СПЕКТРОСКОПИЯ КОНДЕНСИРОВАННОГО СОСТОЯНИЯ

УДК 535.375.5:543.424.2:546.273:546.42

СПЕКТРОСКОПИЯ КОМБИНАЦИОННОГО РАССЕЯНИЯ СВЕТА В МОНОКРИСТАЛЛАХ SrB₄O₇ В ИНТЕРВАЛЕ ТЕМПЕРАТУР 300–1273 К

© 2016 г. А. А. Соболь*, В. Е. Шукшин*, А. И. Зайцев**

* Институт общей физики им. А.М. Прохорова РАН, 119991 Москва, Россия

** Институт физики им. Л.В. Киренского Сибирского отделения РАН, 660036 Красноярск, Россия

E-mail: sobol@lst.gpi.ru, shukshinve@lst.gpi.ru

Поступила в редакцию 22.01.2016 г.

Детально исследованы поляризованные спектры КРС монокристаллов SrB₄O₇ (SBO) в интервале температур 300–1273 К. Проведена идентификация линий *TO*-, *LO*- и *IO*-фононов симметрии A_1 , A_2 , B_1 и B_2 ромбической симметрии SBO при 300 К. Изучено поведение спектров КРС при нагревании монокристаллов SBO вплоть до их плавления. Обсуждена связь спектров КРС со строением бор-кислородных фрагментов и их трансформация в процессах плавления кристаллов SBO.

DOI: 10.7868/S0030403416070205

введение

Кристаллы со структурой стабильной модификации дибората стронция SrB_4O_7 (SBO) известны достаточно давно [1, 2]. Структура этих кристаллов принадлежит ромбической сингонии с пространственной группой $Pnm2_1$ и имеет ряд особенностей. В ее основе лежит трехмерная сетка, образованная только из бор-кислородных тетраэдров, причем в некоторых структурных позициях присутствует трехкоординированный по бору кислород [3].

Монокристаллы SBO привлекают внимание благодаря сочетанию уникальных свойств: рекордным среди оксидных материалов краем фундаментального оптического поглощения (~130 нм) и высокими значениями нелинейнооптических коэффициентов [2, 4, 5]. По последним данным на этих кристаллах получена непрерывно перестраиваемая генерация излучения вплоть до 121 нм [6].

В работе [7] анализировали возможность существования параэлектрической формы SrB_4O_7 при высоких температурах, которая могла быть обусловлена фазовым переходом второго рода. Такой фазовый переход не регистрируется методом дифференциального термического анализа, а параэлектрическая фаза не может быть сохранена при 300 К даже с помощью методов быстрой закалки для последующего изучения рентген-дифракционными методами. В этой связи регистрация такого фазового превращения требует проведение экспериментов непосредственно при высоких температурах. Спектроскопия комбинационного рассеяния света (КРС) ранее успешно использовалась для регистрации фазовых превращений и идентификации параэлектрических фаз в таких оксидных кристаллах, как LiNbO₃, KTiOPO₄, LaNbO₄ [8–10]. Именно этот метод использовался в настоящей работе для изучения возможного температурного фазового перехода в монокристаллах SrB₄O₇.

Ранее поляризованные спектры КРС и идентификация симметрии колебательных мод в монокристаллическом SrB₄O₇ при 300 К были приведены в [7]. Однако в этой работе были допущены неточности, связанные с отсутствием полной экспериментальной информации о спектре КРС этого материала. В частности, спектры КРС SrB₄O₇ регистрировали только в геометрии под 90°, что ограничивало анализ колебательных мод. Кроме того, спектры KPC SrB_4O_7 в работе [7] изучали в интервале частот ниже 1000 см^{-1} , тогда как известно, что в боратных кристаллах эти спектры продолжаются минимум до 1300 см⁻¹. В этой связи в настоящей работе были проведены детальные исследования спектров КРС монокристаллов SrB₄O₇ при 300 К и идентифицирована симметрия почти всех поперечных и продольных колебательных мод, что отсутствовало в предыдущих публикациях.

