МАТЕРИАЛЫ 8(13) МЕЖДУНАРОДНОГО СЕМИНАРА ПО ФИЗИКЕ СЕГНЕТОЭЛАСТИКОВ (Воронеж, сентябрь 2015 г.)

Председатель Оргкомитета 8(13) Международного семинара по физике сегнетоэластиков д-р физ.-мат. наук **Л.Н. Коротков** Зам. председателя Оргкомитета д-р физ.-мат. наук **О.Н. Иванов** Председатель программного комитета д-р физ.-мат. наук **Б.М. Даринский**

Материалы 8(13) Международного семинара по физике сегнетоэластиков под общей редакцией д-ра физ.-мат. наук **Л.Н. Короткова** УДК 621.315

ДИНАМИКА РЕШЕТОК И БАРИЧЕСКОЕ ПОВЕДЕНИЕ ФОНОНОВ В КРИСТАЛЛАХ Hg₂Cl₂ ПРИ ВЫСОКИХ ГИДРОСТАТИЧЕСКИХ ДАВЛЕНИЯХ

© 2016 г. Е. М. Рогинский^{1, *}, А. С. Крылов², Ю. Ф. Марков¹, М. Б. Смирнов³

¹ Физико-технический институт имени А.Ф. Иоффе Российской академии наук, Санкт-Петербург ²Институт физики имени Л.В. Киренского СО РАН, Красноярск ³Санкт-Петербургский государственный университет, Санкт-Петербург *E-mail: e.roginskii@mail.ioffe.ru

На примере модельных кристаллов каломели Hg_2Cl_2 как типичных представителей молекулярных неорганических соединений, где довольно важную, как оказалось, роль играет межмолекулярное взаимодействие, предложена теоретическая модель, учитывающая дальнодействующие дисперсионные поправки функционала зарядовой плотности. В рамках этой модели удалось успешно описать электронное состояние и фононный спектр данного кристалла, а также предсказать существование не изученного ранее фазового перехода, реализуемого при высоких гидростатических давлениях. При изучении барического поведения фононного спектра методом рамановской спектроскопии была обнаружена в низкосимметричной ромбической фазе мягкая мода, частота которой уменьшается при повышении давления. При давлениях выше 9 ГПа происходят существенные изменения в рамановском спектре, что указывает на существование структурного фазового перехода.

DOI: 10.7868/S0367676516090465

ВВЕДЕНИЕ

Среди всего многообразия кристаллических систем в отдельный ряд выделяются так называемые молекулярные кристаллы (МК). МК образованы молекулами, связанными между собой дальнодействующими силами различной природы (например, водородными связями, ван-дер-ваальсовыми силами и др.). Внутри молекул атомы связаны существенно более прочными (ковалентными или ионными) связями.

Среди неорганических молекулярных кристаллов, испытывающих структурные фазовые переходы, можно выделить семейство галогенидов одновалентной ртути Hg₂Hal₂ (Hal = F, Cl, Br, I), являющееся модельным при изучении общих проблем фазовых переходов. Эти кристаллы состоят из цепочек линейных молекул Hal–Hg–Hg–Hal, образующих при комнатной температуре объемно-центрированную тетрагональную решетку (пространственная группа D_{4h}^{17}) и при охлаждении до $T_c = 186$ К (Hg₂Cl₂) и $T_c = 144$ К (Hg₂Br₂) они испытывают несобственные сегнетоэластические ФП $D_{4h}^{17} \rightarrow D_{2h}^{17}$ из тетрагональной фазы в ромбическую. ФП индуцированы конденсацией наиболее "медленной", наиболее низкочастотной ТА-ветви в Х-точке границы зоны Бриллюэна (ЗБ) тетрагональной парафазы и сопровождаются при $T \leq T_c$ удвоением элементарной ячейки, $X \rightarrow \Gamma$ – "перебросом" в ЗБ, воз-

никновением спонтанной деформации и сегнетоэластических доменов [2].

