
Springer Proceedings in Physics 191

Giorgio Mantica
Ruedi Stoop
Sebastiano Stramaglia    Editors 

Emergent Complexity 
from Nonlinearity, in 
Physics, Engineering 
and the Life Sciences
Proceedings of the XXIII International 
Conference on Nonlinear Dynamics of 
Electronic Systems, Como, Italy, 7–11 
September 2015



Springer Proceedings in Physics

Volume 191



The series Springer Proceedings in Physics, founded in 1984, is devoted to timely
reports of state-of-the-art developments in physics and related sciences. Typically
based on material presented at conferences, workshops and similar scientific
meetings, volumes published in this series will constitute a comprehensive
up-to-date source of reference on a field or subfield of relevance in contemporary
physics. Proposals must include the following:

– name, place and date of the scientific meeting
– a link to the committees (local organization, international advisors etc.)
– scientific description of the meeting
– list of invited/plenary speakers
– an estimate of the planned proceedings book parameters (number of pages/

articles, requested number of bulk copies, submission deadline).

More information about this series at http://www.springer.com/series/361



Giorgio Mantica • Ruedi Stoop
Sebastiano Stramaglia
Editors

Emergent Complexity
from Nonlinearity,
in Physics, Engineering
and the Life Sciences
Proceedings of the XXIII International
Conference on Nonlinear Dynamics
of Electronic Systems, Como, Italy,
7–11 September 2015

123



Editors
Giorgio Mantica
Dipartimento di Scienza
ed Alta Tecnologia, Center
for Nonlinear and Complex Systems

Università dell’Insubria
Como
Italy

and

INFN
Milano
Italy

Ruedi Stoop
Institute of Neuroinformatics and Institute
for Computational Science

University of Zürich
Zurich
Switzerland

and

ETH Zürich
Zurich
Switzerland

Sebastiano Stramaglia
Dipartimento interateneo di Fisica
Michelangelo Merlin

Universita di Bari
Bari
Italy

and

INFN
Bari
Italy

ISSN 0930-8989 ISSN 1867-4941 (electronic)
Springer Proceedings in Physics
ISBN 978-3-319-47808-1 ISBN 978-3-319-47810-4 (eBook)
DOI 10.1007/978-3-319-47810-4

Library of Congress Control Number: 2016956831

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



To the memory of Joseph Ford, on the
twentieth anniversary of his passing



Preface

NDES2015 is the twenty-third Conference of the series Nonlinear Dynamics in
Electronic Systems, which began in 1993 in Dresden (Germany) and whose 22nd
edition took place in Albena, Bulgaria, in 2014. The conference was held in the
magnificent ambiance of the Cloister of the Abbey of Sant’Abbondio, in Como,
from September 7 to 11, 2015. It gathered about ninety participants from sixteen
countries and five continents. Overall, there were sixteen invited and forty-six
contributed talks.

Traditionally, the main theme of the conference has been the study of nonlinear
oscillations in electronic circuits, with its many potential applications, but in recent
years, these gatherings have covered much wider topics, from theoretical questions
in pure dynamics to phenomena in complex networks: Here, synchronization has
assumed an ever-increasing importance, not only in man-made, but also in bio-
logical systems, the human brain being perhaps the most tantalizing example. In
NDES2015, the interdisciplinary aspect emerged clearly, as can be seen below and
in the booklet of abstracts, available online at www.dfm.uninsubria.it/mantica/
ndes15.

Como, Italy Giorgio Mantica
Zurich, Switzerland Ruedi Stoop
Bari, Italy Sebastiano Stramaglia
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Introduction

After the conference, the editors solicited contributions to the proceedings and had
them peer-reviewed. Out of these, seventeen papers were accepted and are collected
herein: A brief description of their content is the best way to present the interdis-
ciplinary, yet strongly coherent matter of this volume.

Part I, Classical and Quantum Dynamics, contains the most theoretically ori-
ented investigations. On the classical side, this comprises three papers which
describe, in order, new ways to identify chaotic attractors of ODE’s, the study of
complex bifurcations of delayed maps, and the comparison of fine details in the
dynamics of Rulkov maps with those of biological examples. In the quantum
domain, a new class of physical systems has surged to widespread attention: Bose
condensates in optical lattices. Although physically different from electronic cir-
cuits, these systems share some of their mathematical characteristics and are
promising of revolutionary applications. Moreover, they also permit to address the
problem of the relation between classical and quantum dynamics. Two papers in
this part investigate these deep questions.

Part II, Chaotic Oscillations, continues in the traditional mainstream of the
conference with three papers on electronic circuits. They focus on applications
boldly moving forward the state of the art: robust numerical simulations of TaO
memristor nano-devices, ultrawide-band microwave chaotic generators imple-
mented as SiGe-integrated circuits, and the cryptanalysis of random number gen-
erators based on chaotic circuits.

Part III, Networks, starts with yet another analysis of electronic circuits, now
interconnected so to form a network. Here, collective behavior arises and is termed
emerging dynamics, as in the title of this volume. The first paper presents theory
and experiments on a configurable network of Chua’s circuits, in which coupling
strengths and configurations can be dynamically changed, thereby observing the
onset of different synchronization patterns. The second paper studies a model of
adaptive network, whose connection structure evolves in interaction with node
dynamics, which in turn is influenced by the former, as in the usual framework.
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Clearly, this model is intended to be a paradigm of neuronal cultures. Neuronal
dynamics is also the focus of the third paper of this part, but starting point and aims
are here reversed: A synthetic neural network is constructed with the goal of
clustering groups of similar data in high-dimensional spaces. The paper describes a
novel implementation of Hebbian learning, with potential application to
bioinformatics.

Part IV, Biological Dynamics, is the most extended of the volume: It contains six
papers. Indeed, biologically motivated research also permeated many papers in the
previous parts, a fact which testifies both the increasing interest in biological
applications and the undisputable superiority of the techniques of dynamics in
tackling such problems. The first paper in this part is the lengthiest of this volume:
It is an introduction to the concept of network physiology, in which organs and
systems—albeit with vastly different characteristics and signal outputs—interact so
to produce physiologic states and functions. A new technique, termed time-delay
stability, is used to study the bursting activity of brain waves in different frequency
domains, which reflects coordinated network interactions among organ systems that
are essential to maintain health. The same theme is continued in the second paper,
which studies the temporal excitation patterns that follow the passage of a depo-
larization wave on the cerebral cortex—that is associated with a drastic failure of
brain homeostasis. A fascinating problem is addressed in the third paper: the stable
internal representation of external spacial locations in the brain of mammals. By
combining deep results in algebraic topology with a model of transient hippocampal
network (in which the neural structure is subject to physiological reorganization), it
is demonstrated that the large-scale spatial representation of the environment
encoded by this network can remain stable. In the fourth paper, an undirected
network is constructed from brain MRI scans, each node representing a macro-
scopic cortical location: This network is used to discriminate automatically patients
with Alzheimer's disease and mild cognitive impairment. Yet another class of
biological network is studied in the fifth paper of this part: It is defined by different
gene expressions. The paper presents an algorithm for partitioning the network into
different communities and for identifying the DRD2 gene coding for the D2
dopamine receptor. The sixth paper of the part presents a theoretical explanation
of the experimental observation of the power-law distribution of time intervals
between spikes in cultures of hippocampal neurons: It is demonstrated that it is due
to the limited availability of resources that are being exhausted by the culture.

