ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ, 2016, том 61, № 11, с. 1472–1475

_____ КООРДИНАЦИОННЫЕ ___ СОЕДИНЕНИЯ

УДК 541.49:548.73

СТРУКТУРА ДВУХ НОВЫХ СОЕДИНЕНИЙ ФТОРХИНОЛОНОВЫХ АНТИБИОТИКОВ С МИНЕРАЛЬНЫМИ КИСЛОТАМИ

© 2016 г. Н. Н. Головнев**, А. Д. Васильев*, **

*Институт физики им. Л.В. Киренского СО РАН, Красноярск **Сибирский федеральный университет, Красноярск E-mail: ngolovnev@sfu-kras.ru Поступила в редакцию 23.05.2015 г.

Синтезированы и охарактеризованы методом РСА новые соединения спарфлоксацина $(C_{19}H_{22}F_2N_4O_3, SfH)$ и левофлоксацина $(C_{18}H_{20}FN_3O_4, LevoH)$ с минеральными кислотами: бромид спарфлоксациниума (SfH · HBr, I) и диперхлорат левофлоксациндиума (LevoH · 2HClO₄, II). Кристаллографические данные: I – a = 7.7151(7), b = 26.109(3), c = 10.008(1) Å, $\beta = 103.556(1)^\circ$, V = 1959.7(3) Å³, пр. гр. $P2_1/n$, Z = 4; II – a = 9.727(6), b = 20.440(12), c = 12.286(7) Å, $\beta = 104.327(8)^\circ$, V = 2367(2)Å³, пр. гр. $P2_1$, Z = 4. Структуры соединений стабилизированы внутри- и межмолекуляр-

ными водородными связями, а также $\pi - \pi$ -взаимодействием между ионами SfH⁺₂ или LevoH²⁺₃.

DOI: 10.7868/S0044457X16110076

Фторхинолоны селективно ингибируют фермент микробной клетки – ДНК-гиразу, ответственную за нормальный биосинтез и репликацию ДНК бактерий. Это важнейший класс синтетических антибиотиков [1]. Одними из его представителей являются спарфлоксацин (C₁₉H₂₂F₂N₄O₃, SfH) [2, 3] и левофлоксацин, или S-офлоксацин (C₁₈H₂₀FN₃O₄, LevoH) [1, 4]. Их применение в медицине осложняется малой растворимостью в воде, гигроскопичностью, образованием полиморфных и гидратных форм [5–7]. Ионные соединения фторхинолонов лучше растворимы и окристаллизованы [8-12] и могут быть подходящими ингредиентами новых лекарственных средств. В рамках систематического изучения их молекулярной и супрамолекулярной структуры синтезированы и охарактеризованы методом РСА два новых соединения: бромид спарфлоксациниума SfH · HBr (I) и диперхлорат левофлоксациндиума LevoH \cdot 2HClO₄ (II).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Использовали спарфлоксацин $C_{19}H_{22}F_2N_4O_3$ (Sigma, содержание основного вещества $\geq 98\%$), полугидрат левофлоксацина $C_{18}H_{20}FN_3O_4 \cdot 1/2H_2O$ (Zhejiang Kangyu Pharmaceutical Co., Ltd, Китай), HBr (х. ч.) и HClO₄ (х. ч.) без дополнительной очистки.

Синтез. Для получения I к суспензии 0.20 г SfH в 5 мл воды добавляли по каплям 2M HBr до рH 2–3. Для получения II к 0.20 г LevoH добавля-

ли 3 мл 10 М HClO₄. Образовавшиеся желтые кристаллические осадки отфильтровывали, промывали ацетоном и сушили на воздухе. Монокристаллы I и II выделялись при медленном испарении воды из полученных фильтратов при комнатной температуре.

РСА. Для определения структуры были отобраны кристаллы I и II размерами 0.18 × 0.14 × 0.07 мм и $0.43 \times 0.38 \times 0.21$ мм соответственно. Интенсивности отражений измерены с помощью рентгеновского монокристального дифрактометра SMART APEX II с CCD детектором (Bruker AXS) (МоКа-излучение) при 298 К. Экспериментальные поправки на поглощение введены с помощью программы SADABS [13] multi-scan методом. Модель структуры установлена прямыми методами и уточнена в анизотропном приближении для неводородных атомов с помощью комплекса SHELXTL [14]. Структуры I и II депонированы в Кембриджском банке структурных данных под номерами 1047052 и 1047051 соответственно. Данные могут быть получены через сайт www.ccdc.cam.ac.uk/data request/cif.

