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Abstract—Weak ferromagnetic moment along the triad axis of FeBO3 crystals has been calculated on the basis
of the single-ion model taking into account the cubic invariant of the crystal field in the spin Hamiltonian.
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Although iron borate crystals have been synthe-
sized and investigated quite thoroughly for a long time,
they continue to arouse the interest of researchers, as
they are convenient objects for constructing various
magnetic models. These crystals have a simple (cal-
cite) lattice structure, are characterized by a high Néel
temperature and narrow antiferromagnetic resonance
lines, and have a series of isostructural diamagnetic
analogs. Dmitrienko et al. [1] were, in 2014, the first to
determine the magnitude and sign of the vector com-
ponents in the Dzyaloshinskii–Moriya interaction (in
iron borate crystals). Pulsed excitation of interacting
magnetic moments in FeBO3 by linearly polarized
light was observed quite recently in [2]. In addition,
the uniaxial magnetic anisotropy in magnetically con-
centrated crystals with ions in the S state was described
quantitatively by the electron paramagnetic resonance
(EPR) technique using isostructural diamagnetic ana-
logs with trivalent iron impurity [3].

However, in spite of the simple crystal lattice
(whose elements were studied in [3, 4]; see also
Fig. 1), the magnetic system exhibits a complex
behavior [5, 6] during rotation of the antiferromag-
netism vector I = (M1 – M2)/M in the (111) plane of
the crystal, where M = 2|M1| = 2|M2|, M1 and M2 being
sublattice magnetizations. In particular, such complex
behavior is exhibited by ferromagnetism vector m =
(M1 + M2)/M when we take into account the penulti-
mate term in the expression for free energy derived by
Dzyaloshinskii [5]:

(1)

The first term in this equation characterizes the isotro-
pic exchange energy of the crystal, the second and
third terms describe the axial anisotropy, the fourth
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term takes into account the Dzyaloshinskii interaction
that leads to the emergence of weak ferromagnetism in
the (111) basal plane, the last three terms describe the
anisotropy energy in the (111) plane, and θ and ϕ are
the polar and azimuthal angles of vector I, measured
from the triad axis (z axis) and from the crystal sym-
metry plane (x axis), respectively (Fig. 1). Weak ferro-
magnetism of crystals was studied in detail by Turov
(in particular, in [6]).

Since FeBO3 is used quite frequently as a model
crystal, information about the mechanisms responsi-
ble for the emergence of anisotropic interactions in it
is sometimes found to be quite useful. One of the
anisotropy parameters considered in this work is weak
paramagnetic moment mz along the triad axis of the
crystal. The search for the factors responsible for the
emergence of mz is also an interesting problem.

MAGNETISM

Fig. 1. Cubic crystal field axes for two inequivalent posi-
tions of Fe3+ in the FeBO3 lattice. Dark and light circles
show the BO3 groups lying above and below the plane of
the figure, respectively.
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The phenomenological expression for the weak
ferromagnetic moment along the triad axis follows
from the minimization of free energy (1) in mz:

(2)

The spin Hamiltonian taking into account two
inequivalent positions of Fe3+ ions has the form [3, 4]

(3)

In this equation, the first exchange interaction term is
written in the molecular field approximation; s is the

ion spin operator;  are the equivalent spin operators
that are given together with their matrix elements, for
example, in [7, 8]; and αcf j is the angle through which
the projections of the axes of the cubic crystal field
onto the (111) plane are deflected from the crystal
symmetry plane in the jth position (see Fig. 1). A more
detailed description of Fig. 1 can be found in [3, 4].
The second, third, and fourth terms (with constant acf
in the Hamiltonian) describe the axial and cubic sym-
metry interactions, respectively.

The exchange term in (3) can be written in the
zeroth approximation in perturbation theory assuming
that the quantization axis is determined by angles θj

and ϕj measured from the triad axis and from the sym-
metry plane, respectively. The Hamiltonian can be
presented in the form [8]

Here, for simplicity we have omitted the symbols
marking the appurtenance of expressions to a coordi-
nate system turned through an angle. To take into
account the weak ferromagnetic moment along the
triad axis (in the first approximation of perturbation
theory), we shall be interested in the term contain-
ing acf:

(4)

The energy levels obtained from this equation have the
form [4]
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The anisotropic energy (5) for magnetic quantum
number m1 = –5/2 (T = 0 K) per mole of the sub-
stance can be written in the form

(6)

Here, the azimuthal angles are used for the antiferro-
magnetism vector, and N is the Avogadro number.
Expanding the cosine functions in (6) including azi-
muthal angles, adding the expressions within brackets
containing cosθ1 and cosθ2, setting sin3θ1 = sin3θ2 =
sin3θ, and considering that cosθ1 + cosθ2 = 2mz (0) by
definition, we obtain

(7)

Equating this relation to the phenomenological
expression for energy with constant t in Eq. (1) (T =
0 K), we obtain the expression for t(0) and then for mz (0):

(8)

For the weak ferromagnetic moment per mole of the
substance being measured in this case, we obtain

(9)

In expression (8), constants B(0) and acf are written
in energy units in (9) while acf and HE(0) have the
dimensions of field (oersteds). Here, H(0) = B(0)/M(0)
is the effective exchange field, g is the spectral splitting
factor, and β is the Bohr magneton.