In closing this Introduction, we would like to quote a passage from Joseph Ford,
who foresaw the far-reaching implications of dynamics, which are now blossoming
and are well displayed in this volume dedicated to his memory:

Over the centuries chaos has been blamed for every disaster visited on man from riots in the
street to the heat death of the universe. Of course, not all of these accusations are false, for
uncontrolled chaos can most assuredly be a devastating thing. Yet when controlled, the
villainous chaos becomes gentle, useful, even enchanting. And why should it not be so; for
in truth, chaos is merely dynamics freed from the shackles of order and predictability.
Dynamical systems released to randomly explore their every possibility. Chaos can,
therefore, provide us with a virtuoso display of exciting variety, a richness of choice,
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a cornucopia of opportunity. Dare we hope that humans can harvest the richness without
reaping the devastation? (in Directions in Chaos, Vol. 1, edited by Hao Bai-lin, World
Scientific 1987).

Como, Italy Giorgio Mantica
Zurich, Switzerland Ruedi Stoop
Bari, Italy Sebastiano Stramaglia
August 2016
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Nonlinear Systems Characterization
Using Phase Space Density

T.L. Carroll and J.M. Byers

1 Introduction

The description and analysis of chaotic attractors is an evolving field. Much of this
work is concerned with modeling and prediction of dynamical systems [2, 6, 11,
13, 20]. Finding a model of the actual vector field is probably the most efficient way
to describe a dynamical system, but finding a model without knowing the proper
functional form is computationally difficult and sensitive to noise. If the goal is only
to characterize, but not to predict, then studies of the geometry of the attractor may
be useful. Such techniques have been used for many years [3, 9, 12, 14, 17, 22].
More recently, graph theory has been used to characterize attractors as networks [8],
although with the exception of networks based on recurrences, it’s not clear what the
physical significance of the network is.

The shape of a chaotic attractor is well defined and not subject to prediction errors,
but there are few tools for describing this shape [19, 22]. In this work, we describe
the shape of a chaotic attractor by partitioning the attractor into regions of different
densities. It is well known that the probability measure of a dynamical system reflects
its long term behavior in phase space [9, 10]. For some dynamical systems, such as
complex electronic circuits, or driven structures, it isn’t mathematically tractable
to generate a model for the system [21, 23], so characterizing the attractor without
including details of the dynamics is all that is possible. In thework described here, the
attractor is partitioned into regions that each contain the same amount of information.
We measure information by estimating the probability distribution of points in a
given region and using a statistical quantity to show that this distribution can be
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4 T.L. Carroll and J.M. Byers

distinguished from a uniform random distribution. We then use common statistical
methods to compare densities in corresponding regions of different attractors. In
previous work, it was established that density can be used to compare attractors
[4]. The current method extends the range of application of density based methods
to attractors that are not similar to each other, and it does away with an arbitrary
parameter by using the data itself to determine how to create a histogram for the
attractor.

2 Density in Phase Space

We begin by embedding a time series s into a d dimensional phase space using
the method of delays [1]. For each point in s, a vector s(i) is defined as s(i) =
{s (i) , s (i + τ) , . . . s (i + (d − 1) τ )}. The embedding dimension d and the delay
τ may be found by any one of a number of standard methods [1].

A histogram of the embedded attractor in the phase space is then created. The
phase space is divided into bins, and the bin locations and sizes are recorded, as well
as the number of points in each bin. The bins may have different sizes.

2.1 Determining Partitions

We choose to subdivide, or partition, the attractor based on whether subdividing a
part of the attractor yields more information than not subdividing. The partition A is
composed of elements, or bins, a j ;

A =
K⋃

k=1

ak. (1)

We measure information by counting the number of attractor points mk that fall
into each of our K bins. We then estimate the most likely values of the probabilities
πk, k = 1 . . . K for finding a point in each bin. We ask how these probabilities differ
from simply having the same probability in each bin. We could use the number of
counts mk in each bin as a measure of probability, but there can be considerable
variation in the values of mk for a particular set of πk’s, particularly if the total
number of points observed is small. Our statistical measure must take into account
this uncertainty. If the set ofπk’s differs significantly fromwhatwewould expect from
a uniform distribution, then dividing a region into K bins gives us more information
than not subdividing.

Partitioning the attractor might seem to be loosing spatial information, since we
are grouping points into bins. Because of the information criteria for choosing bin
size however, we subdivide the attractor until the set of points in each bin can’t be
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distinguished from a uniform distribution over the same space, so we are finding the
minimum size bins that contain information about the attractor.

In most cases, the final bins found using this information criteria won’t be all the
same size- some regions of the attractor contain structure at smaller length scales
than other parts. The size of the final bins will also depend on the number of data
points, as more data will allow us to better see small scale variations.

2.2 Information Criteria

We observe some number of points mk in each bin. It is possible that the points
on the attractor are distributed randomly over the partition A, in which case the
probability πk of finding a point in bin k is constant for all values of k. Statistically,
we could have observed different numbers of points in the different bins even though
the probabilities of finding a point were the same for all bins. Based on the set of
counts mk , we need statistical tools to tell us by how much the most likely set of
probabilities for each bin differs from a uniform distribution over all bins.

Given the set of probabilities πk , the likelihood of observing a particular set of
counts mk is given by the multinomial distribution

Mult(m|π) = M !
K∏

k=1

(πk)
mk

mk ! s.t.
K∑

k=1

mk = M and
K∑

k=1

πk = 1. (2)

Initially we don’t know anything about the probabilities πk . Given a set of para-
meters αk , the Dirichlet distribution [7] gives the probability of a particular set of
πk’s.

p(π |α) = Dir(π |α) = Γ
(∑

k αk
)

∏
k

Γ (αk)

∏

k

π
αk−1
k , (3)

where Γ is the gamma function and the αk’s are adjustable parameters. Assuming
no prior knowledge about the πk’s, we use the maximum entropy prior distribution,
for which all αk’s = 1/2.

