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We consider light propagation above the light line in arrays
of spherical dielectric nanoparticles. It is demonstrated nu-
merically that quasi-bound leaky modes of the array can
propagate both stationary waves and light pulses to a dis-
tance of 60 wavelengths at the frequencies close to the
bound states in the radiation continuum. A semi-analytical
estimate for decay rates of the guided waves is found to
match the numerical data to a good accuracy. © 2016
Optical Society of America

OCIS codes: (050.6624) Subwavelength structures; (250.5530) Pulse

propagation and temporal solitons.
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The progress in subwavelength optics opens unprecedented
opportunities for manipulating light on the nanoscale [1–3].
Among those is the fabrication of subwavelength waveguides
which may serve as the key components for future integrated
optics [4–8]. Since the seminal Letter by Quinten et al. [4], one
of the mainstream ideas in the design of subwavelength wave-
guides has been the implementation of various assemblies of
plasmonic nanoparticles such as those considered in [6,9–15],
to name a few relevant references from the vast literature on the
subject. Seemingly less attention, though, has been paid to
the arrays of dielectric nanoparticles [16–21], although all-
dielectric nanooptics [22] could be potentially advantageous
against nanoplasmonics due to, for instance, the opportunity
to control the frequencies of electric and magnetic Mie reso-
nances by changing the geometry of high-index nanoparticles
and the absence of free carriers, resulting in a high Q-factor.
Arguably, the arrays of dielectric nanoparticles provide one of
the most promising subwavelength setups for efficient light
guiding [20,21,23], as well as more intricate effects such as res-
onant transmission of light [24] and optical nanoantennas [25].

So far, the major theoretical tool for analyzing the infinite
arrays of spherical dielectric nanoparticles has been the coupled
dipole approximation [26–28]. In this approximation, guided
waves in arrays of magnetodielectric spheres were first consid-
ered by Shore and Yaghjian [29,30] who derived the dispersion
relation and computed the dispersion curves for dipolar waves.
Recently, a more tractable form of the dispersion equations was

presented by the same authors [31] with the use of the polilo-
garithmic functions. The dipolar waves in arrays of Si dielectric
nanospheres were thoroughly analyzed in [23]. It was shown
that only two of the lowest guided modes could be fairly de-
scribed by the dipole approximation which breaks down as the
frequency approaches the first quadruple Mie resonance. This
limits the application of the dipolar dispersion diagrams to real-
istic waveguides assembled of dielectric nanoparticles. As an
alternative to the dipole approximation, a “semiclassical” ap-
proach based on the coupling of the whispering gallery modes
of individual spheres could be employed to recover the array
band structure [32,33] if the wavelength is much smaller than
the diameter of the spheres. The general case, however, requires
a full-wave Mie scattering approach to account for all possible
multipole resonances [17] involving a very complicated multi-
scattering picture which mathematically manifests itself in in-
finite multipole sums. Luckily, such an approach was recently
developed by Linton, Zalipaev, and Thompson who managed
to obtain a multipole dispersion relation in a closed form suit-
able for numerical computations [34]. The above approach was
used for analyzing the spectra of dielectric arrays above the line
of light in [35]. It was demonstrated that under variation of
some parameters such as the radius of the spheres, the leaky
modes dominating the spectrum can acquire an infinite life-
time. In other words, the array can support bound states in
the radiation continuum (BSCs) [36–40]. In this Letter, we will
address the ability of the BSCs to propagate light along the
array, primarily motivated by finding new opportunities for
designing subwavelength waveguides.