МЕТОДЫ ВЫЧИСЛЕНИЯ

Первоначально расчеты выполнены в рамках теории функционала плотности в базисе ЛКАО с использованием гибридного функционала B3LYP [3]. Вычисления выполнены в рамках программы Crystal-09 [4, 5]. В качестве базисных использованы атомные функции атома Cl из [6], полноэлектронный валентно-расщепленный базис (TZVP), для атома Hg из [7] для слегка модифицированного псевдопотенциала из [8], где в качестве валентных рассматривали состояния 5s, 5p, 5d и 6s атома Hg в конфигурации $5s^25p^65d^{10}6s^2$.

В дальнейшем появилась необходимость расширить модель, добавив дальнодействующие дисперсионные поправки к функционалу зарядовой плотности вида $C_6 R^{-6}$ [9]. В расчетах были использованы табулированные параметры для эмпирических коэффициентов для атомов Cl, а для атомов Hg параметры подбирались таким образом, чтобы получить хорошее согласие экспериментальных и расчетных значений частот фононов на границе ЗБ. Суммирование по зоне Бриллюэна проводилось по специальным точкам типа Монкхорста—Пака (МП) 8 × 8 × 8 [10]. Для того чтобы обеспечить примерно одинаковую плотность точек в направлении каждого из трех векторов обратной решетки, набор специальных точек МП сокращался обратно пропорционально вектору трансляции прямой решетки в соответствующем направлении. Для каждого метода была выполнена полная оптимизация геометрии с релаксацией как параметров решетки, так и атомных позиций в примитивной ячейке. Точность суммирования в прямой решетке выбрана 10^{-6} для всех интегралов на атомных функциях, кроме обменных, для которых эта точность взята равной 10^{-12} . Самосогласование по матрице плотности проводилось до достижения величины 10^{-10} а. е. для разности в полной энергии на ячейку двух последовательных итераций.

МЕТОДИКА ЭКСПЕРИМЕНТА

Эксперименты в условиях высокого гидростатического давления (до 11.5 ГПа) проводились на установке с алмазными наковальнями, при температуре 295 К. Диаметр камеры с образцом 0.25 мм, высота 0.1 мм. В качестве передающей давление среды использовалась тщательно обезвоженная смесь этилового и метилового спиртов. Для получения раман-спектров в качестве источника возбуждения было использовано поляризованное излучение 514.5 нм Аг-лазера (Spectra-Physics Stabilite 2017) мощностью 5 мВт на образце. Спектры в геометрии 180 были получены на спектрометре Horiba Jobin Yvon T64000 в частотном диапазоне от 8 (15) до 600 см⁻¹.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Попытки теоретического моделирования динамики решетки кристаллов каломели (Hg₂Cl₂) предпринималась неоднократно. Ранние исследования при помощи неэмпирического метода в рамках обобщенной модели Гордона-Кима не увенчались успехом, поэтому была предпринята попытка описать основные свойства структуры и вычислить фононный спектр в рамках полуэмпирической модели ("метод динамики решетки") [11]. Впоследствии эта модель была дополнена и усовершенствована, что позволило изучить влияние гидростатического давления на ряд акустических и оптических фононов в различных высокосимметричных точках ЗБ. Развитие методов неэмпирических расчетов привело к тому, что удалось выполнить успешный расчет фононного спектра кристаллов Hg_2Cl_2 , а также вычислить компоненты раман-тензора в рамках теории функционала плотности.

Удалось получить хорошее согласие теории и эксперимента, в частности максимальное отклонение вычисленных значений частот фононов в центре ЗБ от экспериментальных значений не превышает 10%. Рассчитанный спектр комбинационного рассеяния света с хорошей точностью повторяет экспериментальный; имеется хорошее соответствие расчетных и экспериментальных параметров решетки. Однако смягчение самого медленного акустического ТА₁-фонона на границе ЗБ не было обнаружено. Для устранения этого недостатка были выполнены расчеты электронной структуры и колебательного спектра кристаллов каломели в рамках теории функционала плотности с учетом дальнодействующих дисперсионных поправок (LRDC) [9].

