УДК 548.736

_____ СТРУКТУРА НЕОРГАНИЧЕСКИХ ___ СОЕДИНЕНИЙ

СТРОЕНИЕ МОНОКРИСТАЛЛОВ Gd_{0.95}Bi_{0.05}Fe₃(BO₃)₄ ПРИ ТЕМПЕРАТУРАХ 293 И 90 К

© 2016 г. Е. С. Смирнова, О. А. Алексеева, А. П. Дудка, И. А. Верин, В. В. Артемов, Л. Н. Безматерных¹, И. А. Гудим¹, К. В. Фролов, И. С. Любутин

> Институт кристаллографии РАН, Москва ¹Институт физики СО РАН, Красноярск E-mail: olalex@ns.crys.ras.ru Поступила в редакцию 24.12.2015 г.

Методом рентгеноструктурного анализа изучено строение монокристаллов ферробората $GdFe_3(BO_3)_4$ при температурах 293 и 90 К. Кристаллы выращены из раствора-расплава в системе $Bi_2Mo_3O_{12}$ — B_2O_3 — Li_2MoO_4 — Gd_2O_3 — Fe_2O_3 и, как показали результаты химического и структурного анализа, содержат примесь висмута. Установлено, что атомы висмута находятся в структурных позициях гадолиния. При уменьшении температуры пр. гр. *R*32 (при 293 К) понижается до *P*3₁21 (при 90 К). Появление при 90 К двух типов цепочек железа с разной геометрией способствует изменению магнитных свойств этих кристаллов при понижении температуры.

DOI: 10.7868/S0023476116040196

введение

Новые мультиферроидные соединения и природа наблюдаемых в них магнитоэлектрических эффектов вызывают большой интерес исследователей в связи с широким спектром возможных применений подобных материалов. Семейство редкоземельных боратов $RM_3(BO_3)_4$ (R = Y, La-Lu, Bi, In; M = Al, Sc, Fe, Ga, Cr) относится к магнитоэлектрическим материалам, хотя изначально интерес к ним возник из-за нелинейных оптических и лазерных свойств. Среди семейства редкоземельные ферробораты $RFe_3(BO_3)_4$ являются наименее изученными. Их относят к классу мультиферроиков из-за наличия спонтанной электрической поляризации, а также магнитоэлектрических и магнитоупругих свойств. Разнообразие свойств ферроборатов обусловлено наличием в них двух магнитных подсистем, образованных ионами железа и редкоземельными ионами [1, 2].

Соединения семейства $RFe_3(BO_3)_4$ впервые были синтезированы в виде поликристаллов для R = La, Nd, Sm-Ho и Y [3]. Монокристаллы $RFe_3(BO_3)_4$ могут быть получены методом кристаллизации из расплавов с использованием флюсов Bi₂O₃ [4], Bi₂Mo₃O₁₂ [5] или K₂Mo₃O₁₀ [6].

В кристаллах семейства $RFe_3(BO_3)_4$ наблюдается структурный фазовый переход (**ФП**) первого рода с изменением симметрии. При температурах выше **ФП** все кристаллы имеют тригональную структуру минерала хантита CaMg₃(CO₃)₄, которая описывается пр. гр. *R*32 [1, 7]. Характерной особенностью структуры ферроборатов является наличие независимых геликоидальных цепочек FeO₆-октаэдров, вытянутых вдоль оси *с*. Треугольные BO₃-группы и искаженные тригональные призмы *R*O₆ связывают цепочки между собой.

В соединениях с большим ионным радиусом редкоземельного элемента (R = La, Ce, Pr, Nd, Sm) описанная структура остается неизменной вплоть до температуры 2.7 K, в то время как в соединениях с ионами меньшего радиуса (R = Eu, Gd, Tb, Dy, Ho, Er, Y) температура ФП возрастает от 88 до 450 K с уменьшением ионного радиуса [1, 2, 8–11].

Впервые структурный ФП был обнаружен в ферроборате гадолиния $GdFe_3(BO_3)_4$ вблизи 155 К в результате измерения теплоемкости, спектров комбинационного рассеяния света [12] и зависимости диэлектрической проницаемости от температуры [9]. Ряд магнитных, структурных, оптических и электронных переходов был обнаружен в ферроборате гадолиния $GdFe_3(BO_3)_4$ при воздействии высоких давлений до P = 60 ГПа [13–16].

