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We study wave transmission through a Fabry–Perot resonator (FPR) loaded with point-like impurities. We show
both analytically in the framework of the coupled mode theory and numerically that there are two different
regimes for transmission dependent on the quality of the FPR mirrors. For low quality, we obtain transmittance
very similar to the clean FPR with slightly shifted Lorentz peaks. However, for good quality, the transmittance
peaks are strongly reduced and substituted with Gaussian peaks because of multiple scattering of waves by each
impurity. As a side effect, we observe the angular (channel) conversion in the disordered FPR. We demonstrate
that the resonant peaks are dependent on the concentration of impurities to pave a way for resonant measurement
of the concentration. © 2016 Optical Society of America
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1. INTRODUCTION

The study of wave scattering by small particles has had a long
history since the work by Rayleigh [1]. Wave transmission
through opaque media is still a subject of interest in daily life;
see, for example, reviews [2,3] and the book by Ishimaru [4].
The problem of multiple scattering by random media com-
posed of many discrete particles is an important subject of re-
search owing to the wide range of possible applications in
academic research and industry. Over the past few decades, the
multiple scattering of plane waves by random discrete particles
has been extensively investigated. Many methodologies have
been developed to analyze this problem, for instance, multiple
scattering theory [2,3,5], the T-matrix method [6–10], and
many hybrid numerical methods (see, for example, Ref. [9]).
The basic result of such multiple scattering is that the wave
nature of light leads to a reduction in transmittance due to
destructive interference effects [10–13].

We consider the resonant transmission through a Fabry–
Perot resonator (FPR) filled with isotropic point-like impurities
in the weak disorder regime. The presence of FPR mirrors leads
to the enhancement of Rayleigh scattering due to multiple re-
flections from the mirrors. In other words, the effective length
of disordered sample L can be considerably enlarged in the FPR.
The effective length depends on the quality factor of the
mirrors given by the inverse of the resonance width 1∕Γ. The
measure of disorder within the FPR cell defined by the concen-
tration of impurities can be specified by the inhomogeneous

line width γ. In order to preserve the resonant transmission,
we imply that Δω ≫ γ;Γ, where Δω is the distance between
the nearest resonant peaks of the FPR. The aim of the present
paper is to show that the resonant transmission strongly de-
pends on the ratio γ∕Γ. If γ ≪ Γ, we obtain Lorentz resonant
peaks slightly shifted by mean values of the dielectric constant
of impurities. However, if γ ≫ Γ, the Lorentz resonant peaks
are substituted with Gaussian-shaped peaks with the height
substantially reduced by the factor Γ∕γ.

We obtain these results analytically in the framework of the
coupled mode theory (CMT) and show that they are in a good
agreement with the numerical results. Although the present
consideration is simple, it establishes two features which have
important applications. The first result shows that the concen-
tration of impurities can be measured by the positions of res-
onant peaks. The second result is the channel conversion for
light transmission through the loaded FPR that also gives addi-
tional information about the impurities.

2. EFFECTIVE HAMILTONIAN APPROACH

In what follows, we restrict ourselves to a two-dimensional FPR
formed by two identical dielectric slabs with high dielectric
constant ε0. The inner space between the slabs is filled with
impurities with dielectric constant ε, as shown in Fig. 1. That
restriction can be justified if we present each impurity as a di-
electric rod directed along the z-axis packed randomly between
the slabs. The case of a single rod in the FPR was considered in
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Ref. [14]. Then if, for example, the TMmode with wave vector
k � �kx; ky� is injected from the left, the impurities scatter into
different directions. However, there are no processes of scatter-
ing into the TE modes. Therefore, we can write the Maxwell
equations in the scalar form as

∇
1

ε�x; y�∇ψ�x; y� � ω2ψ�x; y� � 0; (1)

where ψ � Ez is the electric field directed along the z-axis, and
the dielectric constant ε�x; y� is unity everywhere except at the
impurities. The FPR is remarkable in that for any fixed fre-
quency ω2 � k2x � k2y, light transmits at a discrete sequence
of the incident angles [15]

cos αn �
πn
kL

; n � 0;�1;�2;…; (2)

where L is the width of the FPR cell. Preservation of ky �
ω sin α implies that there are no transitions between angles
αn, which is a result of space homogeneity across the transport
axis normal to the mirror’s plane. In what follows, the light
velocity is taken as unity. We take that the inner space of
the clean FPR has a unity dielectric constant.