Combining the prior probabilities from (3) with the observed mk’s substituted
into (2) using Bayes theorem yields an updated Dirichlet distribution:

Dir(π |α′) ∝ Mult(m|π) · Dir(π |α). (4)

The prior Dirichlet distribution of (3) and the updated Dirichlet distribution of
(4) may be compared by means of a Kullback–Leibler divergence [15]. For two
probability distributions p and q, the Kullback–Leibler divergence is the number of
bits needed to encode the probability distribution p using samples from q. As an
example, if p was the alphabet and q was a binary code, then DKL(p||q) would be
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the number of bits needed to encode the alphabet. The Kullback–Leibler divergence
is described by

DKL(p||q) ≡
K∑

k=1

p (k) ln

(
p (k)

q (k)

)
. (5)

In a longer work [5] we show how (3)–(5) may be combined to give an analytic
result that gives the Kullback–Liebler divergence between the updated Dirichlet
distribution (4) and a the prior Dirichlet distribution of (3). The divergence is

DKL
(
Dir(π |α′)||Dir(π |α)

) =
1
ln 2

K∑
k=1

[
(mk − ρ0Vk) · ψ

(
mk + 1

2

) − lnΓ
(
mk + 1

2

) + lnΓ
(
ρ0Vk + 1

2

)] (6)

where ρ0 =
K∑

k=1
mk

/
K∑

k=1
Vk , where Vk is the volume of an individual bin. The func-

tion ψ is the digamma function, while α is the set of parameters in the prior distri-
bution, and α′ is the updated set of parameters. Equation (6) represents the amount
of information we gain by dividing the data into K bins.

We also need to add a partitioning penalty to the information difference function.
Dividing the data into K bins creates information; if K = 4, for example, it requires
two bits to specify each of the four bins, so for the penalty function we use L(Θ) =
K · log2K . The final information criterion is then

R(X,Θ) = DKL
(
Dir(π |α′

P)||Dir(π |α′
C)

) − L(Θ)

K
. (7)

The units of R(X,Θ) are bits/bin.Wemay set a reasonable threshold: if R(X,Θ) > 1
bit, then partitioning the data into K bins gives more information than treating the
data as a constant distribution over the same volume.

3 Identifying Sprott Attractors

Sprott [18] found a family of 19 different chaotic attractors defined by 3-dimensional
ODE’s with one or two quadratic nonlinearities. This group of attractors is a useful
test set for our attractor comparison methods.

Each set of ODE’s for the Sprott attractors was integrated using a 4th order Runge-
Kutta integrator with a time step of 0.01. The integrator output was decimated by
keeping every 50th point to produce a time series. Time series of 20,000 points
were embedded in a three dimensional space with an embedding delay of two points.
Figure1 is a plot of the embedded attractor for the Sprott C system. The Sprott attrac-
torswere partitioned by initially dividing the phase space into twobins/axis, for a total
of eight bins. The information criterion R(X,Θ) (7) was found by counting the num-
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Fig. 1 Embedded time
series signal for the Sprott C
attractor with an embedding
delay of 2
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ber of points in each of the eight bins (themk values). For the initial division, R(X,Θ)

was much greater than one bit/bin, so each of the eight bins was further partitioned
into eight bins. The initial set of eight bins can be denoted as (1), (2), (3) . . . (8).
At the next level, bin (1) is divided into bins (1, 1), (1, 2), (1, 3) . . . (1, 8). In order
to determine whether a further subdivision is required, R(X,Θ) is computed using
the number of points in the bins (1, 1), (1, 2), (1, 3) . . . (1, 8). If R(X,Θ) > 1bit,
each of the bins at this level are again subdivided, and the process continues until
R(X,Θ) < 1bit. In the same manner, all the other top level bins are also subdivided.
The final bins may have different sizes.

The result of top down partitioning for the Sprott C attractor is shown in Fig. 2.
The partitioning yielded 2427 total bins of different sizes. The density of the bin with
the highest density is ρmax . Figure2a shows all the bins for the partitioned attractor
whose density is >0.1ρmax , Fig. 2b shows bins with densities from 10−1ρmax to
10−2ρmax , Fig. 2c shows bins with densities from 10−2ρmax to 10−4ρmax , and Fig. 2d
shows bins with densities <10−4ρmax .

3.1 Comparing Densities

Once attractors have been partitioned, they can be compared by comparing densi-
ties at the same locations in their respective phase spaces. The Kullback–Leibler
divergence (6) can be used to for this comparison, but there can be situations where
one attractor has a finite density at a particular location while the other attractor has
zero density. As a result, the Kullback–Leibler divergence can’t be used to compare
densities for such a location. To avoid this problem, we use the Jensen–Shannon
divergence [16] to compare attractors. The Jensen–Shannon divergence is a sym-
metrized version of the Kullback–Leibler divergence:
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Fig. 2 Histogram bins found by top down partitioning of the Sprott C attractor. The highest density
is ρmax . a Shows all the bins for the partitioned attractor whose density is >0.1ρmax , b shows
bins with densities from 10−1ρmax to 10−2ρmax , c shows bins with densities from 10−2ρmax to
10−4ρmax , and d shows bins with densities <10−4ρmax

DJ S (p ‖q ) =
K∑

k=1

1
2

[
log

(
p(k)

0.5(p(k)+q(k))

)
p (k) + log

(
q(k)

0.5(p(k)+q(k))

)
q (k)

] (8)

3.2 Distinguishing Attractors

Wewant to build up statistics on howwell we can distinguish the 19 Sprott attractors,
so for each attractor we generate a time series of 200,000 points and divide each time
series into ten parts of 20,000 points each. We embed the 20,000 point times series
in three dimensions with an embedding delay of two points, and apply the top down
partitioningmethod to create bins to divide the phase space into local regions inwhich
the attractor density appears constant Fig. 2 shows an example of these regions. The
embedded Sprott attractors are denoted S (i, j), where i = 1 . . . 19 indicated the
particular Sprott system and j = 1 . . . 10 indicates the part of the time series.
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For each bin, indexed by k, the density of points in that bin ρk is found by dividing
the number of points in the bin,mk , by the volume of the bin. The density is converted
to an empirical probability by normalizing each ρk by the sum of all the ρk’s for the
entire attractor.