В результате на примере кристаллов каломели как типичных представителей молекулярных неорганических соединений, где довольно важную, как оказалось, роль играет межмолекулярное взаимодействие, предложена теоретическая модель, учитывающая дальнодействующие дисперсионные поправки функционала зарядовой плотности. В рамках этой модели удалось успешно описать электронное состояние и фононный спектр данного кристалла, была изучена динамика решетки, а также обнаружена нестабильность одной акустической ветви ТА₁ (мягкой моды) на границе ЗБ (Х-точка) (рис. 1).

Для пояснения этого рисунка следует напомнить, что в рамановских спектрах парафазы кристаллов Hg_2Cl_2 наблюдаются две линии v_1 и v_2 в поляризации XZ(YZ) (E_g -симметрия); v_1 – либрация, качание молекулы как целого относительно оси X или Y, и v₂ – деформационное "зигзагообразное" колебание. В поляризациях ZZ, XX + YY(A_{1g}-симметрия) проявляются также две линии v_3 и v_4 – полносимметричные валентные колебания, соответствующие главным образом смещениям Hg-Hg (v_3) и Cl-Hg (v_4) вдоль оси Z. Эксперимент полностью согласуется с результатами теоретико-группового рассмотрения в предположении одной линейной молекулы в примитивной ячейке тетрагональной решетки. В ИК-спектрах парафазы этих кристаллов разрешены и наблюдались нечетные относительно инверсии колебания симметрии E_u (v₅) и A_{2u} (v₆), отвечающие смещениям подрешетки атомов хлора относительно подрешетки атомов ртути в базисной плоскости и вдоль оси Z соответственно.

При охлаждении в сегнетоэластической фазе при $T < T_c$, т.е. ниже температуры фазового перехода, в рамановских спектрах монокристаллов Hg₂Cl₂ появляются новые "возгорающие" линии из X-точки границы 3Б, такие как мягкая мода – самая медленная, поперечная акустическая (TA₁) ветвь, вторая поперечная акустическая (TA₂), ИК-активная ветвь (E_u в центре 3Б) и другие более слабые по интенсивности линии в спектре. При этом фазовом переходе в раман-спектрах в определенных поляризациях должны "возгореть" шесть линий, пять из которых надежно наблюдались в эксперименте [2].

Рис. 1. Дисперсия фононов в кристаллах Hg_2Cl_2 тетрагональной фазы для высокосимметричного направления $\Gamma \rightarrow X$ в зоне Бриллюэна в случае расчета с учетом дисперсионных поправок LRDC.

Нестабильность на границе ЗБ (Х-точка) (см. рис. 1) указывает на нестабильность тетрагональной фазы при температуре абсолютного нуля. Здесь следует пояснить, что расчеты не учитывают температурный фактор и полученные результаты соответствуют состоянию кристалла при температуре абсолютного нуля. Чтобы выяснить симметрию кристаллов Hg₂Cl₂, необходимо исказить геометрию тетрагональной фазы, а именно провести смещения атомов вдоль нормальных координат мягкой моды на границе Х-точке ЗБ. В результате было обнаружено существование ромбической фазы, которая оказалась стабильной при изучении фононного спектра в различных высокосимметричных точках ЗБ. Модель ФП в рамках описанной выше теории полностью согласуется с экспериментальными результатами и моделью предложенной ранее. Полученные значения частот приведены в таблице. Видно, что наблюдается достаточно хорошее согласие эксперимента и теории.

Рис. 2. СКР в области низких частот ромбической фазы кристаллов Hg_2Cl_2 при различных гидростатических давлениях ($v_{sm}(A_g)$ – мягкая мода, B_{1g} – возгорающий фонон, генетически связанный с продольной акустической ветвью из Х-точки ЗБ, v_1 и v'_1 – компоненты либрационного колебания (E_g), возникающие из-за снятия вырождения в ромбической фазе).