Let us first obtain the dispersion diagram of an array of di-
electric nanoparticles. The dispersion curves are computed by
solving the dispersion equation f d ;m�k; β� � 0, where k is the
vacuum wave number k � ω∕c, and β is the Bloch wave num-
ber, while the subscripts d , m designate either dipole [23,31] or
multipole [34] dispersion relations. For brevity, we do not
present the exact dispersion relations f d ;m�k; β� � 0. A math-
ematically inquisitive reader is referred to the above cited
Letters to examine the rather cumbersome expressions for
f d ;m�k; β�. Here we assume that the array consists of spherical
nanoparticles of radius R with a dielectric constant ϵ � 15 (Si)
in vacuum. The centers of the nanoparticles are separated by
distance a. It is worth mentioning that at a given dielectric
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constant, the dispersion is only dependent on a single dimen-
sionless quantity R∕a. This allowed the scaling of the model for
a microwave experiment [23]. There are three types of dipolar
solutions [23], namely, longitudinal magnetic (LM), longi-
tudinal electric (LE), and transverse electromagnetic (TEM)
waves. In Fig. 1, we plot the lowest frequency modes of each
type in comparison with the multipole solution [34]. In all
cases, if the k − β curve is above the light line k � β, the vac-
uum wave number becomes complex valued. The imaginary
part of k is linked to the mode lifetime through the following
formula:

τ � −�cI�k��−1: (1)

Two approaches are possible for the description of the leaky
modes: complex frequency ω [41,42] or complex Bloch num-
ber β [23,43]. In the latter case, the inverse of the imaginary
part of β is the penetration depth into the array Lτ � �I�β��−1.
The quantities τ and Lτ are, in fact, proportional:

Lτ � vτ; (2)

where v is the group velocity v � dR�ω�∕dβ. Here, we do not
present the imaginary part of β, mentioning in passing that the
penetration depths for dipolar waves were analyzed in [23,43].
Importantly, the numerical data available so far [23,35,43] in-
dicate that all dipolar leaky modes are relatively short-lived; in
particular, no dipolar BSCs were found in [35]. In compliance
with [23], Fig. 1 demonstrates that only two of the lowest
eigenmodes are fairly described by the dipole approxima-
tion. Thus, for obtaining valid results for guided modes at
ka∕π ≥ 1, one has to resort to the full-wave formalism of [34].

Now, let us consider the multipolar quasi-guided modes
within the first radiation continuum [35]. The dispersion
curves for a leaky mode for two different ratios R∕a are plotted
in Fig. 2(a). One can see that, in contrast to the dipolar waves in

Fig. 1, now the solutions could be long-lived with the lifetime
Eq. (1) growing up to infinity at the BSC points. It should be
pointed out that for both R∕a of all leaky modes of the array we
plot only one which has a Bloch BSC point I�k� � 0 at β ≠ 0.
As shown in Fig. 2(b) the BSC exists in a wide range of param-
eter R∕a. The magnetic and electric vectors could be found in
terms of Mie coefficients amn , bmn . For instance, outside the
spheres one has for the electric vector E�r� [34]:

E�r� �
X∞
j�−∞

eiajβ
X∞
n�m�

�amnMm
n �r − rj� � bmnNm

n �r − rj��; (3)

where j the number of the particle in the array, m—azimuthal
number; m� � max�1; m�; and Nm

n �r�, Mm
n �r� are spherical

vector harmonics [44]. Only m � 0 Bloch BSCs were found
in [35]. Our numerics indicate that for BSCs in Fig. 2 the
dominating term in the expansions (3) corresponds to coeffi-
cient a03. In the insets in Fig. 2(b), we plot the components of
the electric and magnetic vectors of the BSC solution. One can
see that the electromagnetic field is localized in the vicinity of
the array. To run the numerical simulations, a finite number

Fig. 1. Dispersion diagram of an infinite array of dielectric nano-
spheres of radius R with dielectric constant ϵ � 15, R∕a � 0.4.
The array centerline is aligned with the x-axis, as shown in the south-
east corner of the plot. The real parts of the solutions are shown by
dashed-dotted red lines. The thick gray lines are the real parts of the
full-wave solutions; the negative imaginary parts −I�k� of the full-
wave solutions are shown by the blue dashed lines. The thin gray line
is the light line.

