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Noncollinear second-harmonic generation from two ultrashort pulses intersecting in a nonlinear medium is
studied in spectral and time domains. We derive analytical expressions for the second-harmonic (SH) amplitude
in crystals of finite thickness neglecting diffraction. The contribution from characteristics of the fundamental
radiation and interaction geometry to the process is analyzed. In addition, refined phase-matching conditions
are obtained. We find that the spectral bandwidth is determined by the intersection angle and can be enlarged.
The SH pulse duration can be optimized by varying the fundamental beam size and the intersection angle. It is
found that the SH beam excited by a Gaussian fundamental beam becomes elliptical. It is shown that the
fundamental pulse duration can be readily characterized with single pulses by means of measuring the ellipticity
of the SH beam profile. The approach developed can potentially be used to calculate parametric interactions of
fundamental pulses with an arbitrary spectrum. © 2016 Optical Society of America

OCIS codes: (190.2620) Harmonic generation and mixing; (190.4223) Nonlinear wave mixing; (190.4420) Nonlinear optics,

transverse effects in.

http://dx.doi.org/10.1364/JOSAB.33.002308

1. INTRODUCTION

The second-harmonic generation (SHG) is a well-known
nonlinear optical process where two photons at frequency ω
are converted into a single photon at double frequency 2ω.
The most efficient SHG takes place when the fundamental
frequency (FF) and second-harmonic (SH) waves are phase
matched in a quadratic nonlinear medium. This may be
achieved by using birefringent nonlinear media [1] or periodi-
cally poled nonlinear crystals [2,3]. When interacting waves
propagate in the same direction (the so-called collinear inter-
action) in a homogeneous medium, the phase-matching angle
is determined by the fundamental wavelength. Unlike the
above, the noncollinear interaction is of interest because the
phase-matching angle is a function of both the FF wavelength
and the intersection angle between two FF beams. This enables
tunable spontaneous downconversion and optical parametrical
amplification [4]. The noncollinear interaction is preferable
for auto- and cross-correlation measurements of femtosecond
pulses because of the background free auto- and cross-
correlation traces [5–11]. Recently disordered nonlinear media

were successfully used for these purposes [12–15]. Despite the
numerous studies on noncollinear SHG [5,12,16], the theory
lacks consistency. In [16], a noncollinear SHG has been studied
in the special case of tilted fundamental pulses to compensate
the mismatch of group velocities between the fundamental
pulse and SH one. The scheme was considered when funda-
mental pulse fronts are orthogonal to the SH propagation
direction in nonlinear crystal.

In the present work, we systematically study noncollinear
SHG from ultrashort pulses in another statement of the prob-
lem; namely, the phase and pulse (amplitude) fronts of the fun-
damental radiations coincide, and therefore, amplitude fronts
of the fundamental pulse and the SH one are inclined to each
other. As a result, the SH beam profile differs from the funda-
mental beam one. We elaborate the theory of non-steady-state
noncollinear SHG from ultrashort pulses; that is, we take into
account the group velocity mismatch (GVM), in the traditional
approximation of undepleted fundamental pulses for the case
of not spreading pulses and not diffracting beams. Analytical
expressions were derived for the SH frequency and spatial
spectra and the spatial distribution of intensity.
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2. THEORETICAL MODEL AND BASIC
FORMULAS

We consider propagation of two intersecting fundamental
beams through a homogeneous nonlinear medium in the plane
XY as shown in Fig. 1. Each of the two FF beams propagates at
angle ϕ to the y axis. Let us suppose for simplicity that the
intersection angle between the FF beams 2ϕ is large enough
to provide for their overlapping inside the medium of thickness
L. In this representation, SH is generated along the bisector of
the angle between the two FF beams (i.e., in the positive
direction of the axis y). Each of the FF beams propagates along
its respective axis yj in the reference coordinate system �xj; yj�,
and its transverse coordinates are xj (j � 1; 2).