Настоящие расчеты инициировали дальнейшие наши исследования кристаллов каломели при высоких гидростатических давлениях. В рамках изложенной выше модели теоретически было предсказано смягчение фонона в центре 3Б, генетически связанного с фононом акустической ветви на границе ЗБ- (Х-точка) парафазы, также было замечено смягчение акустической ветви на границе (Z-точка) ЗБ-феррофазы. Следовательно, ожидалось обнаружение второго фазового перехода при высоких гидростатических давлениях. Экспериментальные исследования показали, что область стабильности ромбической фазы находится от 0.3 до 9 ГПа, а при более высоких давлениях наблюдается искажение структуры вследствие второго фазового перехода.

На рис. 2 представлены спектры комбинационного рассеяния света кристаллов каломели в широком диапазоне давлений выше $P_c = 0.25$ ГПа. Следует напомнить, что в ромбической фазе в рамановских спектрах "возгорают" фононы, имеющие нечетную симметрию (B_{1u} , B_{2u} , B_{3u}) на границе 3Б, так как фазовый переход индуцирован конденсацией мягкой моды, имеющей нечетную симметрию B_{3u} в X-точке 3Б. Симметрия возгорающих в этих спектрах фононов определяется перемножением неприводимых представлений мягкой моды и рассматриваемых нами нечетных фононов. Новые линии разрешены в поляризациях, соответствующих полученным неприводимым представ-

лениям в ромбической решетке D_{2h}^{17} .

Для подтверждения интерпретации экспериментальных спектров были выполнены неэмпирические расчеты электронной структуры в рамках теории функционала плотности с использованием дальнодействующих поправок LRDC при различных давлениях. Было изучено барическое поведение параметров решетки, а также влияние внешнего гидростатического давления на спектр комбинационного рассеяния этого соединения (рис. 3).

Из рисунка виден очень сильный рост частоты (ужесточение) колебания A_g , мягкой моды с повышением давления с 20 см⁻¹ (P = 0 ГПа) до 46 см⁻¹ (P = 5.88 ГПа), одновременно с этим наблюдается небольшое смягчение колебания симметрии B_{1g} , значительный рост ее интенсивности, как и моды

Рис. 3. Рассчитанные спектры комбинационного рассеяния света кристаллов каломели ромбической фазы в нормальных условиях (сплошные линии) и при высоком гидростатическом давлении 6 ГПа (штриховые линии), полученные в рамках теории функционала плотности с использованием поправок LRDC.

 $B_{2g} = 59 \text{ см}^{-1}$ ($P = 5.88 \Gamma \Pi a$) (колебание, генетически связано с ИК-активной ТО-ветвью v_5 из Х-точки ЗБ парафазы). Аналогичная картина наблюдается в эксперименте (рис. 2). Из рисунка видно, что смягчается при увеличении давления только мода B_{1g} , в то время как значения частот остальных колебаний увеличиваются. Так, при давлении 3.77 ГПа ужесточающаяся мода A_g "сли-

			Г-точка				Х-точка		
	Мода	Сим- метрия	Экспе- римент [1]	DFT PBE GGA [12]	DFT B3Lyp	DFT B3LYP + + LRDC	Экспе- римент*	DFT B3LYP	DFT B3LYP + + LRDC
$\mathrm{KP,cm^{-1}}$	ν_1	Eg	40	35.7	40.4	37.5	45.5	43.7	38.8
	ν ₂	Eg	137	134.2	127.4	128.1	148	132.4	131.49
	ν_3	A _{1g}	167	157.8	160.6	164.7	163	156.4	161.5
	ν_4	A _{lg}	275	258.8	272.6	280.0	288	277	285.0
$\mathrm{MK,cm^{-1}}$	v_5^T	E _u	67	58.13	71.8	71.7	72	67.8	67.5
	v_5^L	E _u	135	96.5	138.9	141.6	144	139.4	138.2
	ν_6^T	A _{2<i>u</i>}	254	235.5	228.6	228.5	265	238.9	240.3
	ν_6^L	A _{2<i>u</i>}	299	280	281.1	281.8			
Акустика, $10^3 \mathrm{M} \cdot \mathrm{c}^{-1}$	$\nu_{[110]}^{[\bar{110}]}$	E _u	0.347				6.8	21.2	i2.5
	$\nu^{[001]}_{[110]}$	A _{2u}	1.084				39	36.2	32.1
	$\nu^{[110]}_{[110]}$	E _u	2.054					42.4	37.3

Экспериментальные и вычисленные значения частот фононов в центре и на границе 3Б кристаллов Hg₂Cl₂

* Экспериментальные значения частот в точке X получены в низкотемпературной фазе из частот новых возгорающих линий в спектрах комбинационного рассеяния света.