We choose a bin on one attractor ah(i1, j1), i1 = 1 . . . 19, j1 = 1 . . . 5 where i1
indicates the particular Sprott system, and j1 indicates a part of the time series for
that Sprott system. We look for the bins ak (i2, j2) , i2 = 1 . . . 19, j2 = 6 . . . 10 that
overlap in phase space with ah(i1, j1). The overlapping region is the intersection

Vhk (i1, j1, i2, j2) = V [ah (i1, j1) ∩ ak (i2, j2)] k = 1 . . . Nk (9)

where V [] means the phase space volume, and Nk is the total number of bins on
S(i2, j2). The probabilities for overlapping bins h and k are

π(h)hk (i1, j1, i2, j2) = V
[
ah (i1, j1)

⋂
ak (i2, j2)

]
ρh (i1, j1)

π(k)hk (i1, j1, i2, j2) = V
[
ah (i1, j1)

⋂
ak (i2, j2)

]
ρk (i2, j2)

(10)

The Jensen–Shannon divergence is calculated as

D(h, k)J S (i1, j1 ‖i2, j2 ) =
1
2

⎡

⎣ log
(

π(h)hk (i1, j1,i2, j2)
0.5(π(h)hk (i1, j1,i2, j2)+π(k)hk (i1, j1,i2, j2))

)
π(h)hk (i1, j1, i2, j2)

+ log
(

π(h)hk (i1, j1,i2, j2)
0.5(π(h)hk (i1, j1,i2, j2)+π(k)hk (i1, j1,i2, j2))

)
π(k)hk (i1, j1, i2, j2)

⎤

⎦ (11)

The Jensen–Shannon divergence between S(i1, j1) and S(i2, j2) is the sum

DJS (i1, j1 ‖i2, j2 ) =
Nh∑

h=1

Nk∑

k=1

D(h, k)J S (i1, j1 ‖i2, j2 ) (12)

The number of errors in identification ne is given by

ne =
19∑

i1=1

5∑

j1=1

5∑

j2=1

H (i1, j1, j2) (13)

where H(i1, j1, j2) is defined as

i f
min (DJS (i1, j1 ‖i2, j2 ) i2 = 1 . . . 19) < DJS (i1, j1 ‖i2, j2 )

H (i1, j1, j2) = 1
else
H (i1, j1, j2) = 0

(14)
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Fig. 3 Probability of error
pe in identifying the 19
Sprott systems when additive
noise is present. N/S is the
noise level divided by the
signal level

The error fraction is ne divided by the total number of comparisons. For the 19 ×
5 × 5 comparisons between Sprott attractors with no noise, only one identification
failed.

3.3 Noise Considerations

Rarely in the real world do we have access to a noise free signal, so the attractor
density partitioning method must also be robust to added noise. When noise is added
to a signal and the result is normalized, the amplitude of the actual signal is reduced.
In order for the densities such as that shown in Fig. 2 to properly overlap, the density
for the noisy signal must be rescaled so that the actual signal covers the same region
of phase space as the noise-free signal. It is complicated to calculate the size of
this rescaling, however, as it depends on the relative statistics of the noise and the
signal. In order to avoid this complication, we add noise with the same amplitude
and spectrum to the original noise free signal.

For this noise study, bandpass filtered noisewith the same amplitude and spectrum
was added to both S (i1, j1) and S (i2, j2). The noise spectrum occupied the same
frequency range as the spectra of the Sprott systems.

Figure3 shows the error rate for identifying the Sprott attractors when noise was
added to all signals.

Figure3 shows a slight drop in the probability of error for small noise levels.
Beyond that, the probability of error increases to about 20% when the noise is as
large as the signal.

4 Conclusions

We have demonstrated a density-based method for comparing chaotic attractors.
The method yields a single number that tells us how different two attractors are. It
is easier to compare attractors, as an attractor for a chaotic system is a stable object,
while individual trajectories are sensitively dependent on initial conditions. Formany
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applications where prediction is not desired, density can give a useful comparison
between attractors. In order to estimate densities, we used an algorithm based on a
statistical comparisons to coarse-grain the attractor into the smallest spatial scales
that contained structure that could be distinguished from a uniform distribution of
points in phase space. This coarse-graining reduced the size of the data set, speeding
up any computation that depended on the attractor density.
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Complex Bifurcation of Arnol’d Tongues
Generated in Three-Coupled Delayed
Logistic Maps

Daiki Ogusu, Shuya Hidaka, Naohiko Inaba,
Munehisa Sekikawa and Tetsuro Endo

Abstract This study investigates quasi-periodic bifurcations and Arnol’d resonance
webs generated in a three-coupled delayed logistic map. Complex bifurcation struc-
ture is generatedwhen a conventionalArnol’d tongue transits to a higher-dimensional
Arnol’d tongue. We discovered that, at least, two periodic attractors coexist in the
conventional Arnol’d tongue which can bifurcate to two one-tori via doubly-folded
Neimark–Sacker bifurcation.

1 Summary

The partial and complete synchronization of three or higher frequency quasi-periodic
oscillations has recently been studied extensively [1]. Vitolo et al. clarified that two
types of bifurcation routes from a two-dimensional torus to a three-dimensional
torus exists [2]. One is a quasi-periodic Hopf (QH) bifurcation, and the other is
a quasi-periodic saddle-node (QSN) bifurcation. The Arnol’d resonance web is a
phenomenon that was discovered and defined by Broer et al. [1] in the numerical
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analysis of a map, where regions generating invariant closed curves (ICCs) corre-
sponding to two-dimensional tori in vector fields extend in many directions in the
invariant torus-generating region like a web.

One of the major concerns in this field is the problem how a conventional Arnol’d
tongue transits to a higher dimensional Arnol’d tongue near QH bifurcation curves.
Takens and Wagener provided a bifurcation diagram near the parameter regions [3],
and Kuznetsov andMeijer conducted Lypunov analysis [4]. The simplest onemay be
the transition froma conventionalArnol’d tongue to a two-dimensional torus-Arnol’d
tongue viaNeimark–Sacker bifurcation [5].More complex onewas reported byBroer
et al. [6].

In this study, we conduct a Lyapunov analysis for a three-coupled delayed logistic
map expressed by the following form:

F(xn, yn, zn, xn+1 = yn,
wn, un, vn)� : yn+1 = B1yn(1 − xn) + ε1wn + ε2vn,

zn+1 = wn,

wn+1 = B2wn(1 − zn) + ε3vn + ε4yn,
un+1 = vn,
vn+1 = B3vn(1 − un) + ε5yn + ε6wn.

(1)

We classify the phenomena in Fig. 1. If the largest Lyapunov exponent is negative,
the attractor is defined as periodic, and is denoted by orange in theLyapunov diagrams
shown later. If the largest Lyapunov exponent is positive, the attractor is defined as
chaotic, and is denoted by red in the diagram. Because the objective dynamics is
discrete, the attractor is torus if the largest Lyapunov exponent λ1 equals zero. If
only λ1 is zero, the attractor is called invariant one-torus (IT1) corresponding to a
two-torus in vector fields, which is denoted by blue in the diagrams. The three-torus
and four-torus abbreviated as IT2 and IT3, respectively are defined as in Fig. 1.

We use such abbreviation as shown in Fig. 2 for the several types of bifurcations.
Throughout this study, a Neimark–Sacker bifurcation is abbreviated by NS, a saddle-
node bifurcation is abbreviated by SN, a quasi-periodic Hopf bifurcation from IT1 to
IT2 is abbreviated by QH, and a quasi-periodic saddle-node bifurcation from IT1 to
IT2 is denoted by QSN. A quasi-periodic Hopf bifurcation from IT2 to IT3 is denoted
by QH2 and a quasi-periodic saddle-node bifurcation from IT2 to IT3 is denoted by
QSN2.