Transformation from the reference coordinate system
�xj; yj� to the coordinates �x; y� is given by formulas�

xj � x cos ϕ� y sin ϕ
yj � �x sin ϕ� y cos ϕ :

Then, in the undepleted fundamental pulse approximation, the
SHG process will be governed by the equation�

∂
∂y

� 1

u2

∂
∂t

−
1

2k2
Δ�x; z�

�
A�t; x; z; y�

� iβg�x; y�A11�t; x; z; y�A12�t; x; z; y� exp�iΔky�; (1)

where A is the SH amplitude, β � 2πk2χ�2�∕n22, g�x; y� is the
function characterizing modulation of the nonlinear suscep-
tibility χ�2� (g�x; y� � const), n2 is the refractive index at
the 2ω frequency, Δk � 2k1 cos ϕ − k2 is the wave-vector
mismatch, u2 is the SH pulse group velocity, and Δ�x; z� �
�∂2∕∂x2 � ∂2∕∂z2� is the transverse Laplacian.

Propagation of FF beams A11 and A12 in the coordinate
system �x; y� obeys the equation�

∂
∂y

� tan ϕ
∂
∂x

� 1

u1 cos ϕ

∂
∂t

�
A1j�t; x; z; y� � 0; (2)

where ϕ is the inner angle between the propagation direction of
the fundamental beam and the y axis, u1 is the FF pulse group
velocity, and the sign “+” refers to j � 1 and “−” to j � 2. It
should be noted that at oblique incidence of the fundamental
pulse on a nonlinear crystal, there is the transverse group delay,
caused by mismatch of phase and amplitude fronts, in the

crystal. The angle between them is equal to ψ �
arctan��u1∕v1 − 1	 sin ϕ� [11], where v1 is the FF phase veloc-
ity. In Eq. (2), this effect is not taken into account as for the
below presented calculations ψ � −0.007 that is jψ j ≪ 1.

By solving the Cauchy problem for the equation under
consideration we obtain

A1j�t;x;z; y��A1j

�
x cos ϕ� y sin ϕ; t −

y cos ϕ� x sin ϕ
u1

�
;

(3)

where the condition at the input of the nonlinear crystal
(y � 0) has been taken into account A1j�t; x; z� �
A1j�x cos ϕ; t � x sin ϕ

u1
�. It follows from Eqs. (1) and (3) that

in the case under consideration, the so-called GVM of the
interacting FF and SH pulses along the y axis is equal to
ν � cos ϕ∕u1 − 1∕u2, and the condition of group velocity
matching takes the form u2 cos ϕ � u1. This condition differs
from the corresponding one [16] obtained for other SHG
geometry.

Further, as in the case of FF beams, diffraction of the SH
beam can be neglected. Using the Fourier transform

A�Ω; K x; K z ; y� �
1

�2π�3∕2
ZZZ

A�t; x; z; y�

× exp�−i�Ωt − K xx − K zz��dtdxdz; (4)

Eq. (1) can be expressed in the form

∂
∂y
A�Ω;K x;K z ;y��

iβg
�2π�3∕2 e

iΔky
ZZZ

A11�t;x;z;y�A12�t;x;z;y�

×exp�−iΩt� iK xx� iK zz�dtdxdz: (5)

The frequency domain representation of fundamental pulses
[Eq. (3)] allows us to write down Eq. (5) as follows:

∂
∂y

A�Ω; K x; K z ; y� �
iβg

�2π�3∕2 e
i

�
Δk�

�
cos 2ϕ
u1 cos ϕ−

1
u2

�
Ω
�
y

×
ZZZ

dΩ1dK x1dK z1Ã11�Ω1; K x1; K z1�

× Ã12

�
Ω − Ω1;

K x

cos ϕ
− K x1

� tan ϕ

u1
Ω; K z − K z1

�

× exp
�
−i
�

K x

cos ϕ
− 2K x1

�
sin ϕy

�
: (6)

The analysis at derivation Eq. (6) showed the existence
of the following relations between spatial and spectral
components:

Ω � Ω1 �Ω 0
1;

K x � �K x1 � K 0
x1� cos ϕ −Ω sin ϕ∕u1;