Несмотря на то что в дальнейшем аналогичный структурный $\Phi\Pi$ был обнаружен для многих представителей семейства $RFe_3(BO_3)_4$, для большинства из них отсутствуют данные о кристаллической структуре в низкотемпературной области. В кристаллографических базах данных отсутствует также информация о кристаллической структуре высокосимметричной фазы многих представителей данного семейства. К настоящему времени методом рентгеноструктурного анализа изучены следующие монокристаллы семейства $RFe_3(BO_3)_4$: $(Nd_{0.5}Bi_{0.5})Fe_3(BO_3)_4$ [17]; LaFe₃(BO₃)₄, NdFe₃(BO₃)₄ и (Y_{0.5}Bi_{0.5})Fe₃(BO₃)₄ [4]; GdFe₃(BO₃)₄ [18]; ErFe₃(BO₃)₄ [19].

В [18] рентгеноструктурное исследование монокристаллов GdFe₃(BO₃)₄, выращенных на основе K₂Mo₃O₁₀-флюса, проводили при двух температурах — комнатной и 90 К. При обеих температурах элементарная ячейка кристаллов была определена как тригональная. В этой работе впервые было установлено, что в результате ФП первого рода происходит изменение пр. гр. $R32 \rightarrow$ $\rightarrow P3_121$. При переходе к низкосимметричной группе появляются два неэквивалентных положения атомов железа, образующих геликоидальные цепочки.

Отметим, что при понижении температуры авторами [18] было выявлено увеличение параметров элементарной ячейки: a = 9.5203(6), c = 7.5439(5) Å при T = 297 K; a = 9.5305(3), c = 7.5479(2) Å при T = 90 K, но данный факт никак не анализировался. Однако в [20] при детальном исследовании в области 30-295 K параметров ячейки монокристаллов GdFe₃(BO₃)₄, выращенных из растворов-расплавов на основе BiMo₃O₁₂-B₂O₃-Li₂MoO₄, подобной аномалии не наблюдалось. В то же время в [20] при T < 80 K был обнаружен рост параметра c при плавном уменьшении объема ячейки и параметров a и b.

Для установления структурной обусловленности магнитоэлектрических свойств ферроборатов необходимы точные знания параметров элементарной ячейки и геометрии расположения атомов в широком интервале температур. Характер обменного взаимодействия между магнитными катионами непосредственно зависит от кристаллохимических параметров, таких как межатомные расстояния, углы обменной связи, электронные состояния и размеры атомов. Например, известно, что сильная зависимость обменного взаимодействия от межатомного расстояния может привести к смене знака взаимодействия для отдельных атомов [21].

Таким образом, представляется важным проведение систематических структурных исследований монокристаллов ферроборатов в широком интервале температур с целью установления связи их физических свойств с особенностями кристаллической структуры.

Целью настоящей работы было получение при разных температурах наиболее полных и точных данных о структуре монокристаллов GdFe₃(BO₃)₄ с помощью прецизионного рентгеноструктурно-го эксперимента.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Монокристаллы $GdFe_3(BO_3)_4$ выращены из растворов-расплавов в системе $Bi_2Mo_3O_{12}-B_2O_3-Li_2MoO_4-Gd_2O_3-Fe_2O_3$ по методике, описанной в [5]. Химический состав соединения был уточнен методом рентгеновского энергодисперсионного элементного анализа с использованием растрового электронного микроскопа FEI Quanta 200 3D Dual Beam, оснащенного микроанализатором EDAX при ускоряющем напряжении 5, 15 и 30 кВ. Установлено присутствие висмута в кристаллах, обусловленное особенностями процесса их синтеза.

Для рентгеноструктурного анализа отбирались наиболее совершенные монокристаллы. С целью корректного учета эффекта поглощения рентгеновских лучей кристаллам путем обкатки придавалась форма, близкая к сферической. Полученные образцы подвергались первичному рентгеноструктурному исследованию, в результате которого был выбран монокристалл с наилучшими профилями дифракционных пиков и сходимостью интенсивностей эквивалентных по симметрии дифракционных отражений.

В дополнение к температурному сканированию параметров ячейки [20] измерена зависимость параметров элементарной ячейки от температуры с использованием дифрактометра CAD-4F Enraf-Nonius, оборудованного низкотемпературной приставкой CryoJetHT (Oxford Instruments) с открытым потоком азота, в температурном диапазоне 90-293 К с шагом 30 К. Вблизи предполагаемого ФП параметры были измерены с шагом 1-2 К. Измерения проводились с учетом калибровки низкотемпературной приставки CryoJetHT по методике, изложенной в [22]. Резкое уменьшение значений параметров *а* и *b* вблизи 155 К говорит о наличии структурного $\Phi\Pi$, что согласуется с данными, полученными на дифрактометре Huber с криостатом замкнутого цикла Displex DE-202 [20].