В соединениях I и II положения всех атомов водорода были определены из разностных синтезов электронной плотности и далее уточнялись в связанном виде с фиксированными расстояниями. Параметры эксперимента и результаты уточнения структур даны в табл. 1.

Формула	$C_{19}H_{23}BrF_2N_4O_3(I)$	C ₁₈ H ₂₂ Cl ₂ FN ₃ O ₈ (II)		
Пр. гр., Z	$P2_1/n, 4$	<i>P</i> 2 ₁ , 4		
2θ _{max} , град	50	50		
<i>а, b, c</i> , Å; β, град	7.7151(7), 26.109(3), 10.008(1); 103.556(1)	9.727(6), 20.440(12), 12.286(7); 104.327(8)		
V, Å ³	1959.7(3)	2367(2)		
ρ, γ/cm ³	1.604	1.578		
μ, мм ⁻¹	2.146	0.351		
Всего измерено отражений	14261	17505		
Независимых отражений	3448	8263		
Число отражений с $F > 4\sigma_F$	2046	5387		
Пределы по <i>h</i> , <i>k</i> , <i>l</i>	$ \begin{array}{l} -9 \leqslant h \leqslant 9; -31 \leqslant k \leqslant 30; \\ -11 \leqslant l \leqslant 11 \end{array} $	$-11 \leqslant h \leqslant 11; -24 \leqslant k \leqslant 24; -14 \leqslant l \leqslant 14$		
Уточняемых параметров	257	654		
$R1 [F_{\rm o} > 4\sigma(F_{\rm o})]$	0.055	0.063		
wR2	0.113	0.163		
GOOF	1.02	1.04		
Параметр Флэка	_	-0.09(6)		
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min}}$, e/Å ³	0.79/-0.50	0.50/-0.36		
$(\Delta/\sigma)_{\rm max}$	0.0	0.01		

Таблица 1. Экспериментальные данные и параметры уточнения структуры I и II

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В независимой части кристаллической ячейки I содержится по одному иону SfH₂⁺ и Br⁻. Два 6-членных цикла N1–C2–C3–C4–C10–C9 и C5–C6–C7–C8–C9–C10 в катионе SfH₂⁺ практически плоские, а третий, N2–C14–C15–N3–C16–C17, имеет конформацию "кресло" (рис. 1). С атомом N4 связаны два атома водорода, расположенные в

плоскости первых двух циклов. В SfH_2^+ имеется еще 3-членный цикл C11-C12-C13, связанный с атомом N1. Межатомные расстояния и валентные углы в I совпадают с полученными для спарфлоксацина [7, 15] и его соединений [2, 16].

В независимой части кристаллической ячейки соединения II содержатся два катиона $LevoH_3^{2+}$ (**А** и **B**) и четыре аниона ClO_4^- . Длины связей и ва-

Рис. 1. Катионы SfH_2^+ в I (слева) и Levo H_3^{2+} в II (справа) с нумерацией атомов. Эллипсоиды тепловых колебаний рассчитаны с доверительной 50%-ной вероятностью. Здесь и далее водородные связи показаны пунктирными линиями.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 61 № 11 2016

лентные углы в Levo H_3^{2+} (рис. 1) совпадают с литературными данными для левофлоксацина [15] и его соединений [12]. Атомы кислорода в ионах

СІО₄ сильно разупорядочены, особенно в случае Cl4, поэтому углы OClO при атоме Cl1 имеют значения от 107.9(5)° до 110.3(5)°, а длины связей Cl–O составляют 1.411–1.448(7) Å, для атома Cl4 эти интервалы равны 97.6°-118.1(13)° и 1.306-1.452(13) Å соответственно. Два независимых катиона LevoH₃²⁺ имеют обычное строение [12]: два 6-членных цикла N1–C2–C3–C4–C10–C9 и C5– С6-С7-С8-С9-С10 практически плоские, а третий, N2-C14-C15-N3-C16-C17, имеет конформацию "кресло". Четвертый цикл, С8-С9-N1-С11-С18-О4, в катионе А имеет конформацию типа "конверт" с выходом атома С18 на 0.667 Å из плоскости, в которой лежат остальные атомы цикла (максимальное отклонение 0.010(5) Å, N1), а в В – "полукресло" с выходом атомов С11 (0.28 Å) и C18 (0.44 Å) по разные стороны от плоскости, в которой практически без отклонений лежат остальные атомы цикла (рис. 2). Только четвертые циклы не подчиняются инверсионной связи ионов Levo H_3^{2+} , что и определяет нецентросим-метричность структуры.