K z � K z1 � K 0
z1; (7)

where Ω1, Ω 0
1 are the FF spectral components, and K x1, K 0

x1,
K z1, K 0

z1 are the spatial components of FF radiation. The re-
lations in Eq. (7) represent the phase-matching conditions for
frequency and transverse wave vector components. One can
see from Eq. (6) that the SH spectrum will depend on the

Fig. 1. Interaction of two intersecting fundamental beams in a
homogeneous nonlinear medium.
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transverse FF spectrum components distribution, whereas the
transverse SH wave vector distribution will depend on the FF
spectrum and transverse FF wave vector distribution. Eq. (6)
can be used for FF pulses of an arbitrary spectral shape. On
the contrary, the use of Eq. (5) requires the knowledge of
spatiotemporal characteristics of the fundamental radiation.

Next we assume for definiteness that the two incident
fundamental pulses are spatially identical. It is reasonable to
consider interaction of spectrally limited Gaussian pulses with
a Gaussian intensity distribution in transverse direction
A1j�t; r� � A1j�0� exp�−t2∕τ20� exp�−r2∕a2�; here index j �
1; 2 refers to the respective fundamental beam, 2τ0 is the pulse
duration, a is the beam radius, and r2 � x2 � z2. Integration
of Eq. (5) along the propagation coordinate over �−L∕2; L∕2	
yields the SH amplitude:

A�Ω;K x;K z��
�−1�3∕4 ffiffi

i
p ffiffiffi

π
p

βgpτ0a3

16
ffiffiffi
2

p
sinϕ

A11�0�A12�0�

×exp
�
−
Ω2τ20
8

�
exp

�
−
a2p2K 2

x

8
−
a2K 2

z

8
−
a2Δk̃2

8sin2ϕ

�

×2iImerfi

�
a

ffiffiffi
2

p �Δk̃�2iLsin2ϕ∕a2�
4 sinϕ

	
; (8)

where Δk̃ � Δk − νΩ and

p � 1∕�cos2 ϕ� �a∕u1τ0	2 sin2 ϕ�1∕2: (9)

The spectral intensity of SH can be expressed as follows:

S�Ω� � πcn2pβ2τ20a
4

256 sin2 ϕ
g2I 21 exp

�
−
a2Δk2

4 sin2 ϕ

�

× exp
�
−
�τ20 � a2ν2∕sin2 ϕ�

4
Ω2 � Δkνa2

2 sin2 ϕ
Ω
�

× Im
�
erfi

�
a

ffiffiffi
2

p �Δk̃ � 2iL sin2 ϕ∕a2�
4 sin ϕ

	�2

: (10)

Since interaction between FF and SH waves takes place over
the region where the fundamental beams overlap, we can in-
troduce an effective interaction length. According to Fig. 1,
the effective interaction length is Lint � 2a∕ sin ϕ. Consider
the case of an infinite nonlinear medium (i.e., when the
medium thickness satisfies the condition L ≫ Lint). In this
case, integration of Eq. (5) from −∞ to∞ results in the follow-
ing expression:

A�Ω;K x;K z� �
i

ffiffiffi
π

p
βgpτ0a3

8
ffiffiffi
2

p
sin ϕ

A11�0�A12�0�

× exp
�
−
μ2

8
Ω2� Δkνa2

4 sin2ϕ
Ω
�
exp

�
−
a2Δk2

8 sin2ϕ

�

× exp
�
−
a2p2K 2

x

8

�
exp

�
−
a2K 2

z

8

�
: (11)

Here μ2 � τ20 � a2ν2∕ sin2 ϕ � τ20 � L2intν2∕4.

