the systems under
consideration are three-dimensional. The term quasi-
two-dimensionality in this paper is used only to charac-
terize the transport properties of AFM semimetals.

The operator of the Hund’s coupling between the
localized magnetic moments and spin moments of
charge carriers (the fourth term in formula (1)) can be
written as

 (6)

where the intensity of Hund’s coupling of the localized
spin with quasiparticles of the type λ is determined by
the parameter Jλ, and the components of the spin
moment operators of charge carriers σλf (g) have the fol-
lowing representation in terms of the Fermi operators:
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Taking into account representations (7), the last
term in Hamiltonian (1), which corresponds to the
Zeeman energy, can be written in the form

 (8)

where gL is the Landé factor, μB is the Bohr magneton,
and H is the vector of the external magnetic field. The
first term in expression (8) describes the interaction
with the magnetic field of itinerant electrons and holes,
and the second term—the localized spin moments.

In addition, we assume that, in the subsystem of
localized spin moments, there is a strong easy-plane
anisotropy, and this easy plane coincides with the
range of motion of charge carriers.

3. UNITARY TRANSFORMATIONS
OF THE HAMILTONIAN

The specificity of this problem is determined not
only by the fact that the motion of charge carriers is
bounded to the two-dimensional plane, but also by the
fact that the magnetic field is directed at an angle to this
plane. The geometry of the problem under consider-
ation is shown in Fig. 1. The y axis is directed perpen-
dicular to the plane within which the charges move.
Accordingly, the x and z axes lie in this plane. The angle
between the direction of the external magnetic field H
and the normal to the plane is denoted by γ, and the
angle between the projection of the magnetic field onto
the zx plane and the x axis is designated by α.

Owing to the strong easy-plane anisotropy, the
localized magnetic moments lie in the zx plane.
Therefore, the canting of the magnetization vectors of
the sublattices [19] also occurs within the zx plane. In
this case, the canting is caused exclusively by the com-
ponent of the magnetic field H||, which is parallel to
the zx plane.
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that, if in the easy plane of magnetization, there is an
additional single-ion anisotropy, for example, tetrago-
nal symmetry, these angles are not necessarily equal to
each other. In this paper, we do not consider the effect
of an additional anisotropy on the quantum oscilla-
tions. Nonetheless, we calculate the spectrum of
Fermi excitations for this more general case. In order
to describe an asymmetric canting of the magnetiza-
tion vectors of the sublattices, we introduce the angles
θF and θG, which determine the directions of the vec-
tors RF and RG with respect to the z axis.

The state of the localized subsystem due to the
Hund’s coupling, generally speaking, should be deter-
mined taking into account itinerant electrons and holes.
However, in the compounds with low concentrations of
charge carriers, their influence on the subsystem of
localized spins can be ignored. This means that the
equilibrium configuration of localized spin moments is
determined in the main approximation by interactions
(5) and (8). At the same time, the spectral properties of
electrons and holes, due to Hund’s coupling (6), are
determined, to a large extent, by the state of the subsys-
tem of localized spins. We note in this regard that the
concentration of charge carriers in iron-based super-
conductors is of the order of ~0.06 per unit cell [2].
Therefore, in this paper, we will restrict ourselves to the
case of a low concentration of band quasiparticles.

In order to find the spectrum of quasiparticles of an
AFM semimetal in a magnetic field, for each of the
magnetic sublattices we consider a particular local
coordinate system. The new coordinate system is cho-

sen so that the equilibrium magnetization vector in the
F(G) sublattice is directed along the new axis zF(zG)
(see Fig. 1). For this purpose, we perform the unitary
transformation of Hamiltonian (1):

 (9)

where the unitary operator  is chosen in the form

 (10)

The choice of the y-components of the spin moment
operators as generators of the transformations means
that the unitary transformation (10) describes the rota-
tion of the localized and itinerant subsystems in the spin
space around the y axis through the angle θF for the F
sublattice and the angle θG for the G sublattice.

Using expression (10), we obtain the transforma-
tion laws for the electron and hole operators

 (11)

as well as for the spin operators

 (12)

where  = –σ. The transformation laws for the opera-
tors dλgσ and  related to the G sublattice follow
from formulas (11) and (12) after the change θF → θG.

By performing the unitary transformations (10) for
the terms of Hamiltonian (1), after changing over to the
representation of the quasi-momentum by the formulas
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we obtain the electron–hole Hamiltonian
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When writing expressions (14), we introduced the fol-
lowing notation:

(15)

where RF and RG are the absolute values of the magne-
tization vectors in the F and G sublattices, respectively.