В структурах I и II (рис. 3, 4) имеются как внутри-, так и межмолекулярные водородные связи (**BC**). Наличие в SfH $_2^+$, по сравнению с LevoH $_3^{2+}$, дополнительной группы NH $_2$, а также различие в природе анионов и степени протонирования фторхинолонов по-разному отражается на ВС в І и II. В ионе SfH₂⁺ атом O1 является двойным ак-цептором внутримолекулярных BC O2-H1...O1 и N4-H5...O1, а Br⁻ связан тремя BC N-H...Br с тремя катионами SfH_2^+ (табл. 2) с образованием бесконечной трехмерной структуры. Наряду с характерной для дипротонированных фторхинолонов внутримолекулярной ВС О1-Н...О2 [17, 18] в структуре II есть четыре межмолекулярные ВС типа N3-H...О и О3-H...О. При этом каждый катион LevoH₃²⁺ соединен этими связями с двумя ионами С1О₄ (рис. 4). В обеих структурах образуются ВС С14-Н...F, характерные для фторхинолонов [17].

В структуре I катионы SfH₂⁺ расположены парами антипараллельно через центр инверсии и связаны π - π -взаимодействием типа "голова-к-хвосту" [19] (табл. 3). В II катионы A и B также объединены в пары π - π -взаимодействием типа "голова-к-хвосту", при этом структурные единицы, состоящие из двух катионов LevoH₃²⁺ и четырех анионов ClO₄⁻, связаны только силами Вандер-Ваальса. Геометрические параметры π - π -

Рис. 2. Форма циклов C8–C9–N1–C11–C18–O4 в двух независимых ионах LevoH $_3^{2+}$ в структуре II.

Рис. 3. Водородные связи в структуре I. Атомы азота заштрихованы горизонтально, атомы брома изображены серыми кружками.

Рис. 4. Водородные связи в структуре II. Атомы азота заштрихованы горизонтально.

взаимодействий в I и II близки к найденным в других ионных соединениях фторхинолонов [8—11, 17].

D-H	D-H	HA	∠DHA	DA	А	Преобразования для атома А				
Соединение І										
O2-H1	0.95	1.61	154	2.498(5)	01	<i>x</i> , <i>y</i> , <i>z</i>				
N3-H2	0.98	2.43	160	3.371(4)	Br	x - 0.5, 0.5 - y, z - 0.5				
N3-H3	0.98	2.26	132	3.006(5)	O3	0.5 - x, 0.5 + y, 1.5 - z				
N3-H3	0.98	2.66	126	3.342(4)	Br	<i>x</i> , <i>y</i> , <i>z</i>				
N4-H4	0.98	2.60	157	3.518(4)	Br	x - 0.5, 0.5 - y, z + 0.5				
N4-H5	0.98	1.94	128	2.654(5)	O1	<i>x</i> , <i>y</i> , <i>z</i>				
C14-H12	0.97	2.38	115	2.932(4)	F1	<i>x</i> , <i>y</i> , <i>z</i>				
	Соединение II									
O1A-H1A	0.95	1.77	143	2.597(8)	O2A	<i>x</i> , <i>y</i> , <i>z</i>				
O3A-H3A	0.95	1.86	146	2.702(9)	O12	x - 1, y, z - 1				
N3A-HN3A	0.98	1.99	150	2.876(12)	O41	x + 1, y, z				
O1B-H1B	0.95	1.77	142	2.586(9)	O2B	<i>x</i> , <i>y</i> , <i>z</i>				
O3B-H3B	0.95	1.74	163	2.665(10)	O21	x + 1, y, z				
N3B-HN3B	0.98	1.83	171	2.807(12)	O31	-x, y = 0.5, -z				
C14A-H14A	0.97	2.31	116	2.877(12)	FA	<i>x</i> , <i>y</i> , <i>z</i>				
C14B-H14B	0.97	2.33	115	2.878(11)	FB	<i>x</i> , <i>y</i> , <i>z</i>				