In practice, the sizes of the slabs or mirrors along the y-axis
are restricted. Therefore, we confine the space along the trans-
verse axis y ∈ �0d �, imposing the Dirichlet boundary condi-
tions. Then from Eq. (1), we obtain

ω2 �
�
k2p �

π2p2

d 2

�
; (3)

where p � 1; 2; 3;… enumerates propagating channels in
the waveguide and d is the width of the waveguide as shown
in Fig. 1. The propagating states in the waveguide are the
following:

ψp�x; y� �
ffiffiffiffiffiffiffiffiffiffi
1

πdkp

s
sin

πpy
d

eikpx : (4)

The implications of dielectric slabs or one-dimensional pho-
tonic crystal mirrors [14] split the system into five parts: the

left and right waveguides, two dielectric slabs shown in blue
in Fig. 1 and the inner space between the slabs with size
L × d , and the FPR cell, filled by impurities. Each slab preserves
the channel number p, or, in other words, does not mix the
channels. The dielectric slabs suppress the transmittance which
can be expressed via the transfer matrix [16] for each channel p,

M �p�
11 � cos�qpa� �

i
2

�qp
kp

� kp
qp

�
sin�qpl�;

M �p�
12 � i

2

�qp
kp

−
kp
qp

�
sin�qpl�;

M �p�
22 � �M �p�

11 �	; M �p�
21 � �M �p�

12 �	;

tp �
1

M �p�
22

; rp �
M �p�

12

M �p�
22

; (5)

where kp is given by Eq. (3), and

q2p � εk2p � �ε − 1�π2p2: (6)

If the FPR cell were clean, the total transmittance would have
the form [15]

T p �
t2peikL

1 − r2pe2ikL
: (7)

The transmittance in the first channel p � 1 described by
Eq. (7) is shown in Fig. 2 by a solid line.

The situation changes if the FPR cell is filled by the impu-
rities because of conversion between different channels p. Then
Eq. (7) shall be substituted by the following equation:eT pp 0 � tpT pp 0 tp 0 ; (8)

where calculation of the transmittance T pp 0 �ω� through the
FPR cell filled by randomly distributed impurities is the main
subject of our consideration below. The single impurity in the
form of a dielectric cylinder between the delta-like slabs admits
analytical consideration [14]. The case of many impurities can
be considered numerically or by perturbation theory for weak
Rayleigh scattering when the size of the impurities is substan-
tially less than the wavelength.

Our approach for the calculation of light transmittance
through the FPR cell with impurities is based on the Feshbach
projection of the total Hilbert space of the full HamiltonianbH � bHc � bV � bHL � bHR � bW L � bWR (9)

into the inner space of the FPR cell [17,18]. Here, bHc is the
Hamiltonian of the closed clean FPR cell, bHL; bHR are the

Fig. 1. (a),(b) FPR resonator formed by two dielectric slabs with
high dielectric constant ε and filled with point-like impurities with
the dielectric constant ε.

Fig. 2. Transmittance through the clean FPR in the first channel.
The dashed line shows the transmittance in the FPR with ε0 � 10;
a � 1∕10, and L � 5. The solid line shows the tight-binding
approach in Eq. (26) with v � 0.75; N x � 100, and Ny � 20.
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Hamiltonians of left and right waveguides with the continua of
eigenmodes from Eq. (4), respectively, bWL � bWR are the cou-
pling matrices between the FPR cell and the waveguides, and bV
is the Hamiltonian of the impurities whose explicit form will be
given below. That procedure defines an effective non-
Hermitian Hamiltonian as follows [17,18,19–21]:

bH eff � bHc � bV � bW 1bHW − ω2 − i0
bW �: (10)

Then the solution for the scattering state ψ projected onto
the FPR cell is given by the Lippmann–Schwinger equa-
tion [22–24] as

�bH eff − ω
2�ψ � i bWLψ in; (11)

where ψ in is the wave injected via the left waveguide.
Respectively, the scattering matrix consisted of transmission
and reflection amplitudes T pp 0 and Rpp 0 defined by the
Green function of Eq. (11) [20,21]:

bS � 2 bW � 1bH eff − ω
2 � i0

bW : (12)

The effective Hamiltonian acquires the Wigner–Weisskopf
form in the approximation of the infinite band of waveguides
[17,18,19–21] bH eff � bHc � bV − i bW bW �; (13)

where bHc is the diagonal matrix of the eigenfrequencies of
Eq. (25), bW is the coupling matrix [21,22,25]

Wmn;p �
ffiffiffiffiffiffiffi
1

πkp

s Z
d

0

dyψp�x; y�
∂ψmn�x; y�

∂x

����
x�xb

; (14)

where integers m and n enumerate the eigenmodes of the clean
FPR cell

ψmn�x; y� �
2ffiffiffiffiffiffi
Ld

p sin
πmx
L

sin
πny
d

; (15)

with the eigenfrequencies

ω2
mn � π2c2

�
m2

L2
� n2

d 2

�
: (16)

Substitution of the eigenmodes from Eqs. (4) and (24) into
Eq. (14) immediately gives us

Wmn;p � Wm;pδnp �
ffiffiffiffiffiffiffiffiffiffi
2

πkpL

s
kmδnp; (17)

where 1∕kp and L are measured in the waveguide width d .
Therefore, for the clean FPR, the S-matrix is diagonal over
channel p with typical resonant transmittance, as shown
in Fig. 2.