In the derivation of the expression for , in the
Hamiltonian  after the unitary transformation, we
carried out the conventional separation of the terms
corresponding to the inclusion of the mean field.
These terms are taken into account in the expressions
for . The possibility of using the mean-field
approximation is determined by the low concentration
of charge carriers and low temperatures (T ≪ TN).

4. ENERGY SPECTRUM OF ELECTRONS 
AND HOLES IN AN ANTIFERROMAGNETIC 

SEMIMETAL
In order to find the energy spectrum of charge car-

riers in an antiferromagnetic semimetal in the canted

AFM phase, we use the method of equations of
motion for two-time temperature Green’s functions
[20]. We define two types of Green’s functions

 (16)
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where  = ω – ελ –  + μλ and the effective field is

given by the formula  = 2μBH||  +
JλRF(G).

Expanding determinant (19) and equating it to
zero, we obtain the biquadratic equation, which deter-
mines the energy spectrum of electrons and holes.
Four solutions to the biquadratic equation can be writ-
ten as

 (20)
where

(21)

Expressions (20) and (21) give the solution to the
problem on the spectrum of electrons and holes of an
antiferromagnetic semimetal in the canted AFM
phase in the most general case with arbitrary direc-
tions of the magnetic field vector and equilibrium
magnetization vectors of the sublattices (see Fig. 1).

Taking into account the symmetry of the initially
formulated problem, we direct the z axis along the pro-
jection of the magnetic field H|| (i.e., we set α = 0). In
this case, there is a relation between the angles and
magnetizations from different sublattices

 (22)

Considering these equalities, the expression for spec-
trum (20) can be substantially simplified and repre-
sented in the form

(23)

It should be noted that, under the additional condi-
tions H⊥ = 0 and H|| = H, expression (23) coincides
with the electron–hole energy spectrum obtained pre-
viously in [15].

Let us assume that the motion of quasiparticles
over the square lattice is caused by their hopping only
between the nearest and next-nearest neighbors.
Then, for the functions  and , we can write

 (24)

where  and  are the hopping integrals for quasipar-
ticles of the type λ between the nearest and next-near-
est neighbors, respectively, and b is the square-lattice
parameter in the AFM phase.

If the band width W determined by the tunneling
integrals  and  is significantly less than the Hund’s
coupling constant Jλ, then the model considered here
corresponds to the double exchange model used, for
example, to describe the phase diagram of manganites.
In iron-based superconductors, the situation is
reversed: W ≫ Jλ. For example, in [21], the authors
obtained the estimate for the Hund’s exchange: Jλ ~
0.35 eV. In our study, we will use the following rela-
tionships between the model parameters:

 (25)
Taking into account relationships (25) and the fact
that, in semimetals with a low concentration of charge
carriers, the thermodynamic properties of the elec-
tron–hole subsystem are determined by small values
of the quasi-momentum k, the energy spectrum (23)
corresponding to the lower band can be written as

 (26)

In this formula, the parameter –Δλ = ελ + 4(  – | |)
sets the origin of the quasiparticle energy. For elec-
trons, the value of εe is selected from the condition
Δe = 0, whereas for holes, the value of Δh is taken to be
positive. The effective masses of holes mh and elec-
trons me in formula (26) are expressed in terms of the
tunneling integrals

 (27)

and the effective field  is determined by the expres-
sion 

 (28)

As was noted above, in systems with a low concen-
tration of charge carriers, the equilibrium configura-
tion of localized spin moments is determined primar-
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ily by the exchange interaction (5) and the Zeeman
interaction (8). By performing the unitary transforma-
tion (9) of interaction operators (5) and (8) and the
further disengagement in the mean-field approxima-
tion, we obtain the condition for the equilibrium
angle θ:

 (29)
Here, K0 = zK1, where K1 is the exchange integral
between the nearest spin moments, and z is the num-
ber of nearest neighbors, which for the square lattice is
equal to four. Equation (29) allows us to find the crit-
ical field Hc = 2RK0/gLμB sinγ, at which the collapse of
the sublattice magnetizations occurs and the angle θ
becomes zero.

From expressions (26), (28), and (29), it follows
that, in the canted AFM phase, a change in the exter-
nal magnetic field (both in the absolute value of the
vector H and its direction) leads to a shift of the refer-
ence point of the dispersion relations without chang-
ing the effective mass of the quasiparticles. Moreover,
if in the collinear phase (H > Hc), this shift occurs with

the rate d /dH ~ μB, then, in the canted phase
(H < Hc), the rate of motion of the spectrum signifi-
cantly increases by a factor of approximately Jλ/K0.

