УДК 66.02+539.23

ВЛИЯНИЕ ЩЕЛОЧНЫХ РЕАГЕНТОВ НА КРИСТАЛЛИЧЕСКУЮ СТРУКТУРУ ПЛЕНОК СОР, ПОЛУЧЕННЫХ ХИМИЧЕСКИМ ОСАЖДЕНИЕМ

© 2016 г. А. В. Чжан¹, Т. Н. Патрушева², С. А. Подорожняк², В. А. Середкин¹, Г. Н. Бондаренко³

E-mail: srodinger@mail.ru

Исследовано влияние щелочных реагентов на кристаллическую структуру пленок CoP, при химическом способе их получения. Показано, что использование гидрокарбоната натрия и аммиака в малых концентрациях приводит к росту гексагональной фазы, и затем с увеличением концентрации происходит образование кубической или аморфной фазы.

DOI: 10.7868/S0367676516060090

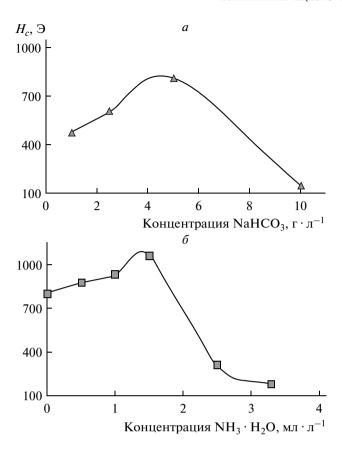
Получение тонких магнитных пленок (ТМП) с заданными свойствами является одной из основных задач инженерной физики. Ее актуальность обусловлена широким применением ТМП в электронике, например в высокочувствительных датчиках, элементах памяти и магнитных головках для записи-считывания в устройствах хранения и считывания информации. Значительные перспективы применения ТМП открываются для создании элементов спинтроники, в которых используется возможность значительного изменения электрического сопротивления пленки при изменении магнитного состояния.

С точки зрения технологичности, особое внимание привлекает метод химического осаждения пленки в отсутствие электрического тока, основанный на химическом восстановлении металлов из растворов. Получение магнитных пленок на основе сплава СоР химическим способом впервые осуществил Бренер [1] и к настоящему времени данный метод получил достаточно широкое практическое применение [2]. Химическое осаждение отличается относительной простотой, низкой себестоимостью; немаловажно, что таким способом можно получать пленки как на металлических, так и на диэлектрических подложках. Привлекательной представляется возможность

В настоящей работе представлены результаты экспериментальных исследований влияния щелочных реагентов на кристаллическую структуру пленок СоР, полученных в различных технологических режимах: в отсутствие и при наличии в растворе аммиака и гидрокарбоната натрия различной концентрации.

ИССЛЕДУЕМЫЕ ОБРАЗЦЫ И ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Получение образцов для исследований производилось по методике химического восстановления, включающей в себя стандартные для нее процедуры предварительной подготовки подложек. Осаждение магнитных слоев CoP проводилось из двух типов рабочих растворов, включавших в себя (в г · π^{-1}): CoSO₄ · 7H₂O - 10, Na(H₂PO₂) - 7.5, Na₃C₆H₅O₇ - 17.5 и отличавшихся щелочными реагентами: 25% NH₃ · H₂O или NaHCO₃. В первом типе растворов менялась концентрация гидрокарбоната натрия NaHCO₃ в пределах от 1 до 10 г · π^{-1} , а во втором концентрация гидрокарбоната натрия была постоянной и составляла 5 г · π^{-1} , но концентрация 25% гидрата аммиака изменялась от 0.5 до 3.3 мл · π^{-1} .


Коэрцитивную силу H_c определяли с помощью меридионального эффекта Керра, рентгенофазовый анализ выполнен с помощью рентгеновского дифрактометра ДРОН-3 с излучением $Cu = 1.5418 \, \text{Å}$.

получения с помощью химического осаждения сэндвич-структур с толщиной слоев в несколько нанометров [3].

¹ Федеральное государственное бюджетное учреждение науки Институт физики им. Киренского СО РАН, Красноярск.

² Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Сибирский федеральный университет", Красноярск.

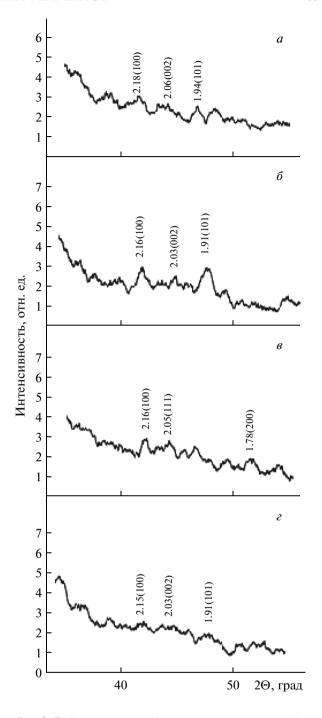

³ Федеральное государственное бюджетное учреждение науки Институт химии и химической технологии СО РАН, Красноярск.

Рис. 1. Зависимость коэрцитивной силы пленок CoP от концентрации щелочного реагента: a — гидрокарбоната натрия; δ — гидрата аммиака.