As was mentioned above, we consider impurities as rods
with the dielectric constant ε. That defines the perturbation
matrix elements bV in the space of the eigenmodes from
Eq. (24) as follows according to the Maxwell equation [Eq. (1)]:

V mn;m 0n 0 �
�
1 −

1

ε

�XN i

j�1

Z
d2x∇ψmn�x − xj�∇ψm 0n 0 �x − xj�;

(18)

where integration is performed within each impurity.
According to Eqs. (8), (12), and (18), the transmittance will
take the following form:

eT pp 0 �ω� �
X
mm 0

2Wm;pW m 0 ;p 0

Empδmm 0δpp 0 � V mp;m 0p 0 − ω
2 − i2WmpW m 0p 0

;

(19)

where the factor 2 is a result of two identical waveguides: left
and right.

3. NUMERICAL SIMULATIONS

Direct computation of light transmittance through the FPR cell
filled by impurities by use of Eq. (19) is numerically time
consuming, because it involves evaluation of the inverse of
the nonsparse matrix bH eff − ω

2. In practice, to speed up the
performance, one can use the finite difference methods or trun-
cate the effective Hamiltonian. In this section, we present
numerical results based on the first approach. Using standard
discretization of the derivatives [26], we have

∂
∂x

ξ�x� ∂
∂x

ψ�x� � 1

a20
�ξi�1∕2�ψ i�1 − ψ i�

− ξi−1∕2�ψ i − ψ i−1∕2��; (20)

where ξ�x; y� � 1
ε�x;y� . We obtain the following tight-binding

approximation of wave Eq. (1):

t ij�ψ i�1;j � ψ i−1;j � ψ i;j�1 � ψ i;j−1� − λi;jψ i;j � a20ω
2ψ i;j;

(21)

t ij �
�
1∕ε; if an impurity occupies site i; j;
1; otherwise;

(22)

λij �
�
4∕ε; if an impurity occupies site i; j;
4; otherwise:

(23)

That model of dielectric impurities corresponds to the
Anderson model with both diagonal and off-diagonal disorders
[27]. In the tight-binding representation of the Hamiltonian
[22], we have

ψmn�i; j� �
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Nx � 1��Ny � 1�p sin

πmi
N x � 1

sin
πnj

N y � 1
;

(24)

with the eigenfrequencies

ω2
mn � N 2

y

�
4 − 2 cos

�
πm
Nx

�
− 2 cos

�
πn
N y

��
: (25)

The effective Hamiltonian modifies [22,24,28] as follows:bH eff � bHc � bV − v2
X
p

ϕp exp�ikpa0�ϕ�
p �δj;1 � δj;N x

�;

(26)

where ϕp�j� �
ffiffiffiffiffiffiffiffiffi

2
Ny�1

q
sin� kpj

N y�1� are discretized transverse sol-

utions, and v is the hopping matrix element between the wave-
guides and the FPR cell depicted by solid green lines in
Fig. 1(b). The parameter v < 1 controls the quality of the
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FPR mirrors and defines the resonant widths Γ ∼ v2 [22,29].
The effective Hamiltonian in Eq. (26) coincides with the
Hamiltonian of the FPR cell everywhere except at the boun-
daries jx � 1; N . Comparison of the present tight-binding
approach for v � 0.75 with the exact continual approach in
Eq. (7) for the clean FPR demonstrates good agreement that
justifies the simulation of the FPR mirrors in the form of
dielectric slabs by the hopping matrix element v < 1. This
approximation is equivalent to tp�ω� being independent of
the frequency in Eq. (8).