5. SPECIFIC FEATURES OF QUANTUM 
OSCILLATIONS IN QUASI-TWO-

DIMENSIONAL AFM SEMIMETALS
For the study of quantum oscillations of the mag-

netization in quasi-two-dimensional antiferromag-
netic semimetals, we use the formula (see, for exam-
ple, [22])

 (30)

In the above expression, M~ is the oscillating part of
the magnetization; ωcλ = |e|H⊥/mλc is the cyclotron
frequency; T is the temperature expressed in energy
units; and  is the renormalized chemical potential,
which at low temperatures coincides with the Fermi
energy

 (31)
The amplitude of quantum oscillations of the magne-
tization  in formula (30) can be written as

 (32)

if the thickness of the quasi-two-dimensional layer is
taken to be equal to the lattice parameter b.

In order to reveal specific features of the de Haas–
van Alphen effect in AFM semimetals, we note that,
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under the conditions of canting the sublattice magne-
tizations (θ < π/2) and with due regard for relation-
ships (25) for the effective field (28), we can write:

≈ JλRcosθ/2. It can be seen that the Hund’s cou-
pling Jλ (~μλ) makes a significant contribution to the
energy of quasiparticles, which for H < Hc depends lin-
early on the magnetic field. Then, taking into account
expressions (29) and (31), we find that the phase of the
oscillating terms (i.e., the argument of the function sin
with n = 1 in formula (30)) for H < Hc has the form

 (33)

where m0 is the mass of a free electron. If H > Hc, then
the phase is given by the expression

 (34)

When writing expressions (33) and (34), we took into
account that H|| = Hsinγ and H⊥ = Hcosγ.

Equation (33) shows that, due to the linear depen-
dence of the Fermi energy (31) on the magnetic field
H in the canted AFM phase, the frequency of the de
Haas–van Alphen oscillations is determined not by
the renormalized chemical potential , which is
directly responsible for the number of charge carriers
and, therefore, for the size of the Fermi surface, but by
the parameter Δλ + μλ. This parameter differs from the
Fermi energy by the value of , which in the canted
phase has the same order of magnitude as the chemical
potential .

An increase in the magnetic field strength to a level
equal to the critical value leads to a spin-flip transi-
tion, and the angle θ becomes zero. In the ferromag-
netic phase (at H > Hc), the contribution to the energy
of quasiparticles due to the Hund’s coupling almost
does not depend on the magnetic field. As follows
from formula (34), in this case, the frequency of the
de Haas–van Alphen oscillations is proportional to
the Fermi energy .

Thus, when passing through the spin-flip transi-
tion point, we should observe an abrupt change in the
frequency of magnetization oscillations. This effect
was predicted for the first time in [15] in the study of
three-dimensional AFM semimetals.

Knowing the change in the frequency of the
de Haas–van Alphen oscillations, we can determine,
in particular, the ratio of the Hund’s coupling Jλ to the
Fermi energy . Indeed, taking into account the
relation between the phase change Δϕ and the fre-
quency of oscillations Fλσ, i.e., Δϕ = 2πFλσΔ(1/H),
and using expressions (33) and (34), we obtain

 (35)
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where  ( ) is the frequency of the de Haas–
van Alphen oscillations for H < Hc (H > Hc).

The above feature of the de Haas–van Alphen
effect is demonstrated in Fig. 2. For simplicity, the
parameters determining the energy spectrum of elec-
trons and holes are chosen to be identical. The con-
stant K0 is related to the Néel temperature TN accord-
ing to the approximate formula TN ≈ S(S + 1)K0/3,
where the temperature TN is assumed to be 80 K. Since
the calculation of M~ was performed at a temperature
T ≪ TN, the average magnetization was taken as R ≈ S.
The spin S was assumed to be 3/2. The chemical
potential μλ was determined self-consistently for each
value of the magnetic field H from the condition that
the numbers of holes and electrons are equal to each
other. For the chosen values of the model parameters,
only the subbands of quasiparticles with σ = +1/2
proved to be occupied (the subbands with σ = –1/2
were unoccupied). Therefore, on each side of the spin-
flip transition point (H = Hc), there is only one fre-
quency of oscillations. The magnetization curves
shown in Fig. 2 demonstrate a twofold increase in the
oscillation frequency upon the transition from the
canted phase to the collinear phase. The evaluation of
the Hund’s coupling constant Jλ from formula (35)
gives two-thirds of the Fermi energy .