Полные наборы рентгенодифракционных данных получены на автоматическом четырехкружном рентгеновском дифрактометре Xcalibur S с двумерным ССД-детектором при температурах 293 и 90 К. При 90 К (показания температурного датчика CryoJetHT) были измерены два набора интенсивностей отражений при разной ориентации образца при высоком разрешении межплоскостного расстояния. Повторение съемки позволило провести калибровку дифрактометра [23] и более точно учесть поглощение образцом рентгеновского излучения [24]. В результате для низкотемпературного эксперимента было существенно увеличено число независимых рефлексов, участвующих в уточнении структуры. Интегрирование дифракционных пиков проведено по программе

СТРОЕНИЕ МОНОКРИСТАЛЛОВ

Химическая формула	Gd _{0.95} Bi _{0.05} Fe ₃ (BO ₃) ₄		
Сингония, пр. гр., Z	Тригональная, <i>R</i> 32, 3	Тригональная, <i>Р</i> 3 ₁ 21, 3	
<i>a</i> , <i>c</i> , Å	9.5554(1), 7.5768(1)	9.5473(1), 7.5642(1)	
V, Å ³	599.120(12)	597.111 (12)	
D_x , г/см ³	4.678	4.6937	
Излучение; λ, Å	Mo K_{α} ; 0.71073		
μ, мм ⁻¹	14.302	14.350	
<i>Т</i> , К	293	90	
Диаметр образца, мм	0.29	0.29	
Дифрактометр	Oxford Diffraction CCD		
Тип сканирования	ω		
Учет поглощения; T_{\min} , T_{\max}	Сфера; 0.0741, 0.1739	Сфера; 0.0736, 0.1733	
θ_{max} , град	73.81	74.05	
Пределы h, k, l	$-24 \le h \le 22; -23 \le k \le 25; -19 \le l \le 20 -24 \le h \le 22; -23 \le k \le 24; -19 \le 100$		
Число отражений: измеренных/независимых (N_1), R_{int} /с $I > 3\sigma(I)$ (N_2)	20645/2738, 0.0281/2738	123 465/8227, 0.0326/7378	
Метод уточнения	МНК по F		
Весовая схема	$1/(\sigma^2(F) + 0.\ 000036F^2)$		
Число параметров	36	96	
Учет экстинкции, коэффициент	тип 1, Лоренц [27], 0. 3640(50)	тип 1, Лоренц [27], 0. 3460(40)	
Параметр Флэка	0.583(3)	0.5828(19)	
<i>R</i> 1/ <i>wR</i> 2 по <i>N</i> ₁	0.0095/0.0123	0.0107/0.0122	
<i>R</i> 1/ <i>wR</i> 2 по <i>N</i> ₂	0.0095/0.0123	0.0094/0.0120	
S	1.29	1.00	
$\Delta \rho_{min} / \Delta \rho_{max}$, \Im / \mathring{A}^3	-0.63/1.06	-0.85/1.32	
Программы	CrysAlis, Jana2006		

Таблица 1. Кристаллографические характеристики, данные эксперимента и результаты уточнения структуры соединений Gd_{0.95}Bi_{0.05}Fe₃(BO₃)₄

CrysAlis, входящей в пакет математического обеспечения дифрактометра [25].

Поиск элементарных ячеек в исследуемом кристалле завершился выбором тригональной ячейки с параметрами a = 9.5554(1), c = 7.5768(1) Å при T = 293 К и a = 9.5473(1) Å, c = 7.5642(1) Å при T = 90 К. Таким образом, установлено, что в отличие от [18] параметры элементарной ячейки закономерно уменьшаются с понижением температуры. В то же время они хорошо коррелируют с зависимостью, полученной в [20] с использованием дифрактометра Huber-5042.

Анализ погасаний выявил пр. гр. R32 при 293 К и $P3_121$ при 90 К. Смена группы обусловлена структурным ФП, который наблюдается при $T \sim \sim 155$ К. Аналогичные структуры установлены и в

[18], что также свидетельствует о наличии в гадолиниевом ферроборате структурного ФП первого рода в температурном интервале 90–293 К [18, 20].