Fourier transform of Eq. (11) yields

A�t; x; z� � i
ffiffiffi
π

p
βgτ0affiffiffi

2
p

μ sin ϕ
A11�0�A12�0� exp

�
−
a2Δk2

8 sin2 ϕ

�

× exp
�
−
2x2

a2p2
−
2z2

a2

�
exp

�
2

μ2

�
it −

Δkνa2

4 sin2 ϕ

�
2
�
:

(12)

Equations (11) and (12) prove to satisfy the Parseval theorem.
By integrating a module of square of Eq. (11) over the

spatial frequencies, we obtain spectral intensity of the SH:

S�Ω� � πcn2pβ2τ20a
4

256 sin2 ϕ
g2I21 exp

�
−
a2Δk2

4 sin2 ϕ

�

× exp
�
−
μ2

4
Ω2 � Δkνa2

2 sin2 ϕ
Ω
�
: (13)

The spatial distribution of the SH intensity defined as
I�t; x; z� � �cn2∕8π�jA�t; x; z�j2 has the form

I�t; x; z� � cn2β2g2τ20a
2I 21

16μ2 sin2 ϕ
exp

�
−
4x2

a2p2
−
4z2

a2

�

× exp
�
−
a2Δk2

4 sin2 φ

�
exp

�
−
4

μ2

�
t2 −

�
Δkνa2

4 sin2 ϕ

�
2
	�

:

(14)

The SH pulse envelope represents a Gaussian function, and the
parameter μ determines the SH pulse duration. The SH pulse

duration can be represented as μ � τ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1� L2int∕�4L2gr��

q
,

and, therefore, it is a function of both Lint and Lgr � τ0∕ν,
the latter being the length of the GVM. Conversely, the inter-
action length depends on the beam spot size and the intersec-
tion angle. By varying these parameters we can change the SH
pulse duration.

3. RESULTS AND DISCUSSION

For the calculations, we choose a beta barium borate (BBO)
crystal as a nonlinear medium, which is commonly used for
SHG of a Ti:Sapphire oscillator. The fundamental spectrum
has a Gaussian shape with the full width at half-maximum
(FWHM) 10 nm at the central wavelength 800 nm. It is also
preferable to consider the SHG process of the I-type (oo − e
interaction). Under noncollinear interaction, the calculated
phase-matching angle equals 41.2 deg for the inner intersection
angle 20 deg. The refractive indexes of BBO were approxi-
mated using the Sellmeier coefficients from Ref. [17].

The calculated SH spectra are shown in Fig. 2. The length of
the medium is 1 mm. For the calculations, Eqs. (10) and (13)
were used. As seen, Eq. (13) provides a good description of the
noncollinear SHG when the actual thickness of the medium is
larger than the effective interaction length L > Lint [Fig. 2(a)].
A different situation arises with L ≤ Lint [Fig. 2(b)]. In this
case, Eq. (13) gives a spectrum profile with an underestimated
width. The condition of use of Eq. (13) (L > Lint) can be
represented in the form ϕ 0 ≥ arcsin�2a∕L�.
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From Eq. (13), the SH spectral bandwidth (FWHM) is

ΔΩ�ϕ� � Δkνa2

μ2 sin2 ϕ
� 2

μ

ffiffiffiffiffiffiffiffiffiffi
ln�2�

p
: (15)

Note that only the second term in Eq. (15) contributes to
the spectral width if the phase-matching condition is fulfilled.
The presence of the phase mismatch (Δk ≠ 0) leads to modi-
fication of the spectral envelope. In particular, there appears a
spectral shift if phase mismatch is introduced:

δΩ � −
Δkνa2

μ2 sin2 ϕ
: (16)

Figure 3 shows the calculated spectral intensities for collin-
ear and noncollinear interaction in a 2-mm-thick medium. In
the case of collinear SHG, the spectral intensity derived from
[18] has a sinc2-shaped profile. The curves corresponding to
the noncollinear SHG are found from Eq. (10). As one can
see, increasing the intersection angle results in widening of
the spectral curve. This result can be accounted for by the short
interaction length within the fundamental beam intersection,
which implies a larger spectral range where the phase-matching
condition is fulfilled.

Figure 4 illustrates in more detail the behavior of the spectral
width depending on the intersection angle. The spectral width
was calculated using Eq. (15) and then scaled to the wave-
length. In the extreme case, when the intersection angle goes
to zero, the spectral width comes close to the spectral width of
collinear SHG. This angular behavior is also accompanied by a
remarkable reduction in the SH pulse duration.