It should be noted that, in order to observe an
abrupt change in the frequency of the de Haas–
van Alphen oscillations in quasi-two-dimensional
AFM semimetals, it is necessary that both compo-
nents of the magnetic field, H|| and H⊥, should not be
equal to zero. In contrast to three-dimensional AFM

F <
λσ F >

λσ

λσμ�

semimetals, in this case, the roles of the components
H|| and H⊥ differ from each other both by the object of
the impact and by the result of this impact. The mag-
netic field component H|| parallel to the plane acts only
on the localized spin subsystem and causes a canting of
the magnetization of the sublattices. The perpendicu-
lar magnetic field component H⊥ acting only on
charge carriers leads to a quantization of their energy
spectrum and, consequently, to quantum oscillations
of the magnetization. This is the first feature of the
discussed effect, which is characteristic of quasi-two-
dimensional AFM semimetals.

The second feature is associated with the depen-
dence of the phase of oscillating terms in formula (30)
on the inclination angle of the magnetic field H with
respect to the plane of a quasi-two-dimensional semi-
metal. If the magnetic field strength is fixed and suffi-
cient to provide the occurrence of the spin-flip transi-
tion at a certain inclination angle γc, then, in the
experiment, an abrupt change should also be observed
in the frequency of magnetization oscillations as a
function of the angle γ at the point γ = γc. The analysis
of formulas (33) and (34) demonstrates that, as before,
the change in the frequency of magnetization oscilla-
tions is associated with the dependence of the Fermi
energy  on the Hund’s coupling. Moreover, if the
spin-flip transition occurs at angles γc close to π/2 (at
which sinγc is close to unity), the change in the fre-
quency of magnetization oscillations M~(γ) is almost

negligible. If the angle γc is small, the phase shift 
due to the second term in formula (33) is insignificant
in comparison with the corresponding term in formula
(34) for the phase . In this case, the change in the
frequency of magnetization oscillations M~ as a func-
tion of the inclination angle γ should be well pro-
nounced. The above conclusions are confirmed by the
results of the numerical calculations of M~(γ) at the
angle γc = 30° (Fig. 3).

It should also be noted that the experimental obser-
vation of the effects associated with the spin-flip tran-
sition in AFM semimetals with the Néel temperature
TN ~ 100 K requires magnetic fields with a strength of
~180 T. At present, the creation of such strong mag-
netic fields is a complex problem.

From this point of view, the following circum-
stance, which is also related to the angular dependence
of the phase of the oscillating terms in expression (30),
but takes place in significantly weaker magnetic fields
(less than Hc), has become important. As was shown
above, in the canted phase, the Fermi energy in the
AFM semimetals, which is recovered from the de
Haas–van Alphen effect (i.e., from the analysis of the
quantum oscillations of the magnetization M~ as a
function of 1/H), can differ from the true value by a
factor of two. This is associated with the fact that the
sufficiently large contribution to the Fermi energy due

λσμ�
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>
λσφ

Fig. 2. Abrupt change in the de Haas–van Alphen oscilla-
tion frequency upon the transition of the spin subsystem
from the canted AFM phase to the collinear ferromagnetic

phase. The model parameters are chosen as follows:  =

= –1 eV,  =  = 0, Je = Jh = 0.15 eV, Δ = 0.15 eV, R =
3/2, gL = 2, and K0 = 5.5 × 10–3 eV. In the calculation,
γ = 45° is the angle between the magnetic field and the
normal to the plane. T = 10 K. The lattice parameter is b =
2 × 10–8 cm.
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to the Hund’s coupling (i.e., due to the term 2σ ), in
the main approximation, is linear in H. Upon substi-
tuting into formula (30), this contribution (after the
division by ωcλ) leads only to a phase shift of the func-
tion M~(1/H) and, therefore, in the experiments on
the de Haas–van Alphen effect, does not manifest
itself.

However, if the quantum oscillations of the magne-
tization M~ are analyzed not as a function of the
inverse magnetic field, but as a function of cos–1γ,
then, in the range of angles not too far from π/2, the
frequency of magnetization oscillations M~(cos–1γ)
will be proportional to the true chemical potential .
Indeed, the correction to the Fermi energy at H < Hc

is given by the expression  ≈ cosθ =

gLμBHsinγ and, at the angles γ close to π/2,

depends weakly on γ. In this case, the dependence of
the phase  on the angle γ in the main approxima-
tion is determined by the ratio /cosγ, and the fre-
quency of magnetization oscillations M~(cos–1 γ) is
proportional to .