The single-ion contribution to the weak ferromag-
netic moment along the triad axis at arbitrary tem-
peratures can be determined by expanding the free
energy of the crystal

into a power series in the ratio of anisotropy constant
to kT, where

is the sum of states of the jth ion.
We expand the exponential function in the expres-

sion for the crystal free energy into a power series in
( (mj) )/kT. Confining the expansion to linear
terms only, we obtain

=− = − −

× − θ θ ϕ + α
+ θ θ ϕ + π − α

∑ 1 5/2 cf

3
1 1 cf

3
2 2 cf

( /18) 2 ( 1/2)( 1)

( 3/2)[sin cos cos 3( )

sin cos cos 3( )].

jm

j

W N a s s s

s

=− = − −

× − − α θ ϕ

∑ 1 5/2 cf

3
cf

( /9) (0) 2 ( 1/2)

( 1)( 3/2)sin 3 sin sin 3 .

zjm m

j

W N a s s

s s

= − − − − α
= − − −

× α θ ϕ

cf cf

3
cf cf

(0) ( 2/9) ( 1/2)( 1)( 3/2) sin 3 ,

(0) [ 2/9 (0)] ( 1/2)( 1)( 3/2)

sin 3 sin sin 3 .
z

t N s s s s a

m N B s s s s

a

σ =
= β α θ ϕ

0

3
cf cf

(0) (0)

[ 2 /3 (0)]sin 3 sin sin 3 .
z z

E

m M

N a g S H

= − ∑( /2) ln j

j

F NkT Z

= −∑exp( / )
j

j jm

m

Z W kT

0
4c 0

4 ja



PHYSICS OF THE SOLID STATE  Vol. 58  No. 10  2016

WEAK FERROMAGNETISM ALONG THE TRIAD AXIS 1997

Introducing the notation Yj = exp(–gβ| |)/kT,
summing over mj (for strong exchange interaction

= –  = | |, m1 = – m2 = m), we can write
the expression for F in the form

where

Expanding function ln[1 + (60 /kT)(z2j/z0j) into a

series in small parameter (60 z2j)/(kTz0j) and confin-
ing the expansion to the first-order terms, we obtain
the following expression accurate to within the con-
stants:

(10)

Setting | | = Heff and expanding  in expression
(10), we consider the term with acf as usual. Carrying
out similar operations with trigonometric functions in
(10) as during the derivation of formula (7) from (6)
and comparing with the penultimate term in expres-
sion (1), we obtain the single-ion contributions to
macroscopic parameters at arbitrary temperatures:

(11)

Parameters acf and HE(0) in the expression for σz(T) in
(11) have the dimensions of field (oersteds) and r(Y) =
(5/2) (z2/z0). The dependence r(Y) was calculated in
[9] by using Brillouin function B(x)5/2. For T = 0 K, we
have r(Y) = –5/2, and expressions (11) are trans-
formed into relations (8), (9) for spin equal to 5/2.
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Figure 2 shows the relative temperature depen-
dence of weak ferromagnetic moment along the triad
axis σz(T)/σz(0), calculated for FeBO3. The experi-
mental value of mz obtained for FeBO3 crystals in [10]
is equal to 1.3 × 10–3 emu g–1. The estimate was
obtained for T = 77 K using the results from [11]. The-
oretical estimate obtained by taking into account the
contribution from Fe3+ ions at T = 0 K is found to be
2.4 × 10–3 emu g–1 for the following values of the con-
stants: acfmc = 130 Oe, αcfmc = 24° [3] (here, the sub-
script “mc” indicates the correspondence of parame-
ters obtained in diamagnetic analogs to a magnetically
concentrated crystal) and HE(0) = 6.02 × 106 Oe [12].
Theoretical and experimental results are found to be
quite close, indicating that the mechanism under con-
sideration is at least one of the main mechanisms.

Resultant expression (9) can also be used for
obtaining a rough estimate for σz(0) in MnCO3 from
the data obtained in [13, 14]: acf = 2.2, HE(0) = 6.4 ×
105 Oe, and αcf = 15.5°. Using these values, we obtain
σz(0) ~ 2.9 × 10–4 emu g–1. No EPR results are avail-
able for theoretical estimates of weak ferromagnetic
moment in hematite.

The mechanism of the effect of the cubic crystal
field on exchange-coupled spin moments is similar to
the one described in [4], the only difference being that
the antiferromagnetism vector for a certain orientation
in the basal plane “is bent” under the action of the
cubic field, producing the moment along the triad
axis.
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