Таблица 2. Геометрические параметры водородных связей D–H...A (d, Å; углы, град) в структурах I и II

Таблица 3. Параметры π–π-взаимодействий между циклами: N1–C2–C3–C4–C10–C9 в I; между N1–C2–C3–C4–C10–C9 и C5–C6–C7–C8–C9–C10 в II

Соединение	$Cg_i - Cg_j$	<i>d</i> , Å	α, град	β, град	<i>Cg_i_p</i> , Å	Δ, Å
Ι	$Cg_1 - Cg_1$	3.664(3)	0	10.31	3.604(2)	0.656
II	$Cg_{1A} - Cg_{2B}$	3.779(5)	4.2(4)	22.80	3.396(3)	_
	$Cg_{2A} - Cg_{1B}$	3.861(5)	5.1(4)	23.67	3.429(3)	
	$Cg_{1B}-Cg_{2A}$	3.861(5)	5.1(4)	27.34	3.370(4)	
	$Cg_{2B}-Cg_{1A}$	3.780(5)	4.2(4)	26.02	3.484(3)	

Работа выполнена в Сибирском федеральном университете в рамках госзадания Минобрнауки России на 2014—2016 гг. (тема № ГХ-3).

СПИСОК ЛИТЕРАТУРЫ

- 1. Mitsher L.A. // Chem. Rev. 2005. V. 105. № 2. P. 559.
- Shingnapurkar D., Butcher R., Afrasiabi Z. et al. // Inorg. Chem. Commun. 2007. V. 10. P. 459.
- Stein G.E., Havlichek D.H. // Pharmacotherapy. 1997. V. 17. № 6. P. 1139.
- Падейская Е.Н. Профилактика, диагностика, фармакотерапия некоторых инфекционных заболеваний. М.: Биоинформ, 2002. С. 64–73.
- Zhang C.-L., Wang Y.J. // Chem. Eng. Data. 2008. V. 53. № 6. P. 1295.
- 6. *Hewitt M., Cronin M.T.D., Enoch S.J. et al.* // J. Chem. Inf. Model. 2009. V. 49. № 11. P. 2572.
- Llinas A., Burley J.C., Prior T.J. et al. // Cryst. Growth Des. 2008. V. 8. № 1. P. 114.
- Vasiliev A.D., Golovnev N.N. // J. Struct. Chem. 2013. V. 54. № 3. P. 607.

- Golovnev N.N., Golovneva I.I., Molokeev M.S., Glushchenko G.A. // J. Struct. Chem. 2013. V. 54. № 2. P. 377.
- Golovnev N.N., Kirik S.D., Vasiliev A.D. // J. Mol. Struct. 2012. V. 1021. P. 112.
- Васильев А.Д., Головнев Н.Н. // Журн. неорган. химии. 2012. Т. 57. № 2. С. 293 [Vasil'ev A.D., Golovnev N.N. // Russ. J. Inorg. Chem. 2012. V. 57. № 2. Р. 248].
- Vasiliev A.D., Golovnev N.N. // J. Struct. Chem. 2010. T. 51. № 1. P. 183.
- 13. *Sheldrick G.M.* SADABS. Version 2.01. Bruker AXS Inc. Madison, Wisconsin, USA, 2004.
- 14. *Sheldrick G.M.* SHELXTL. Version 6.10. Bruker AXS Inc. Madison, Wisconsin, USA, 2004.
- 15. Cambridge Structural Database. Version 5.35. Cambridge (UK): Univ. of Cambridge, 2013.
- Васильев А.Д., Головнев Н.Н. // Журн. неорган. химии. 2014. Т. 59. № 4. С. 477 [Vasil'ev A.D., Golovnev N.N. // Russ. J. Inorg. Chem. 2014. V. 59. № 4. Р. 322].
- Prasanna M.D., Row T.N.G. // J. Mol. Struct. 2001. V. 559. P. 255.
- Vasiliev A.D., Golovnev N.N., Molokeev M.S., Churilov T.D. // J. Struct. Chem. 2005. V. 46. № 2. P. 363.
- 19. *Стид Дж.В., Этвуд Дж. Л.* Супрамолекулярная химия. Ч. 1–2. М.: ИКЦ Академкнига, 2007. 895 с.