The dependence of the magnetization oscillations
M~ on the inverse cosine of the inclination angle of the
magnetic field is shown in Fig. 4. It can be seen that
the oscillation period remains constant almost over
the entire range of variations in the angle γ. Of funda-
mental importance in this case is the fact that the
Fermi energy recovered from the Fourier analysis of
the frequency of oscillations of the function M~(cos–1γ)
differs by only 2% from the value of  obtained by
solving the equation for the chemical potential.
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6. CONCLUSIONS

The main result of the performed investigations is
the proposed method for the correct determination of
the Fermi energy of a two-dimensional wide-band-
gap antiferromagnetic semimetal with a low concen-
tration of charge carriers in the canted AFM phase.
The method consists in the Fourier analysis of the fre-
quency of magnetization oscillations M~ as a function
of 1/cosγ, where γ is the inclination angle of the mag-
netic field with respect to the plane of the quasi-two-
dimensional semimetal. In conventional experiments
on measurements of the de Haas–van Alphen effect,
the frequency of magnetization oscillations M~ is
determined as a function of the inverse magnetic field
1/H. For quasi-two-dimensional AFM semimetals,
this approach is acceptable only when H|| = 0 or H >
Hc. For the canted phase, as was shown in this study,
the analysis of the frequency of oscillations of the
function M~(1/H) can lead to incorrect values of the
Fermi energy. At the same time, the investigation of
the magnetization M~ as a function of 1/cosγ makes it
possible to obtain values of the Fermi energy that
almost completely coincide with the true values.

It should be noted that a large error in the determi-
nation of the Fermi energy from the frequency analysis
of the function M~(1/H) arises in the case where the
Hund’s coupling energy is comparable in magnitude to
the Fermi energy. This leads to the necessity to search
for the effect under consideration in the systems with a
low concentration of charge carriers. Moreover, the
experimental observation of a significant difference
between the Fermi energies obtained in the canted
phase from the analysis of the frequency dependence of
the magnetization M~ as a function of 1/H and as a
function of 1/cosγ could serve as indirect evidence for
the presence of Hund’s coupling in these systems.

An abrupt change in the frequency of the de Haas–
van Alphen oscillations at the spin-flip transition
point was predicted for the first time for three-dimen-

Fig. 3. Abrupt change in the frequency of magnetization
oscillations M~ as a function of the angle γ upon the spin-
flip transition. The model parameters are chosen the same
as in Fig. 2. The magnetic field strength H was chosen from
the condition γc = 30°.
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Fig. 4. Magnetization oscillations M~ as a function of
1/cosγ. The model parameters are chosen the same as in
Fig. 2. The magnetic field strength is H = 74 T.
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sional AFM semimetals in [15]. In the present study, it
was shown that, for the observation of this effect in
quasi-two-dimensional wide-band-gap AFM semi-
metals, the magnetic field should be directed at an
angle to the plane: 0 < γ < π/2. Furthermore, in this
paper, we presented formula (35), according to which
the ratio of the Hund’s coupling constants to the
Fermi energy can be determined from the experimen-
tally measured frequencies of the de Haas–van Alphen
oscillations in the left and right neighborhoods of the
spin-flip transition point. It was also noted that an
abrupt change in the frequency of quantum oscilla-
tions of the magnetization in quasi-two-dimensional
AFM semimetals can be observed with a variation in
the angle γ.

Another result of the investigations should be con-
sidered to be expression (20) for the energy spectrum
of electrons and holes in two-dimensional wide-band-
gap AFM semimetals with the Hund’s coupling
between the localized spin moments and itinerant
quasiparticles. The novelty of the obtained expression
lies in the fact that it describes the electron–hole spec-
trum with an arbitrary relative orientation of the equi-
librium magnetization vectors of the sublattices and
the external magnetic field and, therefore, has a wider
range of applications as compared to that considered
in this study. For example, in many two-dimensional
systems, apart from the easy-plane anisotropy, there
are additional interactions removing the degeneracy in
the direction of the in-plane magnetic moment. These
interactions lead, in particular, to the preferred orien-
tation of the equilibrium magnetization vectors RF and
RG along the high-symmetry axes of the crystal lattice,
which lie in the plane under investigation. Therefore,
if there is the magnetic field component H|| parallel to
the plane, the vector RF and RG already do not neces-
sarily form identical angles with the vector H||. Expres-
sion (20) for the energy spectrum of charge carriers in
quasi-two-dimensional AFM semimetals is also
applicable in this more general case. The necessity to
use expression (20) for the spectrum of charge carriers
can also arise in the study of ferrimagnetic semimetals
in an external magnetic field in which, for definition,
the absolute values of the magnetization vectors RF
and RG differ from each other.
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