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We derive the design formulas for novel multilayer band-
pass filters in which every dielectric layer (resonator) is sep-
arated from the adjacent layer or external medium by a
grating of strip conductors. Every grating acts as a semi-
reflecting mirror. Such novel filters have wide stop bands
compared to conventional filters with multilayer dielectric
mirrors between resonators at the same passband width.
The parameters of the lowpass, lumped-element prototype
filter, as well as the theory of resonator-coupling coeffi-
cients, are considered in our approach. The computed
frequency response of the fifth-order Chebyshev filter
that was synthesized using the proposed formulas is also
presented. © 2016 Optical Society of America
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A novel multilayer bandpass filter containing interlayer gratings
of strip conductors was proposed in [1]; the cross section of its
structure is shown in Fig. 1. The filter works similarly to the
conventional dielectric multilayer bandpass filter for which
multilayer dielectric mirrors separating half-wavelength reso-
nant layers are composed of quarter-wavelength layers with
alternating high- and low-refractive indices [2–5]. The salient
feature of the novel filter is its stop bands are extended many-
fold. This filter may operate in microwave, infrared, and optical
ranges.

Every dielectric layer in the filter under consideration is a
half-wavelength resonator. It is separated from the adjacent res-
onator or free space by semi-reflecting mirrors located on both
of its sides. Each mirror is a planar grating of strip conductors,
and the conductors in all the gratings are parallel to each other.
Every period T i for the ith grating in the filter must be less than
the thickness hi of the adjacent dielectric layers in order to sup-
press the contribution of evanescent modes generated by the
grating. The third set of structure parameters of the filter is

the spacing si between strip conductors. All three sets of param-
eters have to have their optimal values corresponding to index i.

The behavior of the reflection properties of the single gra-
ting with the ideal strip conductors situated on a boundary
between two media when its structure parameters vary was
studied in [6]. In that paper, one can also find the derived
formulas for the reflection and transmission coefficients, which
we use during filter design.

In this Letter, we derive formulas for computing the optimal
values of si and hi at fixed values of T i for every layer of the
structure in order to ensure the desired Chebyshev frequency
response of the filter. We restrict ourselves to the case in which
the wave vector of the incident wave is orthogonal to the filter
plane and the electric field E is parallel to the strip conductors.

We shall characterize the frequency response near the pass-
band by the frequencies f l and f h, which are the low and high
edges of the passband as defined by the minimum return loss
level Lr (i.e., the reflection loss measured in decibels). The order
nf of the filter defines the number of reflection zeroes within
the passband and is equal to the number of layers.

In accordance with the theory of filters, the only physical
values that are to be adjusted in order to obtain the desired
passband parameters (Lr , f l , and f h) are the resonant frequen-
cies of all the resonators, f i; the coupling coefficients of all the
resonator pairs, ki;i�1; and the external quality factor of the
input and output resonators, Qe . In the case of a narrow pass-
band, all the resonant frequencies f i must be equal to the
center frequency f 0 � �f l f h�1∕2. Moreover, the coefficients
ki;i�1, together with the factor Qe, must satisfy the following
equations [7,8]:

Q−1
e � w∕g1; (1)

Fig. 1. Cross section of the fifth-order bandpass filter.
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jki;i�1j � w∕ ffiffiffiffiffiffiffiffiffiffiffiffigig i�1
p ; (2)

where w is the fractional bandwidth defined by the equation

w ≡ �f h − f l �∕f 0; (3)

and gi are the normalized lowpass prototype parameters that
can be computed using the following equations:

g1 � 2a1∕γ;

gk �
4ak−1ak
bk−1gk−1

; k � 2; 3;…; nf : (4)

Here we use the following notations:

γ � sinh

�
atanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 10−Lr∕10

p

2nf

�
;

g1 � 2a1∕γ;

gk �
4ak−1ak
bk−1gk−1

; k � 2; 3;…; nf ;

ak � sin
�2k − 1�π

2nf
;

bk � γ2 � sin2
kπ
nf

; k � 1; 2;…; nf : (5)

We should note that the coefficients ki are symmetrical relative
to the filter center—i.e., k1 � kn−1, k2 � kn−2 etc.