Taking into account that μ2 � τ20�1� L2int∕�4L2gr�� in
Eq. (14), the broadening of SH pulses can obviously be attrib-
uted to the GVM and depends on the relation between Lint and
Lgr. For example, SH pulses are

ffiffiffi
2

p
times wider than FF pulses

for Lint � 2Lgr. The choice of the interaction length must rely
on GVM for a given material.

The approach proposed can be used to simulate intensity
autocorrelation measurements by introducing time delay
between the fundamental pulses. On the other hand, from
Eq. (14) one can see that the SH beam cross section becomes
elliptical with the ellipticity factor p. It was shown previously
that the ellipticity factor is determined by the pulse duration of
incident beams, their cross-section size, and the intersection
angle. Hence, we can find the pulse duration with single pulses
by means of measuring the SH beam profile by a spatial detec-
tor. The extracted fundamental pulse duration is given by

Fig. 2. Noncollinear SH spectral intensity calculated using Eq. (10)
(green) and Eq. (13) (red) for intersection angles (a) 5 deg and
(b) 2 deg. The respective effective interaction lengths are 0.74 mm
and 1.9 mm.

Fig. 3. Calculated spectral intensity for collinear (black) and
noncollinear SHG (colored).

Fig. 4. Spectral width (left axis) and relative pulse broadening (right
axis) versus intersection angle.

Fig. 5. Dependence of the parameter p on the FF pulse duration.
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τext �
2ap sin ϕ

u1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − p2 cos2 ϕ

p : (17)

The use of Eq. (17) requires exact knowledge of the size of
fundamental beams (the ellipticity factor p) and their intersec-
tion angle. Figure 5 illustrates the behavior of the parameter p
depending on the pulse duration for three different beam radii
a. These curves are identical, except for the scaling factor,
which is determined by the relation between the terms in
the denominator of Eq. (9). If a � u1τ0, there is no SH beam
ellipticity, and the parameter p � 1. However, if a ≪ u1τ0, the
curve in Fig. 5 is saturated. Our analysis shows that this
technique can be applied for monitoring sub-100-fs pulses.
In particular, in the situation under study (p � 0.92,
a � 34 μm, 2ϕ � 20 deg ), the pulse width is equal to 85 fs
(FWHM).

The SH pulse energy at the exit from the medium is

E �
ffiffiffi
π

p
πcn2pβ2g2τ20a

4I21
128μ sin2 φ

exp

�
−
a2Δk2

4 sin2 φ

�

× exp
� �Δkνa2�2
μ2�2 sin2 ϕ�2

�
: (18)

The SH pulse energy goes down with the growing intersec-
tion angle. For instance, there is a tenfold energy drop when the
intersection angle changes from 1 to 3 deg. This results from
the GVM and fractional overlapping of the fundamental pulses
inside the medium. To compensate for the GVM, dispersion
prisms can be used for tailoring fundamental pulses prior to
entering the crystal [16,19].

4. CONCLUSION

We have developed a consistent theory of noncollinear SHG by
ultrashort laser pulses in homogeneous nonlinear media in
spectral and time domains. We have derived analytical expres-
sions for the SH amplitude in crystals of finite thickness,
neglecting diffraction phenomena and fundamental pulse
depletion. A contribution from the characteristics of the fun-
damental radiation and interaction geometry to the process has
been analyzed. In addition, refined phase-matching conditions
are obtained. We have found that the spectral bandwidth is
determined by the intersection angle and can be enlarged.
The SH pulse duration can be optimized by varying the
fundamental beam size and the intersection angle. It is found
that the SH beam at noncollinear interaction of ultrashort
pulses becomes an elliptical one. It has been shown that the
fundamental pulse duration can be readily characterized with
single pulses by means of measuring the ellipticity of the SH
beam profile. The approach developed can potentially be used
to calculate parametric interactions of fundamental pulses
with an arbitrary spectrum in homogeneous media as well
as in one- and two-dimensional nonlinear photonic crystals
[20–22].
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