Таблица 1. Геометрии рассеяния, использованные для идентификации фононов в ромбической структуре SrB_4O_7 при 300 К. Направления *X*, *Y* и *Z* соответствуют кристаллографическим осям кристалла [100], [010] и [001]

Геометрия рассеяния	Симметрия колебания	Наблюдаемая компонента тензора рассеяния
$X(ZZ)\overline{X}$	$A_1(TO)$	α_{zz}
X(ZZ)Y	$A_1(TO)$	α_{zz}
$Y(XX)\overline{Y}$	$A_1(TO)$	α_{xx}
$X(YY)\overline{X}$	$A_1(TO)$	α_{yy}
$Z(XX)\overline{Z}$	$A_1(LO)$	α_{xx}
$Z(YY)\overline{Z}$	$A_1(LO)$	$lpha_{ m yy}$
$Z(XY)\overline{Z}$	A_2	α_{xy}
Y(XY)Z	A_2	α_{xy}
Z(XZ)Y	$B_1(TO)$	α_{xz}
X(ZX) Y	$B_1(TO)$	α_{zx}
Z(YZ)X	$B_2(TO)$	α_{yz}
Y(ZY)X	$B_2(TO)$	α_{zy}

ОБЪЕКТЫ И МЕТОДИКИ ИССЛЕДОВАНИЯ

Монокристалл SrB₄O₇ выращен методом Чохральского из расплава со стехиометрическим соотношением компонент. Условия и летали процесса синтеза приведены в [11]. Образец для исследования спектров КРС был изготовлен в виде параллелепипеда с ориентацией граней по осям а, *b* и *с* рентген-дифракционным методом. Диборат стронция имеет ромбическую структуру Рпт21 $(C_{2\nu}^{7})$ [7] с двумя формульными единицами в элементарной ячейке. Такая симметрия подразумевает наличие 72 колебаний: $19A_1 + 17A_2 + 17B_1 + 17B_1$ $+ 19B_2$, соответствующих волновому вектору с k = 0, из них $-A_1 + B_1 + B_2$ являются акустическими колебаниями. Осцилляции с симметрией A₁, B₁, B₂ активны как в спектрах КРС, так и в ИК спектрах, тогда как колебание с A_2 -симметрией активно только в спектрах КРС. В этой связи помимо поперечных 69 ТО-колебаний: 18А1 + 17А2 + $+ 16B_1 + 18B_2$ в спектрах КРС можно регистрировать также и продольные LO-колебания A_1, B_1, B_2 симметрии, когда вектор **k** распространения рассеянных фононов совпадает с соответствующими осями *a*, *b* и *c* кристалла. Помимо линий чистых

Таблица 2. Частоты колебаний (см⁻¹), соответствующих *TO*-, *LO*- и *IO*-фононам в спектре KPC монокристалла SrB₄O₇ при 300 K

A_1			A_2	<i>B</i> ₁		<i>B</i> ₂			
α _{xx} α _y		α_{zz}		α_{xy}/α_{yx}	α_{xz}/α_{zx}		α_{yz}/α_{zy}		
ТО	LO	ТО	LO	ТО	—	ТО	IO	ТО	IO
_	_	104	105	104	109	_	148	117	117
151	183	151	183	153	156	160	193	142	150
282	282	282	282	282	237	231	233	301	303
294	294	294	294	294	263	282	282	408	417
362	364	362	365	362	324	444	444	449	449
431	431	431	431	431	416	513	514	517	517
491	491	491	491	491	500	557	557	555	558
580	580	580	580	580	518	609	609	634	635
634	634	634	634	634	535	650	650	726	730
641	652	_	652	_	557	781	783	814	814
705	708	705	708	705	616	890	890	893	914
741	809	741	799	741	720	930	930	938	954
807	843	807	842		753	969	978	962	961
885	_	885	902	885	799	1012	1042	1055	1056
989	1091	989	1091	989	926	1068	1144	1093	1151
1042	1043	_	_	_	997	1138	1307	1169	1301
1148	1234	_	1234	_	1167				

α_{ij} – обозначение компонент тензоров рассеяния, определяющих интенсивность линий КРС для исследованных геометрий рассеяния из табл. 1.