Структуры уточнены с помощью программы Jana2006 [26] методом наименьших квадратов. Уточнены параметры экстинкции и Флэка. При учете эффекта экстинкции для каждого из экспериментов подобрана наилучшая модель Беккера-Коппенса [27] — разориентация блоков мозаики (тип 1, распределение Лоренца). Основные кристаллографические параметры, данные экспериментов и результаты уточнения структуры изученных монокристаллов приведены в табл. 1. Значения координат атомов, заселенности позиций q и эквивалентных тепловых параметров представлены в табл. 2 и 3. Основные межатом-

Атом	x/a	y/b	<i>z/c</i>	q	$U_{_{ m ЭKB}}, { m \AA}^2$
Gd1 (3 <i>a</i>)	0	0	0	0.95	0.007197(8)
Bi1(3 <i>a</i>)	0	0	0	0.05	0.007197(8)
Fe1 (9 <i>d</i>)	0.216576(9)	0.333333	0.333333	1	0.00509(1)
O1 (9e)	0.14423(5)	0.14423(5)	0.5	1	0.00671(6)
O2 (9e)	0.40883(6)	0.40883(6)	0.5	1	0.01194(10)
O3 (18 <i>f</i>)	0.02540(4)	0.21261(5)	0.18268(5)	1	0.00810(6)
B1 (9 <i>b</i>)	0	0	0.5	1	0.00526(11)
B2 (9e)	0.55248(7)	0.55248(7)	0.5	1	0.00619(11)

Таблица 2. Координаты атомов, заселенности позиций (q) и эквивалентные тепловые параметры атомов структуры $Gd_{0.95}Bi_{0.05}Fe_3(BO_3)_4$ при T = 293 K

Таблица 3. Координаты атомов, заселенности позиций (q) и эквивалентные тепловые параметры атомов структуры $Gd_{0.95}Bi_{0.05}Fe_3(BO_3)_4$ при T = 90 K

Атом	x/a	y/b	<i>z./c</i>	q	$U_{_{ m ЭKB}}$, Å ²
Gd1 (3 <i>a</i>)	-0.333416(2)	-0.333416(2)	0	0.95	0.002554(5)
Bi1 (3 <i>a</i>)	-0.333416(2)	-0.333416(2)	0	0.05	0.002554(5)
Fe1 (3 <i>a</i>)	0.115301(8)	0.115301(8)	0	1	0.00231(1)
Fe2 (6 <i>c</i>)	-0.214058(7)	-0.549766(7)	0.341725(6)	1	0.00236(1)
O1 (3 <i>b</i>)	0	-0.07817(4)	0.166667	1	0.00489(7)
O2 (6 <i>c</i>)	-0.58320(3)	-0.27088(3)	0.13775(3)	1	0.00469(5)
O3 (6 <i>c</i>)	-0.11921(4)	-0.30412(4)	-0.18013(4)	1	0.00431(5)
O4 (6 <i>c</i>)	-0.14671(4)	-0.36260(4)	0.18507(4)	1	0.00417(5)
O5 (6c)	0.47561(4)	0.14527(4)	-0.15975(3)	1	0.00373(5)
O6 (3 <i>b</i>)	0.18772(5)	0	-0.166667	1	0.00384(6)
O7 (6 <i>c</i>)	-0.52354(4)	-0.53813(4)	-0.18570(4)	1	0.00433(6)
B1 (3 <i>b</i>)	0.33207(7)	0	-0.166667	1	0.00340(10)
B2 (6 <i>c</i>)	-0.44726(6)	-0.12054(6)	0.15593(5)	1	0.00366(9)
B3 (3 <i>b</i>)	0	-0.22220(7)	0.166667	1	0.00357(10)

ные расстояния даны в табл. 4 и 5. Информация об исследованных структурах депонирована в Банк данных неорганических структур ICSD (CSD № 431111, 431112).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В качестве исходной модели для уточнения структуры гадолиниевого ферробората при T = 293 и 90 К были взяты атомные координаты в структуре монокристалла GdFe₃(BO₃)₄, выращенного на основе K₂Mo₃O₁₀-флюса [18]. В результате уточнения выявлена избыточная заселенность позиций Gd при обеих температурах. Так как ионные радиусы гадолиния и висмута близки

 $(r(Gd^{3+}) = 0.938 Å, r(Bi^{3+}) = 1.03 Å)$ и больше радиуса железа $r(Fe^{3+}) = 0.645 Å$ [28], сделано предположение о том, что выявленная по результатам химического анализа примесь висмута находится в позициях атомов гадолиния. Уточненная формула соединения по результатам рентгеноструктурного анализа $Gd_{0.95}Bi_{0.05}Fe_3(BO_3)_4$ (табл. 2, 3). Изученный кристалл является мероэдрическим двойником. Соотношение компонент двойника в пределах погрешности совпадает для T = 293 и 90 К и характеризуется параметром Флэка 0.583(3). Заключительные значения *R*-факторов составили 0.95 и 0.94% для структур при T = 293 и 90 К соответственно (табл. 1).