Fig. 1 Correspondence of terminologies and colors
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Fig. 2 Abbreviations for the several types of bifurcations

Fig. 3 Global view of
Lyapunov diagram of (1) for
ε1 = 0.01, ε2 = 0.002,
ε3 = 0.001, ε4 = 0.02,
ε5 = 0.01, ε6 = 0.01, and
B3 = 2.05

Fig. 4 Magnified view of
the square region of the
Lyapunov diagram in Fig. 3.
Parameters are the same as
those in Fig. 3

Figure3 shows a global view of Lyapunov diagram of the three coupled delayed
logistic maps shown in (1). In the figure, horizontal and vertical axes are parameters
B1 and B2, respectively. The Lyapunov exponents are calculated using the procedure
presented by Shimada and Nagashima [7]. The region marked IT1 is the region
where an invariant one-torus is generated. In the same manner, IT2, IT3, and C
denote the regions where an invariant two-torus, an invariant three-torus, and chaos
are generated, respectively. We pay attention to the square region.
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Fig. 5 Further magnified
view of the square region of
the Lyapunov diagram in
Fig. 4. Parameters are the
same as those in Fig. 3. The
squared region is used after

Figure4 shows the magnified view of the square region in Fig. 3. As seen in the
figure, the IT1 Arnol’d tongue transits to the IT2 Arnol’d tongue via QH or QSN. We
focus on bifurcation structure where a conventional (IT0) Arnol’d tongue bifurcates
to invariant one-torus (IT1) Arnol’d tongue through a Neimark–Sacker bifurcation.
At first glance, this bifurcation structure appears to be a simple transition. However,
the bifurcation structure is complex according to our numerical results.

Figure5 shows a further magnified view of the square region of the Lyapunov
diagram in Fig. 4. Our concern is what kind of bifurcation occurs when a parameter
is moved from P to Q across NS. Figure6a shows the periodic attractors obtained
at the point marked P : (B1, B2) = (2.13934, 1.9825) in Fig. 5. Figure6b shows a
magnified view of the square region in Fig. 6a. Note that two attractors coexist in
the IT0 Arnol’d tongue at P . One is denoted as red crosses and the other is denoted
as green crosses, each of which consists of a periodic attractor with a period of 93.
Figure7 shows coexisting two invariant one-tori (IT1) obtained at Q : (B1, B2) =
(2.13934, 1.9835). The coexisting periodic attractors at P bifurcate to two invariant
one-tori through a Neimark–Sacker bifurcation. To the best of our knowledge, this
is a novel bifurcation structure. The reason is explained below.

Figure8a shows a doubly-folded Neimark–Sacker bifurcation curve obtained by
magnifying the squared region in Fig. 5. Figure8b shows the schematic in Fig. 8a.
The skyblue curves denote Neimark–Sacker bifurcation of the stable periodic points,
and the brown curves denote Neimark–Sacker bifurcation of the unstable periodic
points. Note that the bifurcation curves of the unstable periodic points do not affect
bifurcation of the attractors. There are four stable SN bifurcation lines on the both
side of the stable and unstable NS bifurcation curves. They are tangent to the NS
bifurcation curves at four points at which codimension-two bifurcation occurs. Note
that the Neimark–Sacker bifurcation curve is doubly twisted. This bifurcation struc-
ture explains the coexisting periodic solutions (IT0) and coexisting invariant one-tori
(IT1). In the region below the stable NS curves, stable coexisting two periodic solu-
tions are observed, and they bifurcate to invariant one-tori via two Neimark–Sacker
bifurcations. Since Neimark–Sacker bifurcation is doubly folded, existence of four
codimension-two bifurcation points are naturally explained.
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Fig. 6 Coexisting two periodic attractors with period of 93 obtained at a point marked P : (B1,
B2) = (2.13934, 1.9825) in Fig. 5. Parameters are given in Fig. 3. a Whole view b magnified view
of the squared region

Fig. 7 Magnified diagram of a part of the coexisting two invariant one-tori for Q : (B1, B2) =
(2.13934, 1.9835) after NS bifurcation

Fig. 8 A doubly-folded Neimark–Sacker bifurcation curve. Two skyblue curves present the stable
NS bifurcation, and two brown curves the unstable NS bifurcation. a Magnified diagram of the
square region in Fig. 5, b schematic of a



18 D. Ogusu et al.

Fig. 9 One-parameter bifurcation diagrams for two solutions denoted red and green with B2 =
1.9825. Other parameters are given in Fig. 3. a Parameter B1 is decreased from P. The IT0 red
attractor disappears on the blue line via SN bifurcation, while the IT0 green attractor gives rise to
SN cycle bifurcation on the red line to become one-torus IT1 attractor. b Parameter B2 is increase
from P. The IT0 green attractor disappears on the blue line via SN bifurcation, while the IT0 red
attractor gives rise to SN cycle bifurcation on the red line to become one-torus IT1 attractor

We will explain this bifurcation as follows when the parameter is changed from P
to Q. At the parameter P , we obtain two coexisting periodic attractors with a period
93. When the parameter is increased across one of two skyblue curves, one of two
periodic attractors presents a NS bifurcation to become IT1, and the other one remain
as IT0. If the parameter is increased more across two skyblue curves two solutions
bifurcate to become IT1. Therefore, we observe two IT1 as shown in Fig. 7.

Figure9 shows a one-parameter bifurcation diagram where we use two initial
points at parameter P . In Fig. 9a, we trace the two IT0 solutions from P to the left
direction. One of two periodic attractors in red disappears at SN bifurcation on the
blue line. On the other hand, the periodic solution in green bifurcates to one-torus
(IT1) on the red line via a saddle-node cycle bifurcation.

In contrast, Fig. 9b shows a one-parameter bifurcation diagramwhere we trace the
solution from P to the right. In this case, the periodic solution in green disappears at
the SN bifurcation point on the blue line. Furthermore, the periodic solution in red
bifurcates to one-torus (IT1) through a saddle-node cycle bifurcation on the red line.

2 Conclusion

In this study, we investigated quasi-periodic bifurcations generated by a three-
coupled delayed logistic map. We discovered two coexisting periodic solutions with
period 93 in an Arnol’d tongue. By varying the bifurcation parameter to left and to
right in the IT0 Arnol’d tongue, first, a saddle-node bifurcation occurs by which one
of the periodic solutions disappear, and next a saddle-node cycle bifurcation occurs
through which a periodic solution bifurcates to an invariant-torus.
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Phase Response Properties of Rulkov Model
Neurons

Karlis Kanders and Ruedi Stoop

Abstract Neurons communicate using patterns of impulses (action potentials);
practically all these patterns can, upon suitably chosen parameters, be reproduced
by Rulkov’s phenomenological, low-dimensional, map-based neuron models. Here,
using phase response curves, we show that Rulkov map neurons also respond to tran-
sient pulse stimulation in a way that is compatible with the biological examples. This
is important because Rulkov maps are computationally very inexpensive, allowing
to perform large-scale simulations of the brain.