Рис. 4. СКР в области низких частот ромбической фазы кристаллов Hg_2Cl_2 при высоких гидростатических давлениях в окрестности второго фазового перехода.

вается" со смягчающейся в ромбической фазе модой B_{1g} , а при дальнейшем росте давления мода A_g "сливается" с пиком, который соответствует либрационному колебанию v_1 . Также наблюдается плавное увеличение расщепления либрационных мод (колебание v_1 в парафазе) B_{1g} и B_{3g} с ростом давления.

На рис. 4 представлены СКР кристаллов Hg_2Cl_2 при высоких гидростатических давлениях в области 9–10 ГПа.

При повышении давления выше 9 ГПа в СКР кристаллов Hg_2Cl_2 происходят драматические изменения; в частности, пропадает пик смягчающейся самой низкочастотной моды B_{1g} , что указывает на сильные структурные изменения, воз-

можно, на наличие второго фазового перехода в этом соединении. Расчет фононного спектра в различных высокосимметричных точках ЗБ показал на смягчения нескольких колебаний как в центре, так и в граничных точках X и Y зоны Бриллюэна. Наиболее выраженное смягчение было обнаружено в точке Y (точка ЗБ, соответствующая удвоению элементарной ячейки вдоль длинной оси молекулы Hg₂Cl₂). Частота этой моды при давлении 8.95 ГПа становится мнимой. Следовательно, расчет показывает нестабильность моды в Y-точке ЗБ, что ведет за собой удвоение элементарной ячейки и структурному изме-

нению $D_{2h}^{17} \rightarrow D_{2h}^{16}$. Согласно теоретико-групповому рассмотрению, в таком случае в спектре низкосимметричной фазы должна появиться новая мода симметрии A_g , которая будет активна в спектрах рамановского рассеяния в скрещенной поляризации XY и гинетически связана с мягкой модой на границе. Однако ввиду технологических ограничений (нет возможности поляризационных исследований при высоких давлениях) эту гипотезу проверить пока не удалось.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Марков Ю.Ф., Рогинский Е.М.* // Физика тв. тела. 2013. Т. 55. № 9. С. 1723.
- 2. Барта Ч., Каплянский А.А., Кулаков В.В., Малкин Б.З., Марков Ю.Ф. // ЖЭТФ. 1976. Т. 70. № 4. С. 1429.
- 3. Becke A.D. // J. Chem. Phys. 1993. V. 98. P. 5648.
- Dovesi R., Orlando R., Civalleri B. et al. // Z. Kristallogr. 2005. V. 220. P. 571.
- 5. *Dovesi R., Saunders V.R., Roetti C. et al.* CRYSTAL09 User's Manual. University of Torino. Torino, 2009. P. 1.
- Peintinger M.F., Vilela Oliveira D., Bredow T. // J. Comput. Chem. 2012. V. 34. P. 451.
- Weihrich R., Anusca I., Zabel M. // Z. Anorg. Allg. Chem. 2005. V. 631. P. 1463.
- Hay P.J., Wadt W.R. // J. Comput. Chem. 1985. V. 82. P. 299.
- 9. Grimme S. // J. Comput. Chem. 2004. V. 25. P. 1463.
- Monkhorst H.J., Pack J.D. // Phys. Rev. B. 1976. V. 13. P. 5188.
- Kvasov A.A., Markov Yu.F., Roginskii E.M., Smirnov M.B. // J. Ferroelectrics. 2010. V. 397. P. 81.
- Комбинационное рассеяние 85 лет исследований / Под ред. Втюрина А.Н. Красноярск: ИФ СО РАН, 2013. С. 44.