In order to determine the factor Qe of the input resonator
(i � 1), including the first dielectric layer together with the
external grating (i � 0) that separates the layer from free space,
we should isolate this resonator from the neighboring resonator.
This may be theoretically achieved by applying the boundary
condition E � 0 for the electric field on the isolated surface of
the first layer. At this stage, we can solve the boundary-value
problem and find the complex frequency f c for free oscillation
in the first resonator.

We shall characterize the reflective properties of every gra-
ting on the boundary between media with refractive indices n1
and n2 by the scattering matrix S�n1; n2; f ; s; T �. This matrix
relates the normalized electric-strength amplitudes of outgoing
waves (bi), with the analogous amplitudes of the incoming
waves (ai) on both sides (port 1 and port 2), according to
the following equation [9]:

�
b1
b2

�
� S

�
a1
a2

�
: (6)

Here the amplitudes ai and bi are normalized in such a way that
the total power Pi coming into port i per unit area can be ex-
pressed by the equation

Pi �
1

2
jaij2 −

1

2
jbij2: (7)

Using the formulas for reflection and transmission coefficients
that were derived in [6], we obtain the scattering matrix for the
grating

S�n1; n2; f ; s; T � �

0
BBB@

n1 − n2 − iΛ
n1 � n2 � iΛ

2
ffiffiffiffiffiffiffiffiffi
n1n2

p
n1 � n2 � iΛ

2
ffiffiffiffiffiffiffiffiffi
n1n2

p
n1 � n2 � iΛ

−n1 � n2 � iΛ
n1 � n2 � iΛ

1
CCCA

Λ ≡ c∕
�
f T ln sec

�
πs
2T

��
; (8)

where i is the imaginary unit that is present in the time-
dependent factor exp�−i2πf t�.

Solving the eigenvalue problem concerning the free oscilla-
tion in the first resonator, we obtain the following equation:

θc � π � i
2
ln�−S11�n; 1; f c ; s0; T 0��; (9)

where n is the refractive index of all the layers, and θc is phase
thickness of the first layer as defined by the following equation:

θc ≡
2πf c

c
nh1: (10)

The frequency f c together with thickness h1 may be easily
found by iteratively solving Eq. (10) under the condition
Ref c � f 0. At this stage, the factor Qe may be computed us-
ing the following equation [6,10]:

Qe � Re f c∕�−2 Im f c�: (11)

We can simultaneously estimate the relative thinning of the
first layer, affected by the external grating, using the following
equation:

δl0 � 1 − Re θc∕π: (12)

Now the optimal value of s0 in the external grating may be
found for a fixed value of T 0 by solving Eq. (1).

In order to determine the coupling coefficients ki;i�1 for the
ith and (i � 1)th resonators, we should isolate this pair from all
other parts of the filter. This can be theoretically achieved by
applying the boundary condition E � 0 for the electric field on
both external surfaces of this resonator pair.

Next, we compute the resonant frequencies f e and f o for
the even- and odd-coupled oscillations for the case of identical
layers. Solving this eigenvalue problem, we obtain the following
equations:

θe � π � i
1

2
arg�−S21 − S11�; (13)

θo � π � i
1

2
arg�S21 − S11�: (14)

For phase thicknesses, we have

θe ≡
2πf e

c
nhi;

θo ≡
2πf o

c
nhi: (15)

Taking Eq. (8) into account, we can rewrite Eq. (14) for the
case of n1 � n2 � n in the following form:

θo � π: (16)

The frequencies f e and f o together with the thickness hi may
be found by iteratively solving Eqs. (13), (15), and (16) under
the condition that �f e � f o�∕2 � f 0. Next, the coefficients
ki;i�1 may be computed using the following equation [11,12]:
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ki;i�1 � �f 2
o − f

2
e �∕�f 2

o � f 2
e �: (17)

We can simultaneously estimate the relative thinning of the ith
layer, affected by ith grating, as follows:

δl i � 1 − �θe � θo�∕�2π�: (18)

Now the optimal value of si in the ith grating may be found for
a fixed value of T i by solving Eq. (2).

At this stage, the final thicknesses of the dielectric layers in
accordance with Eqs. (10), (12), (15), and (18) may be com-
puted as follows:

hi � �1 − δl i−1 − δl i�λn∕2; (19)

where λn � c∕�f 0n� is the wavelength in the dielectric at f 0.
In this way, we have obtained all the formulas that allow for the
design of the multilayer passband filter.