1 Introduction

To perform neural network simulations on scales relevant to the brain, one needs
biologically plausible neuron models and sufficient computational power to sim-
ulate interactions between a large number of such elements. The two-dimensional
mapmodels by Rulkov [1–3] and one model by Izhikevich [4] provide such phenom-
enological, low-dimensional, discrete-time spiking neuron models and, while being
computationally extremely inexpensive [5], offer a rich repertoire of responses.

Bothmentionedmodeling frameworks are built upon fast, spiking subsystems that
mimick the cell membrane voltage behavior, whereas slow, regulatory subsystems
turn the spiking on and off; both approaches can be fitted ratherwell to the experimen-
tally recorded responses of pyramidal neurons and interneurons exhibiting regular
spiking, spike rate adaptation, bursting etc. [2, 6]. The design of the Rulkov neuron
models is directly based on discrete map dynamics, whereas the Izhikevich’s model
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is a system of ordinary differential equations integrated using an Euler scheme (with
the time step usually chosen to equal 0.5 or 1 ms). Situations are known, however,
where network simulations of Izhikevich’s neurons depend strongly on the exact
value of the time step [7]. To avoid this problem, for the present study we will use
Rulkov neurons.

The specific question that we aim to answer in this work, is whether the Rulkov
model will be able to reflect fine-grained neurobiological details embodied in the
phase response curves (PRC) of real biological neurons. PRC describe how tran-
sient input to a regularly spiking neuron affects the length of its interspike intervals
[8, 9]. Neurons can either be driven to regular spiking by endogenous mechanisms,
or by a large number of small-scale uncorrelated input that in the Gaussian central
limit can be approximated by a constant driving current. The collective dynamics
of networks composed of such elements can be strongly dependent on their phase
response properties [10, 11], making PRC an important feature of neuron models. In
real neurons, PRC shapes reflect the dynamics of the variousmembrane ion channels.
Here, we show that the main characteristics of realistic PRC can be modeled with
astounding reliability by the simple maps proposed by Rulkov [1, 2].

2 Methods

2.1 Neuron Models

The first neuron model by Rulkov [1] that we will use is given by the equations

xn+1 =

⎧
⎪⎨

⎪⎩

α
1−xn

+ u xn ≤ 0,

α + u 0 < xn < α + u and xn−1 ≤ 0,

−1 xn ≥ α + u or xn−1 > 0,

(1)

yn+1 = yn − μ(1 + xn) + μσ + μβyIn, (2)

where u = yn + In (Fig. 1). The fast variable xn models the cell membrane potential,
while yn is a regulatory subsystem, the evolution speed of which is governed by
parameter μ (usually set to a small value of the order of 10−3). For α > 4, the model
is capable of bursting; in the present study, we will, however, restrict ourselves to the
spiking regime. External stimulation pulses were applied via the current In, which at
perturbation time is the perturbation strength K , and is zero otherwise. The effect of
the perturbation on yn can be controlled by the scaling parameter βy (normally kept
at βy = 1).

This two-dimensional map has one fixed point, at coordinates x∗ = −1 + σ ,
y∗ = x∗ − α

1−x∗ . As σ is increased above some threshold value, this fixed point
loses stability and, in the suspension, a stable cycle appears through a subcritical
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Fig. 1 Original Rulkov map [1]. a Spiking regime. b State space trajectory of the iterated map.
The solid gray line is the xn nullcline yn = xn − α/(1 − xn); the dotted gray line is the yn nullcline
xn = −1 + σ . The location of the fixed point is denoted by a star. cBistability obtained for σ slightly
smaller than σth. Top Original and perturbed xn trace; bottom state space trajectory; perturbation
locations are indicated by red arrows.dTemporary silencing for σ just above σth.Model parameters:
a, b α = 3.8, μ = 0.001, σ = 0.08; c, d α = 3.8, μ = 0.008, σth ≈ 0.043; σ = 0.042 (c), 0.044
(d)

Andronov-Hopf bifurcation [12]: the map transitions from silence to spiking behav-
ior. The threshold σ can be found by setting, at the fixed point, the determinant

of the map’s Jacobian equal to 1, which yields σth = 2 −
√

α
1−μ

. The model shows

hysteresis, where the spiking becomes stable at values of σ slightly below σth. For
some range of σ , this causes bistability: a perturbation of a spiking system can drive
the latter to the fixed point, silencing it in this way (Fig. 1c). This effect has been
observed in the central nervous system, for example, in spinal motorneurons and in
cerebellar Purkinje cells [13, 14]. Upon increasing σ , a perturbation can temporarily
suppress spiking but the systemwill recover due to the central fixed point’s instability
(Fig. 1d). Based on the publication date, this first model of Rulkov will be referred
to as the original Rulkov map.

The second Rulkovmodel that we analyze has a very similar fast subsystem, with,
however, u = yrs + In + βhp Ihpn . The slow subsystem is replaced by a model of
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a hyperpolarizing current following an action potential [2]

Ihpn+1 = γ hpIhpn −
{
ghp, spike at n-th step

0, otherwise.
(3)

This two-dimensionalmap reaches the spikingbehavior through a fold bifurcation.
Parameter yrs controls the distance between the nullclines of xn and Ihpn (which is
simply the line Ihpn = 0). The smaller this distance, the lower is the spiking frequency.
Parameter γ hp controls the decay of the Ihpn variable, having a value between 0
and 1. The threshold yrs above which the neuron spikes, can be found by setting
the maximum of the xn nullcline to 0, i.e., 1

βhp (xn − α
1−xn

− yrs) = 0 for xn = 1 −√
α (the location of the nullcline’s maximum). This yields yrsth = 1 − 2

√
α. In [2],

the hyperpolarizing version was used to model fast spiking interneurons without
spike rate adaptation. The parameters ghp and γ hp can, however, be adjusted to also
cover accommodating behaviour. In contrast to the original neuron model of Rulkov,
this model is an integrator [6], which means that it does not exhibit subthreshold
oscillations and simply relies, for spike emission, on high frequency stimulation. In
the rest of the text, this version will be referred to as the hyperpolarizing Rulkov map.