Fig. 2. (a) Quasi-guided modes above the light line; R∕a � 0.4,
solid line; R∕a � 0.44, dashed line; ϵ � 15. Imaginary part of k, the
main plot; real part, the inset. The positions of the BSCs are shown by
the red stars. The imaginary parts are non-smooth, as the real parts
cross the boundary of the second radiation continuum ka � 2π − βa
shown by thin gray line. (b) Bloch BSC β ≠ 0 vacuum wave number k
versus R∕a, ϵ � 15. The insets show the real parts of the y-component
of the electric vector Ey and the x-component of the magnetic vector
Hx in the x0y-plane for the BSC at R∕a � 0.4.
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of spherical harmonics M was used instead of the infinite sum
in Eq. (3). According to [34], the above described approach
converges exponentially with M . In Table 1, we illustrate
the convergence for the data from Fig. 2(a); one can see that
M � 7 is already sufficient for the relative error of order 10−5.

The amplitude of a wave propagating along the array attenu-
ates exponentially according to a simple formula:

F �x� � e−x∕Lτ ; (4)

where x � ja is the distance. In the vicinity of a BSC, the ω − β
dependence could be approximated as

ω − ω0 � v0�β − β0� �O��β − β0�2�; (5)

where ω0, β0, v0 are the BSC eigenfrequencies, Bloch number,
and group velocity, correspondingly:

−Ifkg � α�β − β0�2 �O��β − β0�3�: (6)

Combining Eqs. (1), (2), and (4)–(6) one obtains in the vicinity
of a BSC:

F �x� � exp

�
−
αxc
v30

�ω − ω0�2
�
: (7)

Thus, for the width of the transparency window in the fre-
quency domain, we have

Δ�x� �
ffiffiffiffiffi
v30
αc

r
1ffiffiffi
x

p ; (8)

with α and v0 extracted from the data in Fig. 2 by a polynomial
fit. Nevertheless, care is needed in applying Eq. (7) as the fre-
quency may fall out of the range, where the dispersion is well
approximated by the leading terms in Eqs. (5) and (6).

Using a full-wave multiscattering method [17], we simu-
lated wave propagation in a finite array of 400 nanoparticles.
In our numerical experiment, a linearly polarized Gaussian
beam [45] with the Rayleigh range z0 � 5a was focused on
the first nanoparticle in the array. The wave vector of the
beam was directed along the y-axis perpendicular to the array
(see Fig. 1), and the magnetic vector aligned with the array axis.
In Fig. 3(a), we plot the leading Mie coefficient a03 for the last
nanoparticle in the array. The result shows a pronounced res-
onant behavior due to the formation of standing waves as a
consequence of the finiteness of the array. The distance between
the resonances Δω could be assessed as Δω ≈ πv0∕�aN �,
where N is the number of particles in the array. The resonant
features could be averaged out by integration over small fre-
quency intervals larger than Δω. The result is shown in
Fig. 3(a) in comparison with Eq. (7). One can see that Eq. (7)
matches the numerical data to a good accuracy. The finiteness
of the chain also results in additional attenuation due to the
radiative losses at the ends of the array. A detailed study of
the effect was undertaken in [17], where it was shown that
the Q factor of the finite arrays of high-index nanopar-
ticle scales was CN 3 with 0.1 < C < 10 which makes such

radiative losses negligible for N � 400. The discrepancy in
Fig. 3 is due to the higher-order terms in Eqs. (5) and (6).