Рис. 1. Поляризованные спектры КРС монокристалла SrB_4O_7 при 300 К в геометриях рассеяния, соответствующих *TO-*, *LO-* и *IO-*модам A_1 -, A_2 -, B_1 - и B_2 -симметрии. (α_{ij}^2 – обозначение компонент тензоров рассеяния из табл. 1).

ТО- и *LO*-фононов в спектрах КРС должны наблюдаться частоты смешанных фононов (ІО), когда вектор k составляет некоторый угол с кристаллографическими осями. Такое явление характерно при использовании так называемых нормальных геометрий рассеяния, когда направление распространения падающего и рассеянного света перпендикулярны. Регистрацию спектров КРС при 300 К проводили с помощью монохроматора "Spex-Ramalog 1403" при спектральной ширине щелей 1 см⁻¹. Возбуждение спектров КРС осуществляли непрерывным излучением аргонового лазера с длинами волн 488.0 и 514.5 нм и средней мощностью 0.6 Вт. Спектры КРС, зарегистрированные при возбуждении разными лазерными линиями, показали отсутствие люминесценции

посторонних примесей в образцах в исследованном спектральном диапазоне длин волн.

Для изучения спектров КРС при температурах до 1300 К применяли специально разработанную аппаратуру [12]. В качестве источника возбуждения использовали лазер на парах меди с длиной волны 578.2 нм, работающий в импульсно-периодическом режиме с частотой 15 кГц и средней мощностью 5 Вт. Исследование спектров КРС при нагревании и плавлении образцов проводили на воздухе в платиновых тиглях в вертикальной трубчатой печи сопротивления из Pt-30%Rh проволоки. Температуру измеряли Pt-6%Rh–Pt-30%Rh термопарой с точностью 1 К при непосредственном контакте с контейнером. При исследовании расплава регистрацию и возбуждение спектров

Рис. 2. Высокочастотная (700–1400 см⁻¹) область поляризованных спектров КРС монокристалла SrB₄O₇ при 300 К. * – линии, запрещенные в данной геометрии рассеяния.

КРС проводили через его верхнюю границу. Спектры КРС при высоких температурах регистрировали с разрешением 3–4 см⁻¹.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для поляризационных исследований использовали 12 геометрий рассеяния как под 90°, так и под 180°, которые приведены в табл. 1. Это позволило надежно идентифицировать *TO*-колебания, а также *LO*- и *IO*-колебания симметрии A_1 , B_1 , B_2 , что отсутствовало в [7]. Спектры КРС монокристалла SrB₄O₇ при 300 K, которые иллюстрируют колебательные спектры *TO*-, *LO*- и *IO*-фононов с симметрией A_1 , B_1 , B_2 и A_2 при 300 K, показаны на рис. 1. Более детально на рис. 2 показаны поляризованные спектры КРС при 300 К в высокочастотной области $800-1400 \text{ см}^{-1}$. В табл. 2 приведены частоты этих фононов. Были идентифицированы $17A_1 + 17A_2 + 15B_1 + 16B_2$ *ТО*-колебаний. При идентификации колебания в табл. 2 не учитывались частоты слабых линий, которые проявлялись в спектрах с определенной геометрией, но являлись следами интенсивных линий, соответствующих спектрам из другой геометрии рассеяния. Это исключало ошибочную приписку одной частоты одновременно линиям КРС разной симметрии. В наших исследованиях только в одном случае наблюдался эффект совпадения позиций сильных *ТО*-линий симметрии A_1 и B_1 на частоте

Рис. 3. Низкочастотная (50–700 см⁻¹) область поляризованных спектров КРС монокристалла SrB₄O₇ при 300 К. * – линии, запрещенные в данной геометрии рассеяния.