2.2 Phase Response Curves

Our PRC presented below are obtained numerically by perturbing the state variables
during the interspike interval and recording the length of the perturbed interval (the
first order phase response) as well as the length of the subsequent interval (second
order phase response). The first order PRC, PRC1, is calculated as

PRC1(K, φ) = T − T(K, φ)

T
, (4)

where T is the interspike interval of an unperturbed neuron and T(K, φ) is the
perturbed interspike interval length.K is the strength of the perturbation; asK ≈ 0.10
is approximately the strength of synaptic inputs used in the large-scale simulations in
[2], this value was used as the default perturbation strength. In the case of inhibitory
perturbations,K was simplymultiplied by−1.Our perturbations covered the duration
of one time step, phase φ is determined as φ = t/T , where t is the time step at which
the perturbation is applied, measured from the beginning of the interspike interval.
For the original Rulkov map, PRC were averaged over 10 simulation runs, because
at some parameter values we observed a slight jitter of the interspike interval length.
For the hyperpolarizing Rulkov map, the spiking period is stable, and multiple runs
were, therefore, not necessary.

Second order PRC, PRC2, are calculated as
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PRC2(K, φ) = T − T ′(K, φ)

T
, (5)

whereT ′(K, φ) is the length of the interspike interval following the directly perturbed
interval. If there are no higher order effects, we will therefore have T ′(K, φ) = T and
PRC2(K, φ) = 0. For the rest of the text, we will refer to first and second order phase
response curves simply as PRC1 and PRC2, respectively, where our understanding
should be that both of them depend both on the phase at which the perturbation is
applied and on the perturbation strength.

The neuron models that we use do not exhibit an absolute refractory period (as
its length would depend on the reference time scale that can vary from 0.5 to several
ms per one time step). However, it is easy to see that such an addition would simply
result in a vanishing PRC1 for the duration of the absolute refractory period.

Measuring the relative phase advances, PRC are dimensionless. A positive value
indicates that the spike following a perturbation arrives faster; a negative value indi-
cates that the next spike is delayed. PRC that are essentially only positive or only
negative are called type-1, whereas PRC that exhibit phase advances as well as phase
delays are called type-2. This classification matches a widely accepted classification
by Hodkgin [15], where neurons are distinguished by their current-frequency curves
and their membrane excitability. Type-1 PRC are usually observed for the Class-I
neurons that undergo a fold bifurcation to the spiking state and, as the suprathresh-
old input current is decreased, spike with arbitrarily low frequencies. Type-2 PRC
are associated with Class-II neurons that undergo Andronov-Hopf bifurcations and
exhibit a jump in the frequency-current curve [6]. In experiments, the PRC of a
particular neuron can switch between the two types, for example, in response to neu-
romodulators [16], or change in spiking frequency [17]. This switching of the PRC
type need, however, not be accompanied by a corresponding change in the spiking
threshold dynamics (see Results below). For the biophysical basis of the different
types of threshold dynamics and thus the resulting types of PRC, see [18].

3 Results and Discussion

In the following sections, we work out for each of the two Rulkov models the charac-
teristic PRC type, and demonstrate how PRC can be modified via model parameters
to obtain desired effects. We will show that with simple modifications of the existing
models we can achieve responses that are very similar to the experimental observa-
tions of cortical neurons.
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Fig. 2 Examples of first and second order phase response curves of the original Rulkov neuron
model for a excitatory and b inhibitory perturbations.Shaded area is the standard deviation due to the
jitter of the interspike interval. cThe distance between the limit cycle and the unstable focus (denoted
by a star) increases for larger σ values. d Example of an excitatory perturbation at φ = 0.34 of
the neuron with σ = 0.08. Model parameters: α = 3.8, μ = 0.001, βy = 1; perturbation strength,
K = 0.10

3.1 Original Rulkov Map: Type-2 PRC

The original Rulkov model (1, 2) exhibits for a certain parameter range a type-2
phase response curve: In Fig. 2a, b, separate regions of positive and negative PRC
values emerge reliably. This is consistent with the claim that map changes from silent
to spiking behavior via a (suspended) Andronov-Hopf bifurcation [12]. The shape
of the first order PRC1 changes with increasing σ , ultimately switching from type-2
to type-1 behavior (see also Fig. 3a). The obtained PRC type depends on the location
of the limit cycle in the state space. The eigenvalues of the Jacobian at the fixed point
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scale proportionally with σ and, therefore, for smaller σ values the unstable focus is
less repelling and the limit cycle is closer to the nullcline of xn (Fig. 2c). This permits
the original Rulkov model to exhibit the counter-intuitive effect of an excitatory
perturbation extending the interspike interval by pushing the state vector into a region
where the evolution of the system is slower, and in the opposite direction (Fig. 2d). For
large σ , the fixed point is more repelling and the limit cycle is further away from the
nullcline, which renders the prediction of the effect of the perturbation simpler. The
Rulkov model also covers the phenomenon of an early inhibitory pulse shortening
the interspike interval (Fig. 2b). This is a prominent observation in cortical neurons
[19] that has been attributed to the inactivation of voltage dependent, slow potassium
conductances [20]. For the Rulkov model, the phenomenon can be explained by an
increase of the evolution speed of the yn variable, due to the term −μ(1 + xn) in 2.

Often, the perturbed trajectory returns to the original limit cycle sufficiently fast
de novo [21], but also the opposite case is observed. Higher order effects should, in
particular, be taken into account in studies of phase locking and synchronization of
large sets of neurons, and second order effects have been observed for vertebrate [22]
and invertebrate [23] animal neurons. For examples of generated non-trivial second
order PRC2 see Fig. 2a, b right. Whereas negligible higher order effects allow for
more convenient theoretical analysis, methods to deal with more complicated cases
have been developed as well [24].

It is possible to reduce a PRC2 for some range of σ by increasing the parameter
μ which makes the dynamics of yn faster (Fig. 3). Increase in μ also enlarges the
region of σ values for which the PRC1 is type-2. The amplitude of PRC1 decreases,
but this to some extent can be balanced by increasing the parameter βy that amplifies
the effect of the perturbation on the yn variable. The trade-off to increasing μ is thus
a reduced range of possible spiking periods (Fig. 3d).

The effect of the perturbation strength, K , on the PRC is shown in Fig. 4. Overall,
the amplitude of the PRC scales predictably with K , albeit not entirely in a linear
manner, as the skewness of the PRC changes to some extent. For strong excitatory
perturbations, a type-2 PRC1 eventually switches to type-1.

For the previous results, perturbations were applied at a fixed strength during a
single time step. A more realistic synaptic input would be distributed more broadly
in time and depend on the distance between xn and the reversal “potential” of the
synapses (see [2] for biologicallymore plausible implementations).Overall, PRCof a
more realistic excitatory stimulation would, however, not be much different, because
the resting level of the neuron is far away from the reversal potential of excitatory
synapses, whereas inhibitory PRC could be rather attenuated if the inhibitory reversal
potential were close to the resting level.