The frequency response of the designed filter may be com-
puted by multiplication of the transfer matrices M for every
grating and every dielectric layer in the multilayer structure
[2]. Matrix M is also called the characteristic matrix or the
ABCD matrix [7]. It relates the tangential components of
the electric- and magnetic-field strengths on the first and sec-
ond surface of a planar structure according to the following
equation: �

E1

Z 0H 1

�
� M

�
E2

Z 0H 2

�
; (20)

where the free-space characteristic impedance is given
by Z 0 ≡ �μ0∕ε0�1∕2.

The transfer matrix M of the ith dielectric layer has the
following form [2]:

M �
�

cos θi
−i
n sin θi

−in sin θi cos θi

�
; θi ≡

2πf
c

nhi; (21)

whereas the transfer matrix M of the grating may be obtained
from Eq. (8) by the following equation [7]:

M �

0
BB@

1� S11 − S22 − det�Sik�
2S21

1� S11 � S22 � det�Sik�
2S21

1 − S11 − S22 � det�Sik�
2S21

1 − S11 � S22 − det�Sik �
2S21

1
CCA:

(22)

The required scattering matrix S of the entire layered structure
is related to the product (M) of the transfer matrices for every
structure component as follows [7]:

S�

0
B@

M 11�M 12−M 21−M 22

M 11�M 12�M 21�M 22

2 det�Mik �
M 11�M 12�M 21�M 22

2

M 11�M 12�M 21�M 22

−M 11�M 12−M 21�M 22

M 11�M 12�M 21�M 22

1
CA:

(23)

Equations (22) and (23) are concerned with the particular case
in which both media surrounding the filter are air.

We should note that the filter being considered, as well as its
components (dielectric layers and gratings of strip conductors),
are reciprocal two-port networks. Thus their matricesM and S
satisfy the equations det�Mik � � 1 and S12 � S21 [7].
Moreover, the neglect of dielectric and ohmic loss in the struc-
ture results in the following equation: jS11j � jS22j.

We shall illustrate the accuracy of our derived design formu-
las with the following example. Let the desired filter have

the order nf � 5; let the passband, edge frequencies be
f l � 0.975 THz and f h � 1.025 THz; let the minimum re-
turn loss level be Lr � 14 dB; and let the refractive index be
n � 1.87. From these parameters, we obtain a center frequency
of f 0 � 1 THz, a fractional bandwidth of w � 0.050, an
external quality factor of Qe � 26.00, coupling coefficients
of k1;2 � 0.03781 and k2;3 � 0.02956, and a wavelength of
λn � 160.2 μm in the dielectric. We shall suppose that all
the gratings have the same period: namely, T i � λn∕4 (i.e.,
T i � 40 μm). In this way, we obtain the spacing of the gra-
tings and the thicknesses of the layers. Their values, measured
in micrometers, are presented in the row labeled as “Formulas”
in Table 1.

The dotted lines in Fig. 2 show the computed frequency
dependencies of the transmission coefficient jS21j and the
reflection coefficient jS11j for the bandpass filter that was de-
signed by the proposed formulas. One can see that the designed
filter requires slight adjustments. Using physical rules of filter
optimization [3], we obtained the refined structure parameters,
which are presented in the row labeled as “Optimal” in Table 1.

We should note that the accuracy of the proposed design
formulas decays with an increase in the fractional bandwidth
w. This accuracy decay appears in any filter that is designed
with use of its lumped-element prototype [7]. Furthermore, the
inaccuracy is due to the difference of frequency dispersion of
the resonator-coupling coefficients in the filter and the
dispersion of the corresponding coefficients in its lumped-
element prototype [13,14].

Table 1. Structure Parameters of the Filter (all units: μm)

Parameter s0 s1 s2 h1 h2 h3
Formulas 33.91 16.92 15.08 70.04 77.47 77.79
Optimal 33.95 16.86 15.08 70.14 77.53 77.85

Fig. 2. Computed frequency responses of the bandpass filter for the
structure parameters obtained by the formulas derived in this Letter
(dotted lines) and by optimization (solid lines).
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