282 см⁻¹. Этот случай будет рассмотрен ниже, где изучалось температурное поведение спектров КРС.

При анализе спектров LO- и IO-колебаний был обнаружен ряд интересных явлений. Сдвиг частот этих колебаний относительно соответствующих TO-колебаний в области низких и средних частот спектра или отсутствовал, или не превышал 10 см⁻¹, тогда как в высокочастотной области спектра этот сдвиг достигал 160 см⁻¹ (рис. 1, 2).

В спектрах КРС, соответствующих LO- и IOколебаниям кристалла SrB_4O_7 , наблюдали влияние электрооптического эффекта на изменение интенсивностей линий этих колебаний по сравнению их интенсивностями в геометриях рассеяния для *TO*-фононов. Ранее это явление наблюдали в кристаллах α -кварца [13], ниобата лития [14] и LiB₃O₅ [15], а для монокристалла SrB₄O₇ оно иллюстрируется спектрами KPC в области низких частотных сдвигов рис. 3.

Сдвиг частоты и изменение интенсивностей линий КРС для колебаний А₁-симметрии в геометриях рассеяния для ТО- и LO-фононов позволили идентифицировать А₁-колебания в области частотных сдвигов 620-660 см⁻¹ (рис. 3). Спектр КРС в геометриях рассеяния, соответствующих компонентам тензоров α_{zz} и α_{vv} для колебаний A_1 (ТО) демонстрировал присутствие только одной линии с частотой 634 см⁻¹. В геометрии рассеяния α_{ух} регистрировали наличие высокочастотного крыла у этой линии, что предполагало существование двух A_1 (*TO*)-линий в этом интервале спектра. Спектры КРС, зарегистрированные в геометриях для A₁(LO)-фононов, наглядно демонстрируют присутствие именно двух хорошо разрешенных линий А₁-колебаний в области частотных сдвигов 630-650 см⁻¹. Увеличение интенсивности линий колебаний определенной симметрии при переходе от геометрии рассеяния для TO-фононов к геометрии для LO- или IO-фононов позволило обратить внимание на существование крайне слабых линий ТО-колебаний симметрии B_1 и B_2 в высокочастотном интервале (рис. 2).

В работе [7] были проведены расчеты модели высокотемпературной параэлектрической фазы для SrB_4O_7 , которая предположительно имела структуру *Pnmm* (D_{2h} ¹). При этом температура фазового перехода должна была превышать точку плавления дибората стронция.

Для проверки возможного существования такого превращения были исследованы спектры КРС в процессах нагревания монокристалла стабильной формы SrB₄O₇ вплоть до температуры его плавления. Эти спектры КРС приведены на рис. 4. Эксперимент позволял регистрировать линии $A_1(TO) + B_1(TO)$ -колебаний, поскольку использовали геометрию рассеяния $\{Y(ZZ)\overline{Y} + Y(ZX)\overline{Y}\}$ (отсутствие анализатора). Из рис. 4 видно, что только при температуре 1273 К происходит сильное изменение спектра КРС 6 (рис. 4). Визуальное наблюдение регистрирует плавление кристалла при этой температуре. В то же время спектры КРС в интервале температур 300-1268 К свидетельствуют об отсутствии фазового превращения в исследованном монокристалле SrB_4O_7 , по крайней мере до температуры на 5 К ниже точки плавления. Предполагаемый в работе [7] фазо-

Рис. 4. Эволюция спектров КРС при нагревании ориентированного монокристалла SrB_4O_7 от 300 K до температуры плавления (геометрия рассеяния $Y(ZZ)\overline{Y} + Y(ZX)\overline{Y}$). 1 - 300, 2 - 873, 3 - 1073, 4 - 1173, 5 - 1268 K, 6 - 1273 (расплав), 7 - 300 K (охлажденный расплав).