0196 0106 1						
Gd1(3 <i>a</i>)-полиэдр		В1(9 <i>b</i>)-треугольник				
Gd1-O3 × 6 (Gd1-O3) _{ср} Разброс	2.368(1) 2.368 0	В1-O1 × 3 (В1-O3) _{ср} Разброс	1.378(1) 1.378 0			
Fe1(9 <i>d</i>)-полиэдр		В2(9е)-треугольник				
$Fe1-O1 \times 2$ $Fe1-O2 \times 2$ $Fe1-O3 \times 2$ $(Fe-O)_{cp}$ Pa36poc	2.022(1) 2.040(1) 1.966(1) 2.009 0.056	В2О2 В2О3 (В2О3) _{ср} Разброс	1.373(1) 1.372(1) 1.372 0.001			

Таблица 4. Межатомные расстояния в структуре $Gd_{0.95}Bi_{0.05}Fe_3(BO_3)_4$ при T = 293 К

Структура соединения $Gd_{0.95}Bi_{0.05}Fe_3(BO_3)_4$ при 293 и 90 К аналогична структурам, опубликованным в [18], и представляет собой чередующиеся в направлении оси с слои: первый слой содержит атомы Fe и Gd(Bi), а второй слой образуют треугольные группы ВО3. Кислородными вершинами треугольники ВО₃ соединены с атомами Gd(Bi) и Fe. Таким образом, при 293 К в структуре присутствуют искаженные тригональные призмы (Gd,Bi)O₆, октаэдры FeO₆ и треугольники ВО₃ двух типов (рис. 1). При 90 К появляются два типа октаэдров FeO₆ и три типа групп BO₃.

Таблица 5. Межатомные расстояния в структуре $Gd_{0.95}Bi_{0.05}Fe_3(BO_3)_4$ при T = 90 К

Gd1(3 <i>a</i>)-полиэдр		В1(3 <i>b</i>)-треугольник		
$\overline{\text{Gd1}-\text{O3}\times2}$	2.355(1)	$B1-O5 \times 2$	1.379(1)	
$-O4 \times 2$	2.390(1)	-06	1.378(1)	
-07×2	2.354(1)	$(B1-O)_{cn}$	1.379	
$(Gd1-O)_{cn}$	2.366	Разброс	0.001	
Разброс	0.036	-		
Fe1(3a)-полиэдр		В2(6с)-треугольник		
$Fe1-O1 \times 2$	2.044(1)	B2-O2	1.378(1)	
$-O3 \times 2$	1.959(1)	-03	1.372(1)	
$-O6 \times 2$	2.010(1)	-O7	1.366(1)	
(Fe1–O) _{cp}	2.004	(B2–O) _{cp}	1.372	
Разброс	0.085	Разброс	0.012	
Fe2(6 <i>c</i>)-полиэдр		В3(3 <i>b</i>)-треугольник		
Fe2–O2	2.052(1)	B3-O1	1.374(1)	
-O2	2.038(1)	$-O4 \times 2$	1.378(1)	
-O4	1.965(1)	(B3–O) _{cp}	1.377	
-05	2.028(1)	Разброс	0.004	
-05	2.020(1)			
-O7	1.973(1)			
(Fe1–O) _{cp}	2.013			
Разброс	0.087			

КРИСТАЛЛОГРАФИЯ 2016 том 61 № 4

При 293 К в структуре Gd_{0 95}Bi_{0 05}Fe₃(BO₃)₄ (пр. гр. R32) редкоземельный ион окружен шестью атомами кислорода одного типа. Атомы кислорода образуют вершины тригональной призмы, основания которой параллельны плоскости ab и незначительно повернуты друг относительно друга. Расстояния (Gd,Bi)-О одинаковы и составляют 2.368(1) Å. Атомы Gd(Bi) расположены на поворотной оси третьего порядка, параллельной оси с, как и атомы В1 (рис. 2, 3). Расстояния от атома Gd(Bi) до шести ближайших к нему атомов железа одинаковы и составляют 3.770 (1) Å.

При 90 К атомы Gd(Bi) окружены атомами кислорода трех типов с разбросом расстояний 0.036 Å, что приводит к искажению призмы (Gd,Bi)O₆. Среднее расстояние (Gd,Bi)-O с понижением температуры уменьшается незначительно. Отметим, что в [18] разброс расстояний Gd-О был аналогичным, однако наблюдалось увеличение среднего расстояния. Среднее расстояние от атома Gd(Bi) до шести ближайших к нему атомов железа уменьшается до 3.765(1) Å, разброс расстояний составляет 0.114 Å. Наиболее близкими и наиболее удаленными по отношению к Gd(Bi) являются атомы Fe2 (рис. 3).