The computational results are presented in Fig. 3 for high-
quality FPR mirrors. In Figs. 3(a) and 3(b), one can see the
following effects associated with the growth of the impurity
concentration c � N i∕N , where N i is the number of impu-
rities, and N � NxN y. (i) For small concentration c, the

positions of the Lorentz peaks are slightly shifted by a distance
proportional to the concentration, as shown in Figs. 3(a) and
3(b) by closed circles. That is a trivial consequence of a small
change in the mean dielectric constant due to the impurities.
(ii) A further increase in the impurities concentration causes a
substantial suppression of resonant peaks and an increase in
resonant widths, as shown by open circles in Figs. 3(a) and
3(b). Figure 3(c) demonstrates the weak effect of channel con-
version due to Rayleigh scattering by the impurities. Because of
the FPR mirrors, the conversion also shows resonant behavior
versus the impurities concentration c. (iii) Figure 3(d) shows
that the impurities concentration c can serve as a control
parameter which affects resonant peaks similar to the incident
angle in Eq. (2) or frequency. This result was used to tune the
resonant modes of a FPR cell filled with gold nanoparticles
[30]. It is remarkable that for small c one can observe a
Lorentz resonant peak, while for larger c the peak is close to the
Gaussian form with reduced height. The above results will be
reproduced analytically in the next section in the framework of
the CMT theory.

4. COUPLED MODE THEORY

The Lippmann–Schwinger equation [Eq. (11)] can be written
in the basis of the eigenmodes of the closed clean FPR resonator
Eq. (24) enumerated by the indices m, n. Expanding the scat-
tering function within the FPR cell over the eigenmodes
ψ�x; y� � ΣmnAmnψmn�x; y�, we obtain from Eq. (11) with
account of Eq. (17)

�ω2
mp − ω

2�Amp − 2i
X
m 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓmpΓm 0p

q
Am 0p

� i
ffiffiffiffiffiffiffi
Γmp

q
E0 −

X
m 0p 0

V mp;m 0p 0Am 0p 0 ; (27)

where Γmp � W 2
mp, and the EM wave with amplitude E0

is injected in the channel p � n. For the clean FPR
V mp;m 0p 0 � 0, Eq. (27) is the stationary coupled mode equation
derived in Refs. [31,32]. Thus, the Lippmann–Schwinger
Eq. (11) with the effective non-Hermitian Hamiltonian in
the Wigner–Weiskopf form is equivalent to the CMT [23,24].
As seen from Eq. (27), any inclusions within the FPR cell give
rise to channel conversion p → p 0 [14].

For a high quality factor of the FPR mirrors Γa ≪ jωmp −
ωm 0pj and a small effect of the impurities jV mn;m 0n 0 j ≪
jωmp − ωm 0pj, we can restrict ourselves by single eigenmode
approximation in the CMT Eq. (27). We show that all features
of wave transmission through the loaded FPR except the chan-
nel conversion can be described by this approximation. Let ψa
be the eigenmode of the closed FPR cell with ω ≈ ωa, where
for brevity we introduced a � �m; p�. As shown in the previous
section, in the clean FPR the eigenmode a is coupled only with
scattering channel p � n. Then the CMT Eq. (27) will take the
most simple form of

�ω2 − ω2
a − V aa � 2iΓa�Aa � −i

ffiffiffiffiffi
Γa

p
E0; (28)

where E0 is the amplitude of the incident monochromatic
light. Before averaging over the positions of impurities, the
transmittance amplitudes have Breit–Wigner form

Fig. 3. Average over impurities positions transmittance versus fre-
quency for c � 0 (solid line), c � 0.05 (closed circles), and c �
0.2 (open circles) in (a) the first channel p � 1 and (b) the second
channel. (c) Transmittance between channels (conversion) for
c � 0.2. (d) Transmittance versus impurities concentration forω � 7.
The parameters of the numerical simulations are v � 0.5; ε � 1.25;
N x � 60, and Ny � 30. The frequency is measured in terms of light
velocity/width of the waveguide.
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T �1�
pp �ω� � 2Γa

ω2 − ω2
a − V aa � i2Γa

: (29)

Here, the superscript “(1)” denotes the first order of the per-
turbation theory. In accordance with Eqs. (17) and (21), we can
establish a correspondence between the former tight-binding
approach and the present CMT decay parameters as

Γa � Γmp �
2v2

πkpL
: (30)

Assume that the impurities are uncorrelated and distributed
randomly inside the FPR cavity. Then the probability distribu-
tion of matrix elements in Eq. (18) can be easily evaluated by
use of a central limit theorem that gives