вый переход $Pnm2_1(C_{2v}^7) \rightarrow Pnmm(D_{2h}^1)$, при котором число формульных единиц в элементарной ячейке не меняется, должен был бы сопровождаться уменьшением, как минимум, вдвое числа линий в спектрах КРС предполагаемой параэлектрической фазы из-за наличия в ее элементарной ячейке центра инверсии (правило альтернативного запрета). Между тем в спектрах 1-5 на рис. 4 наблюдались лишь уширение и сдвиг частот в

красную область спектра с ростом температуры, что является обычным следствием влияния эффектов ангармонизма. Спектр КРС расплавленного кристалла при 1273 К (*6*) на рис. 4 состоит из широких полос, которые по результатам ранее проведенных экспериментов по изучению спектров КРС боратных расплавов [16–18] можно приписать внутренним колебаниям бор-кислородных комплексов в расплавленном состоянии. В кристаллическом SrB_4O_7 также можно выделить спектр таких внутренних колебаний, хотя, учитывая сложность структуры SrB_4O_7 , в настоящее время это сделать достаточно сложно. В спектре КРС медленно охлажденного до 300 К расплава присутствовали только линии исходного монокристалла SrB_4O_7 (7 на рис. 4), что свидетельствовало об отсутствии фазовых превращений также и в процессах охлаждения. Поскольку в этом случае получился поликристаллический образец, то в его спектре КРС при 300 К присутствовали линии как *TO*-, так и LO-колебаний всех четырех типов симметрии фононов.

Исследование температурных изменений в спектрах КРС монокристалла SrB_4O_7 позволило прояснить природу полосы с частотой 282 см⁻¹ при 300 К. Из поляризационных исследований при 300 К этой частоте должны соответствовать две интенсивные линии колебаний с симметрией $A_1(TO)$ и $B_1(TO)$ (табл. 2). Как видно из рис. 4 (1–5), из-за разной температурной зависимости частот этих колебаний они становятся хорошо различимыми в спектрах КРС при высокой температуре. Ранее такое явление наблюдали в спектрах КРС СаWO₄ [19] и моноклинного HfO₂ [20].

выводы

На основе детальных исследований поляризованных спектров КРС в различных геометриях рассеяния идентифицировали $17A_1 + 17A_2$ *TO*-колебаний, предсказанных теоретико-групповым анализом. Из $16B_1 + 18B_2$ *TO*-колебаний, которые должны были быть в спектрах КРС SrB₄O₇, наблюдали $15B_1 + 16B_2$. Можно предполагать присутствие линии шестнадцатого *TO*-колебания симметрии B_1 в области ниже 150 см^{-1} , поскольку в геометрии рассеяния для *IO*-фононов этой симметрии наблюдали именно 16 линий (табл. 2). Соответственно эти данные подтверждают выводы рентгеноструктурного анализа о симметрии ромбической решетки *Pnm*2₁ (C_{2v}^7) для SrB₄O₇ кристалла.

Смещение частот LO-колебаний относительно TO-аналогов наиболее заметно в высокочастотной области и может достигать 160 см⁻¹.

Обнаружено влияние электрооптического эффекта на изменение интенсивности линий КРС *LO*-колебаний по сравнению с интенсивностями их аналогов *TO*-колебаний.

На основе высокотемпературных исследований спектров КРС не подтверждено существование температурного сегнето-параэлектрического фазового перехода в кристаллической структуре SrB_4O_7 .

Из сравнения спектров КРС кристалла SrB_4O_7 перед плавлением со спектром его расплава можно заключить, что хотя бор-кислородные комплексы и присутствуют в расплавленном диборате стронция, но их строение не имеет ничего общего со структурой бор-кислородных фрагментов в своеобразной кристаллической решетке SrB_4O_7 .