При комнатной температуре в структуре имеются две независимые позиции бора (рис. 2). Каждый атом бора окружен тремя атомами кислорода, лежащими в одной с ним плоскости. Равносторонний треугольник B1O₃ параллелен плоскости *ab*, а равносторонний треугольник В2О3 почти параллелен. Треугольники В1О₃, расположенные над и под тригональными призмами (Gd,Bi)O₆, при обеих температурах соединены только с октаэдрами FeO₆. Треугольник B2O₃ одной вершиной связан с двумя атомами Fe, каждая из двух других связана с одним атомом Gd(Bi) и одним атомом Fe.

структуре низкотемпературной фазы Gd_{0.95}Bi_{0.05}Fe₃(BO₃)₄ число независимых атомов бора увеличивается до трех (рис. 2, 4). В треугольниках В1О₃ сохраняются средние расстояния В1-О, характерные для структуры при 293 К. Однако треугольники уже не лежат идеально в плоскости

Рис. 1. Общий вид структуры Gd_{0.95}Bi_{0.05}Fe₃(BO₃)₄.

Fe2

 O^2

02

Fe1

Fe1

 Ω^2

Рис. 2. Взаимное расположение цепочек октаэдров FeO₆, призм (Gd,Bi)O₆ и треугольников BO₃ в структуре $Gd_{0.95}Bi_{0.05}Fe_3(BO_3)_4$ при 293 (a) и 90 K (б). При понижении температуры исчезает ось симметрии третьего порядка, проходящая через атомы B1 и Gd(Bi). Вместо одной независимой позиции Fe1 появляются две независимые позиции Fe1 и Fe2. Треугольники B(2)O₃ разделяются на две группы: B(2)O₃ и B(3)O₃. Изменяются характерные расстояния

Рис. 3. Относительное расположение цепочек октаэдров FeO₆ и атомов Gd(Bi) и кратчайшие расстояния между атомами: а – при 293 К атомы Gd(Bi) находятся на оси симметрии третьего порядка, параллельной кристаллографической оси *c*; б – при 90 К симметрия цепочек и атомов Gd(Bi) понижается.

ab. Существовавшая при комнатной температуре позиция В2 при 90 К разделяется на В2 и В3 (рис. 4). Среднее расстояние В2–О в пределах погрешности остается таким же, как при 293 К, среднее расстояние в равнобедренном треугольнике ВЗО₃ увеличивается. Исчезает ось второго порядка в плоскости *ab*, на которой находился атом В2. Кислородный треугольник, окружающий В2, становится разносторонним и значительно искажается (разброс расстояний 0.012 Å). В то же время в двух других треугольниках В1О₃ и ВЗО₃ кислородные В–О увеличиваются практиче-

ски равномерно. Для сравнения отметим, что в [18] все средние расстояния В–О заметно увеличиваются, несмотря на уменьшение температуры. Наиболее искаженным также является кислородное окружение атома В2 (разброс расстояний 0.019 Å).

Fe1

Fe1

01

(б)

Fe₂

B2

B2 Gd1

B2

B1

07⁰⁵05

01

06

O3 B3

04

 $\overline{B3}$

05

Треугольники $B2O_3$ имеют одну общую с двумя октаэдрами Fe(2)O₆ вершину, второй вершиной соединены с призмой (Gd,Bi)O₆ и октаэдром Fe(2)O₆, а третьей – с призмой (Gd,Bi)O₆ и октаэдром Fe(1)O₆. Аналогичным образом треугольники B3O₃ одной вершиной соединяются с двумя

Fe1

 Ω^2

O2

01

Fe1

03

O2 B2

B2 Gd1

B2

между атомами и углы между химическими связями.

01 B1 01

61

(a)

02

03 B2

B2

Рис. 4. Общий вид атомного окружения треугольни-ков ВО₃ при 90 К.

октаэдрами $Fe(1)O_6$, а второй и третьей – с $(Gd,Bi)O_6$ и $Fe(2)O_6$ (рис. 4, 5).