ρ�V ab� �
	
δ�V ab − �1 − 1∕ε�

XN
j�1

∇ψ a�xj�∇ψb�xj�



� 1

2π

Z
∞

−∞
dμeiμ�V ab−Na20�1−1∕ε��

×
�Z

d2xeiμ�1−1∕ε�a20∇ψa�x�∇ψb�x�
�

N

≈
1

2π
eNf �0�

Z
∞

−∞
dμ exp

�
iμV ab −

N
2
f 0 0�0�μ2

�
� 1ffiffiffiffiffiffiffiffiffiffiffi

2πσab
p exp�−�V ab − hV abi�2∕2σ2ab�; (31)

where

f �μ� � ln

Z
d2x exp�−iμ�1 − 1∕ε�a20∇ψa�x�∇ψb�x��;

f 0 0�0� � �1 − 1∕ε�2a40�h∇ψa∇ψ bi2 − h�∇ψa�2�∇ψ b�2i;
and

σab � h�V ab − hV abi�2i; σaa � σbb � σab∕2 ≈ �1 − 1∕ε�2c:
(32)

Here, h
 
 
i means average over positions of the impurities, i.e.,
integration over x � �x; y�. Asymptotical evaluation of the
average over the distributions in Eq. (31) gives us the following
expressions for averaged transmittance:

hjT �1�
pp �ω�j2i�

Z
jT �1�

pp j2ρ�V aa�dV aa

≈

8<:
Γ2
a

�ω2−ω2
a−hV aai�2�Γ2

a
; if σaa ≪ Γa

Γa
σaa

exp
h
− �ω2−ω2

a−hV aai�2
2σ2aa

i
; if σaa ≫ Γa .

(33)

One can see that this simple but generic description of light
transmission through a loaded FPR fully complies with the con-
siderations in Section 1. When the quality of the FPR mirrors is
low [the upper case in Eq. (33)] the finite number of impurities
inside the FPR cell leads only to a shift in the Lorentz resonant
peaks hV aai � �1 − 1∕ε�c because of a slight change in the
mean dielectric constant. This simple result reveals an impor-
tant way to measure the impurity concentration via a shift of
resonant peaks in the FPR filled by impurities, as demonstrated
in Fig. 3(c). In the regime of high-quality FPR mirrors
Γa ≪ σa, one can see from Eq. (33) that the Lorentz peaks
are substituted with Gaussian resonant peaks. This is related

to an inhomogeneous average of Lorentz peaks each shifted
by V aa.

The tendency of substitution of the Lorentz resonant peaks
by the Gaussian peaks with a growth in the impurities concen-
tration is seen in Figs. 3(a) and 3(b). The CMT approach in
this section presented in Fig. 4(a) also clearly shows that. In
addition to Fig. 3, we take the impurities concentration to
be fixed but vary the quality of FPR mirrors Γa to demonstrate
crossover from the clean regime to the regime of weak disorder.

In order to take into account the channel conversion,
it is enough to keep in the CMT equations two eigenmodes
a � �m; p� and b � �n; q� with eigenfrequencies close to the
frequency of the injected wave. If there are no impurities,
the eigenmodes are uncoupled. The perturbation Eq. (18)
mixes the eigenmodes, giving rise to channel conversion.
Derivation of the conversion amplitude T �2��ω� and average
over the impurities is straightforward, however, rather cumber-
some. In Fig. 4(b), we present a direct numerical solution of the
CMT equations

ωψ a � �ωa � V aa − iΓa�ψ a � V abψb − i
ffiffiffiffiffi
Γa

p
E0;

ωψb � �ωb � V bb − iΓb�ψb � V abψa − i
ffiffiffiffiffi
Γb

p
E0; (34)

for channel conversion transmittance hjT �2�
pq �ω�j2i.

5. CONCLUDING REMARKS

The inclusion of dielectric particles with small cross sections
results in Rayleigh scattering. Impurity particles placed in
the Fabry–Perot resonator cause multiple scattering events
which enhance Rayleigh scattering. Indeed, the numerical
results show that the transmittance undergoes a noticeable

Fig. 4. (a) Average transmittance through the loaded FPR cell in
the two-channel approximation. (b) Average channel conversion
transmittance hjT �p; q��2�j2i. The parameters of the model are
ωa � 0.85;ωb � 1.15; ε � 1.25, and c � 0.25.
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change with the growth of the impurity concentration from a
slight shift of the Lorentz peak to a suppression of transmit-
tance for high-quality FPR mirrors. The numerical approach
is based on the discretized version of the effective non-
Hermitian Hamiltonian which is equivalent to the coupled
mode theory. We complemented the numerical results with
analytical formulas for averaged transmittance, which show a
transition from the regime of weak disorder for low-quality
FPR mirrors to the regime of strong disorder described by
Gaussian resonant peaks high-quality mirrors. For numerical
simulations, we modeled dielectric impurity particles in the
form of dielectric rods of squared cross section parallel to
the FPR mirrors that reduce the dimension of the system to
two. The approaches presented in the paper allow us to con-
sider the three-dimensional case while accounting for both EM
polarizations.
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