Работа выполнена при финансовой поддержке РФФИ в рамках научного проекта № 13-02-00707 а.

СПИСОК ЛИТЕРАТУРЫ

- Krogh-Moe J. // Acta Chem. Scand. 1964. V. 18. № 9. P. 2055.
- Block S., Perloff A., Weir C.E. // Acta Crystallogr. 1964.
 V. 17. № 3. P. 314.
- 3. *Pan F., Shen G., Wang R., Wang X., Shen D.* // J. Cryst. Growth. 2002. V. 241. № 1–2. P. 108.
- Machida K., Hata H., Okuno K., Adachi G., Shiokawa J. // J. Inorg. Nucl. Chem. 1979. V. 41. P. 1425–1430.
- 5. Huppertz H. // Z. Naturforsch. 2003. V. 58b. P. 257.
- 6. Trabs P., Noack F., Aleksandrovsky A.S., Zaitsev A.I., Petrov V. // Opt. Lett. 2016. V. 41. P. 618–621.
- Зинченко В.И., Павловский М.С., Зайцев А.И., Крылов А.С., Шинкаренко А.С. // ЖЭТФ. 2012. Т. 142. С. 511.
- 8. Воронько Ю.К., Кудрявцев А.Б., Осико В.В., Соболь А.А. // ФТТ. 1987. Т. 29. № 5. С. 1348.
- Воронько Ю.К., Дьяков В.А., Кудрявцев А.Б., Осико В.В., Соболь А.А., Сорокин Е.В. // ФТТ. 1989. Т. 31. С. 150.
- Ананьева Г.В., Коровкин А.М., Кудрявцев А.Б., Купчиков А.К., Рыскин А.И., Соболь А.А. // ФТТ. 1981. Т. 23. С. 1079.
- 11. Zaitsev A.I., Aleksandrovsky A.S., Vasiliev A.D., Zamkov A.V. // J. Crystal Growth. 2008. V. 310. P. 1.
- Воронько Ю.К., Кудрявцев А.Б., Осико В.В., Соболь А.А. // Рост кристаллов / Под ред. Багдасарова Х.С., Лубэ Э.Л. М.: Наука, 1988. Т. 16. С. 178–195; Voron'ko Yu.K., Kudryavtsev A.B., Osiko V.V., Sobol' А.А. // Growth of Crystals / Ed. by Bagdasarov Kh.S., Lube E.L., N. Y.: Consultant Bureau, 1991. V. 16. P. 199–216.
- Masso J.D., She C.A., Edwards D.F. // Phys. Rev. B. 1970. V. 1. P. 4179.
- 14. Barker A.S. Jr., Loudon R. // Phys. Rev. 1967. V. 158. P. 433.
- 15. Воронько Ю.К., Соболь А.А., Шукшин В.Е. // Опт. и спектр. 2013. Т. 115. № 6. С. 967.
- 16. Воронько Ю.К., Горбачев А.В., Кудрявцев А.Б., Соболь А.А. // Неорг. матер. 1992. Т. 28. № 8. С. 1699.

- 17. Воронько Ю.К., Горбачев А.В., Кудрявцев А.Б., Соболь А.А. // Неорг. матер. 1992. Т. 28. № 8. С. 1707.
- Voronko Yu.K., Gorbachov A.V., Osiko V.V., Sobol A.A., Feigelson R.S., Route R.K. // J. Phys. Chem. Sol. 1993. V. 54. № 11. P. 1579.
- 19. Банишев А.Ф., Воронько Ю.К., Кудрявцев А.Б., Осико В.В., Соболь А.А. // Кристаллография. 1982. Т. 27. С. 618.
- 20. Воронько Ю.К., Соболь А.А., Шукшин В.Е. // ФТТ. 2007. Т. 49. № 10. С. 1871.