Основным структурным мотивом кристалла являются направленные вдоль оси с геликоидальные цепочки октаэдров FeO₆, соединенных ребрами (атомы Fe, принадлежащие одной цепочке, симметричны относительно винтовой оси третьего порядка). Цепочки удалены друг от друга (т.е. расстояния между атомами в соседних цепочках больше расстояний между атомами в цепочке) и при T = 293 К симметричны относительно поворотной оси третьего порядка, параллельной оси с, на которой находятся атомы Gd(Bi) и B1 (рис. 3). Каждый полиэдр RO₆ находится между тремя такими цепочками FeO₆, соединяясь верхними вершинами с группами FeO₆ из слоя, лежащего выше, и нижними вершинами с группами FeO₆ из слоя, расположенного ниже (рис. 2). При комнатной температуре расстояние между ближайшими атомами железа в одной цепочке 3.180(1) Å существенно меньше кратчайшего расстояния 4.849(1) Å между атомами железа в соседних цепочках (рис. 3). Это указывает на возможный квазиодномерный характер взаимодействия между ионами Fe³⁺ вдоль цепочек. Атомы кислорода O1 (связан с В1) и О2 (связан с В2) образуют ребро, соединяющее октаэдры FeO₆ в единую цепочку. Углы Fe-O1-Fe и Fe-O2-Fe при этом различны и равны 103.7(1)° и 102.4(1)° соответственно.

При T = 90 К (пр. гр. $P3_121$) в элементарной ячейке появляются два неэквивалентных положения железа Fe1 и Fe2 с соотношением заселенности 1:2, что ведет к появлению двух типов цепочек железа. Сохраняется геликоидальное строение самих цепочек (симметрия относительно

Рис. 5. Проекция на плоскость ab атомного окружения верхнего основания призмы (Gd,Bi)O₆ при 90 К.

винтовой оси 3_1), но исчезает поворотная ось симметрии третьего порядка, проходящая при T = 293 К через атомы Gd(Bi) и B1 и связывающая три цепочки. Атомы Fe1, как и при 293 К, находятся на оси второго порядка, лежащей в плоскости *ab*, в то время как атомы Fe2 смещаются в общую позицию. Вместо трех цепочек Fe образуется одна цепочка Fe1 и две цепочки Fe2 (рис. 2 и 3).

С понижением температуры среднее расстояние в октаэдрах $Fe1O_6$ незначительно уменьшается, тогда как в октаэдрах $Fe2O_6$ наблюдается его увеличение по сравнению с комнатной температурой. За счет увеличения самых длинных и уменьшения самых коротких расстояний Fe–O оба октаэдра искажаются, октаэдр $Fe2O_6$ характеризуется большей степенью искажения. Для соединения, изученного в [18], также наблюдалось увеличение искажения полиэдров железа и рост среднего расстояния в октаэдре $Fe2O_6$.

Анализ изменений, происходящих с уменьшением температуры в цепочках железа (рис. 2), показывает, что расстояния Fe1–Fe1 уменьшаются, а Fe2–Fe2 увеличиваются. При переходе к пр. гр. P3₁21 углы Fe–O–Fe в цепочках изменяются неравномерно. Они увеличиваются на 0.13(1)° в цепочках Fe2-O2-Fe2 и на 0.31(1)° в цепочках Fe2-O5-Fe2. Атомы кислорода О2 и О5 связаны с атомами бора В2 и В1 соответственно. В цепочке Fe1-O6-Fe1 угол не изменяется в пределах ошибки, в то время как в цепочке Fe1-O1-Fe1 угол заметно уменьшается — на $1.07(1)^{\circ}$. Атомы Об связаны с атомами В1, а атомы О1 – с атомами ВЗ. Изменяются также и расстояния между цепочками, а именно, расстояния Fe1–Fe2 уменьшаются, в то время как расстояния Fe2–Fe2 растут. Вероятно, подобные изменения связаны со смещениями атома бора B2 и его окружения при понижении температуры, которые приводят к исчезновению оси симметрии второго порядка в плоскости *ab*.

Таким образом, понижение температуры приводит к тому, что вместо трех эквивалентных цепочек, образованных октаэдрами ионов железа, возникают два типа неэквивалентных цепочек железа с соотношением заселенностей 1 : 2. Различные кристаллохимические искажения приводят к образованию двух магнитных подрешеток железа Fe1 и Fe2, в которых при дальнейшем охлаждении ниже температуры Нееля $T_N \approx 38$ К формируются различные типы магнитного упорядочения [20].

ЗАКЛЮЧЕНИЕ

Выполнено рентгеноструктурное исследование монокристаллов Gd_{0.95}Bi_{0.05}Fe₃(BO₃)₄ при 293 и 90 К. При обеих температурах симметрия кристаллов тригональная. Установлено, что в результате фазового перехода первого рода происходит изменение пр. гр. $R32 \rightarrow P3_121$. При переходе к низкосимметричной группе в призмах (Gd,Bi)O₆, треугольниках B2O₃ и октаэдрах FeO₆ наблюдается неоднородное изменение длин связей. Вместо цепочек одного типа, образованных октаэдрами FeO₆, возникают два типа неэквивалентных цепочек. Вероятно, появление двух структурных позиций железа Fe1 и Fe2 приводит к образованию двух магнитных подрешеток железа, в которых при дальнейшем охлаждении ниже температуры Нееля T_N ~ 38 К формируются различные типы магнитного упорядочения.