Изменение коэрцитивной силы исследуемых пленок в зависимости от концентрации щелочных реагентов, как аммиака (рис. 1a), так и гидрокарбоната натрия (рис. 1b) носит немонотонный характер с первоначальным ростом и последующим резким падением.

Представленные изменения коэрцитивной силы объясняются изменением кристаллической структуры пленок. Из данных рентгеноструктурного анализа следует, что при получении пленок из раствора первого типа в области малых концентраций (до $1-1.5 \, \text{г} \cdot \text{л}^{-1}$) гидрокарбоната натрия наблюдается рост кристаллов с несовершенной структурой, близкой к гексагональной (рис. 2a). С увеличением концентрации NaHCO₃ кристаллическая структура совершенствуется, о чем свидетельствует появления пиков на дифрактограмме (рис. 26), соответствующих "чистому" гексагональному Со. При дальнейшем увеличении концентрации NaHCO₃ в рабочем растворе свыше $10 \ \Gamma \cdot \pi^{-1}$ происходит изменение кристаллической решетки и наблюдается появление пиков, соответствующих кубической фазе кобальта (рис. 2в).

Рис. 2. Дифрактограммы образцов с несовершенной (a) и совершенной (δ) гексагональной структурой; со смесью гексагональной и кубической фазы (b) и аморфной структурой (a).

Исходный состав растворов второго типа соответствовал получению образцов с "чистой" гексагональной структурой, которая не изменялась при добавлении аммиака до концентрации $1.5~{\rm M}{\rm M}\cdot{\rm M}^{-1}$. Дальнейшее увеличение концентрации аммиака до $3.3~{\rm M}{\rm M}\cdot{\rm M}^{-1}$ приводит к аморфизации структуры с уменьшением кристаллической фазы (рис. 2ε).

ОБСУЖДЕНИЕ

Изменение кристаллической структуры кобальта по типу образцов первой серии может вызываться следующими причинами. При низкой концентрации NaHCO₃ (1 г · л⁻¹) величина рH раствора осаждения находится на уровне, незначительно отличающемся от нейтрального (рH \approx 7.3).

В таких условиях, согласно нашим предположениям, в растворе наличествует значительное количество свободных электронов с избытком энергии, способных восстанавливать ионы двухвалентного кобальта Co²⁺ до металлического кобальта [4] с формированием несовершенной кристаллической решетки с несколько увеличенными параметрами. С увеличением концентрации NaHCO₃ значение рН увеличивается, количество и энергия свободных электронов уменьшаются, наблюдается снижение скорости роста пленок, происходит формирование классической гексагональной ячейки кобальта с правильной структурой (р $H \approx 8$). Однако после достижения некоторой критической концентрации NaHCO₃, соответствующей рН ≈ 8.4, вклад гексагональной фазы уменьшается и появляется кобальт в кубической фазе, что приводит к резкому падению коэрцитивной силы. Предполагается, что в зависимости от рН образуется такой тип кристаллической решетки, энергия связи в которой наиболее соответствует максимальной энергии наличествующих в растворе свободных электронов.

В случае с изменением концентрации гидрата аммиака наиболее вероятен другой механизм. В зависимости от концентрации молекулы аммиака

NH₃ образуют с атомами двухвалентного кобальта комплексы типа $[Co(NH_3)_{1-6}]^{2+}$, и соответственно в зависимости от количества лигандов (молекул NH₃, образующих комплекс с атомом кобальта) эти комплексы имеют различную прочность, выражаемую через константы нестойкости pK_{H} . Наименьшей константой нестойкости (наибольшей прочностью) для двухвалентного кобальта обладает $[Co(NH_3)]^{2+}$ $(pK_{\rm H}=1.99)$, а наибольшей — $[{\rm Co}({\rm NH_3})_5]^{2+}$ $(pK_{\rm H}=$ = 5.13) [5]. Таким образом, с ростом концентрации аммиака в растворе осаждения не только растет рН, но и происходит образование аммиачных комплексов с большим количеством лигандов, а соответственно с меньшей устойчивостью, чем, вероятнее всего, и объясняется возникновение аморфной фазы.

Работа выполнена при частичной поддержке гранта РФФИ № 14-02-00238а.

СПИСОК ЛИТЕРАТУРЫ

- Brenner A., Riddell G. // J. Res. Nat. Bur. Std. 1946.
 V. 37, P. 31.
- 2. Glenn O.M., Juan B.H. // Electroless Plating: Fundamentals and Applications. 1990. P. 401.
- 3. Чжан А.В., Кипарисов С.Я., Середкин В.А., Патрин Г.С. // Изв. РАН. Сер. физ. 2009. Т. 73. № 8. С. 1222.
- 4. *Liu W.L.*, *Chen W.J.*, *Tsai T.K.*, *Hsieh S.H.*, *Chang S.Y.* // Appl. Surf. Sci. 2007. V. 253. P. 3843.
- 5. *Брусенцева Л.Ю., Кудряшова А.А.* // Краткий справочник физико-химических величин некоторых неорганических и органических соединений. Самара: НОУ ВПО СМИ "РЕАВИЗ", 2011. 68 с.