Finally, the pulse propagation along the array was considered
in the above setup with a continuous superposition of Gaussian
beams forming a Gaussian light pulse of width σω in the fre-
quency domain. The central wave number of the pulse was
adjusted to the BSC wave number k0 � π1.162∕a. At
t � 0 a light pulse was injected into the left end of the array.
In Fig. 3(b), we plot four snapshots of the leading Mie coef-
ficient a03 against the distance along the array for three different
initial pulse widths σω. One can clearly see in Fig. 3(b) that
the pulse propagating along the array tends to spread as the
harmonics distant in the ω-space from the BSC frequency de-
cay into the continuum. The pulse profile f �x; t� could be
found by Fourier-transforming the initial Gaussian pulse to
the real space:

f �x; t� � 1

σ�t� e
−
�x−v0 t�2
σ2�t� ei�β0x−ω0t�; (9)

with

Table 1. BSC Vacuum Wave Vector and Bloch Number
for Different Numbers of Multipoles M , R∕a � 0.4, ϵ � 15

M 4 6 7 8

ka∕π 1.16202626 1.16200043 1.16199989 1.16199928
βa∕π 0.38409318 0.38395427 0.38395035 0.38394978

1.156 1.16 1.164 1.168
0
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Fig. 3. Light propagation in the array of 400 nanoparticles ϵ � 15,
R∕a � 0.4, and v0 � 0.054c, α � 0.005a. (a) Absolute value of the
leading coefficient a03 versus wave number k of the stationary wave
injected into the array. The averaged data are plotted by a thick blue
line against the analytical result Eq. (7), shown by the dashed red line.
(b) Absolute value of the leading coefficient a03 versus the particle num-
ber j for a light pulse with k0 � π1.162∕a, t0 � a∕c. The pulse
widths σω � 0.0025∕t0, blue solid; ω � 0.005∕t0, green dashed;
ω � 0.025∕t0, red dashed-dotted lines. Thin black line shows the
analytical result Eq. (9) for the pulse with σω � 0.025∕t0.
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σ2�t� � 4a2
��

v0
aσω

�
2

� cα
a2

t
�
: (10)

Analyzing Eq. (10) for a given distance L � v0t, one can iden-
tify two possible regimes for the pulse propagation. In the
“overdamped” regime, the second term dominates on the left-
hand side of Eq. (10), resulting in a noticeable spreading of the
pulse in the real space. If, however, the first term dominates,
the pulse retains its profile during the propagation time
[σω � 0.0025∕t0 in Fig. 3(b)]. One finds from Eq. (10) that
the pulse doubles its width after traveling to the distance:

L � 3a2

α

�
v0
c

�
3
�

c
aσω

�
2

: (11)

So far, we neglected the material losses due to the imaginary
part of the dielectric constant. Particularly, in silicon, the
material losses vary significantly in the optical range [46].
We ran a numerical test at 725 nm with I�ϵ� � 0.0075 to
find that the propagation distance L ≈ 100a, a � 421 nm, so
the light can travel to approximately 60 wavelengths. It should
be pointed out that in the near infrared λ ≈ 1000 nm the losses
can be tens of times less, allowing propagation to hundreds of
wavelengths [23], as shown in Fig. 3.

We demonstrated the effect of light guiding above the light
line in arrays of dielectric nanospheres. For the guiding of light,
we employed leaky modes residing in the radiation continuum.
It was found that long-lived leaky modes are associated with
bound states in the continuum which are supported by the
arrays in a broad range of parameters. The reported mutiplolar
solutions, though still in the subwavelength range, have a
higher R∕λ ratio than the dipolar solutions in [23]. This, on
the other hand, relaxes the condition λ > 2a for guided waves
in arrays and gratings [17]. Besides the fundamental aspects,
the benefits of employing leaky modes could be the opportu-
nity to guide light harvested from free waves propagating in the
ambient medium [35,38], as well as a potential capacity to
guide multiple frequencies of light, both below and above the
radiation continuum in the same subwavelength structure.
Finally, some remarks are due on the mechanism of the BSC
formation. It was recently demonstrated in [47] that Bloch
BSCs in photonic crystal slabs are vortex centers in the polari-
zation directions of far-field radiation. We speculate that the
same topological mechanism applies in the case of arrays of
dielectric nanospheres. This result will be reported in more
detail elsewhere.
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