Работа выполнена с использованием оборудования ЦКП ИК РАН при поддержке Министерства образования и науки РФ (проект RFME-FI62114X0005) и частичной финансовой поддержке Российского фонда фундаментальных исследований (гранты № 14-02-00483, 14-02-00307) и Ведущих научных школ (грант НШ-6617.2016.5).

СПИСОК ЛИТЕРАТУРЫ

- 1. Васильев А.Н., Попова Е.А. // Физика низких температур. 2006. Т. 32. № 8/9. С. 968.
- Кадомцева А.М., Иванов В.Ю., Безматерных Л.Н. и др. // Физика низких температур. 2010. Т. 36. № 6. С. 640.

- Joubert J.-C., White W.B., Roy R. // Appl. Cryst. 1968.
 V. 1. P. 318.
- 4. Campá J.A., Cascales C., Gutiérrez-Puebla E. et al. // Chem. Mater. 1997. V. 9. P. 237.
- 5. Безматерных Л.Н., Харламова С.А., Темеров В.Л. // Кристаллография. 2004. Т. 49. № 5. С. 944.
- Balaev A.D., Bezmaternykh L.N., Gudim I.A. // J. Magn. Magn. Mater. 2003. V. 258–259. P. 532.
- Dollase W.A., Reeder R.J. // Am. Mineral. 1986. V. 71. P. 163.
- Hinatsu Y., Doi Y., Ito K. et al. // J. Solid State Chem. 2003. V. 172. P. 438.
- Fausti D., Nugroho A.A., van Loosdrecht P.H.M. et al. // Phys. Rev. B. 2006. V. 74. P. 024403.
- Fischer P., Pomjakushin V., Sheptyakov D. et al. // J. Phys.: Condens. Matter. 2006. V. 18. P. 7975.
- 11. *Popova M.N.* // J. Magn. Magn. Mater. 2009. V. 321. P. 716.
- 12. Levitin R.Z., Popova E.A., Chtsherbov R.M. et al. // JETP Lett. 2004. V. 79. № 9. P. 423.
- 13. *Гаврилюк А.Г., Харламова С.А.* // Письма в ЖЭТФ. 2004. Т. 80. № 6. С. 482.
- Gavriliuk A.G., Kharlamova S.A. // J. Phys.: Condens. Matter. 2005. V. 17. P. 1.
- Kharlamova S.A., Ovchinnikov S.G. // JETP Lett. 2005. V. 101. № 6. P. 1098.
- Любутин И.С., Гаврилюк А.Г., Стружкин В.В. и др. // Письма в ЖЭТФ. 2006. Т. 84. № 9. Р. 610.
- 17. Belokoneva E.L., Al'shinskaya L.I., Simonov M.A. // Zh. Strukt. Khim. 1979. V. 20. № 3. P. 542.
- Klimin S.A., Fausti D., Meetsma A. et al. // Acta Cryst. B. 2005 V. 61. P. 481.
- 19. *Malakhovskii A.V., Sokolov V.V., Sukhachev A.L. et al.* // Phys. Solid State. 2014. V. 56. № 10. P. 2056.
- 20. Frolov K.V., Lyubutin I.S., Smirnova E.S. et al. // J. Alloys Compd. 2016. V. 671. P. 545.
- 21. Volkova L.M., Marinin D.V. // J. Supercond. Nov. Magn. 2011. V. 34. P. 2161.
- 22. Дудка А.П., Верин И.А., Смирнова Е.С. // Кристаллография. 2016. Т. 61. № 4. С. 664.
- 23. Dudka A. // J. Appl. Cryst. 2010. V. 43. № 6. P. 1440.
- 24. *Дудка А.П.* // Кристаллография. 2005. Т. 50. № 6. С. 1148.
- 25. CrysAlis system. Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET).
- 26. *Petricek V., Dusek M., Palatinus L.* // Z. Kristallogr. B. 229. № 5. S. 345.
- 27. Becker P.J., Coppens P. // Acta Cryst. A. 1974. V. 30. P. 129.
- 28. Shannon R.D. // Acta Cryst. A. 1976. V. 32. P. 751.

КРИСТАЛЛОГРАФИЯ том 61 № 4 2016