In this section, we have shown that the original Rulkov map is a rather powerful
model when it comes to phase responses. It can exhibit a phase response curve of
type-2 – a property often observed in cortical pyramidal neurons [16, 17, 19]. The
shape and amplitude of the PRC can be easily modified using in particular the model
parameters σ and βy, and second order effects can be controlled to some extent via
the parameter μ. It has been demonstrated that in conditions similar to the central
nervous system in vivo, where neurons are ‘bombarded’ with many synaptic inputs
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Fig. 3 a Excitatory PRC1 (left) and PRC2 (right) heat maps of the phase response ampli-
tudes (values below −0.5 are shown in black). Model parameters: α = 3.8, μ = 0.001, βy = 1,
K = 0.10. b Same as a, but with μ = 0.008 and βy = 5. c An increase in μ may significantly
diminish PRC2. Comparison between Rulkov models of the same periodicity (T = 45, 60, 75;
darker colors indicate larger T). d Parameter μ controls the attainable range of spiking periods;
a change in α leaves the range practically unchanged

causing tonic depolarization, it ismore likely for them to be of Class-II [25], implying
that type-2 PRC could be quite common. However, there are also modeling cases
that only require a type-1 PRC neuron model. In the next section we will show that
for such situations, the hyperpolarizing Rulkov map is a good choice.
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Fig. 4 Effect of different perturbation strengths, K , for the original Rulkov model, for a excitatory
and b inhibitory perturbations (averages). Model parameters: α = 3.8, μ = 0.001, βy = 1, σ =
0.10 (left), 0.20 (right)

3.2 The Hyperpolarizing Rulkov Model: Type-1 PRC

Hyperpolarizing Rulkov maps (1, 3) generally exhibit strictly type-1 PRC1 (Fig. 5a,
b) and essentially flatPRC2 (not shown). Perturbations arriving at early phases have a
negligible effect and PRC peaks are always bent towards late phases. This is because
the map ‘sticks’ to the xn nullcline (see Fig. 5c) and a perturbation along the xn axis
would rapidly decay back to the nullcline.As a function of the spiking period, a PRC’s
amplitude could be either increasing or decreasing, depending on the parameters yrs

and γ hp. If the decay parameter γ hp is held constant and the period is lowered by
increasing yrs, then the amplitude decreases with higher spiking frequencies. The
opposite happens if yrs is held constant (i.e., the nullcline does not change its position)
and the period is lowered by decreasing γ hp – the amplitude of the PRC increases
and the maximum shifts towards smaller phases (Fig. 5a, b right). This difference
can be understood by observing the map’s trajectory in state space. In Fig. 5c, two
trajectories are shown of the same period. The orange trajectory with smaller γ hp

(i.e., faster decay of Ihpn ) spends more time at the maximum of the nullcline and is
more susceptible to perturbations. Hence, if one needs to exhibit distinct spiking
periods, the sensitivity can be adjusted by using different combinations of γ hp and
yrs (Fig. 5d).

Another way to calibrate the hyperpolarizing model’s sensitivity is by means of
a small modification of 3 that permits the perturbation to also affect variable Ihpn
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Fig. 5 Hyperpolarizing Rulkov model. PRC1 for a excitatory and b inhibitory perturbations;
PRC2 = 0. The spiking period is varied either by changing yrs (left) or γ hp (right). c Two limit
cycles from a of identical period, T = 70. The orange map has a larger yrs and a smaller γ hp.
d Spiking period as a function of yrs for different γ hp. e Excitatory PRC with second order
effects for different perturbation strengths. Model parameters: a α = 3.8, βhp = 0.5, ghp = 0.6,
γ hp = 0.95, yrs = −2.862,−2.880,−2.893,−2.898; b same as a except yrs = −2.895, γ hp =
0.7, 0.85, 0.938, 0.976; e α = 3.8, βhp = 0.5, ghp = 0.03, γ hp = 0.995, yrs = −2.89
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Ihpn+1 = γ hpIhpn + βpIn −
{
ghp, spike at n-th step

0, otherwise.
(6)

Here, In is a perturbation term similar to that of 2 and the variable βp can be used
to calibrate the effectiveness of the perturbation. This modification makes the map
more responsive, while PRC2 still is negligible (not shown).

Second order effects can be induced by tuning γ hp very close to 1. This will slow
down the decay of Ihpn and, therefore, generate a contribution to the next interspike
interval. In order to not be confronted with excessively long spiking periods, the
parameter ghp can be reduced. An example of the hyperpolarizing Rulkov map with
second order effects is shown in Fig. 5e. Very similar PRC are observed for rat pyra-
midal neurons [22, 26]. In [27], such type-1 PRC were modeled using the adapting
theta neuron model (a system of two ordinary differential equations). Because of its
felicitous phase response properties, the hyperpolarizing Rulkov map can be used as
a numerically exact and computationally efficient alternative to such modeling.

3.3 Periodic Forcing of Rulkov Maps

In this section we provide an example from theoretical neuroscience where PRC are
of particular significance: the case of periodically forced oscillators [8, 21, 28]. Let
us start from a neuron spiking with period T , due to an endogenous process or a
small-scale background input. This neuron now receives strong periodic perturba-
tions (e.g., from a synchronized neuronal population nearby). Circle maps can be
used to describe the result of such an interaction in terms of the evolution of the
phase differences between the neuron itself and its input source. For this system, the
phase return map is defined as

φi+1 = φi + Ω − g(K, φi) modulo 1, (7)

where φi is the phase of the spiking neuron at which the perturbation arrives, Ω =
Tp/T is the ratio of the perturbation period and the intrinsic spiking period of the
neuron, and g(K, φi) = 1 − PRC(K, φi). The phase returnmap can be used to predict
the possible phase lockings and their dynamical stability, which in turn depends
on the shape of the PRC. Using this approach, Stoop et al. [21] retrieved Arnol’d
tongues from inhibitory and from excitatory interactions that successfully predicted
the experimental observations. Here, we test whether Rulkov map neurons respond
to periodic forcing similarly to the biological neurons.

In the previous sections we established that Rulkov maps can model a wide vari-
ety of phase responses. Surprisingly, the modeling of measured PRC reported for
pyramidal neurons in the rat neocortex [21] turned out to be more challenging than
expected because of three constraints: excitatory PRC should be predominantly of
type-1, whereas inhibitory PRC should be of type-2 and the second order effects
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should be minimal. With the original Rulkov map, it was possible to satisfy the first
two requirements (at parameter values α = 3.8, σ = 0.15, μ = 0.001), but second
order effects were not negligible (see Fig. 2). Second order effects could be dimin-
ished by increasing μ, but only at the cost of rendering the excitatory PRC1 more
biphasic (see Fig. 3). To simultaneously satisfy the three constraints, a tentative “best
of both worlds”model was created, by combining the slow subsystems of the original
and of the hyperpolarizing Rulkov map, respectively, as

yn+1 = γ yn − μ(1 + xn) + μσ + μβyIn−

−
{
ghp, spike at n-th step

0, otherwise.

(8)

The introduced decay term γ controls the “memory” of the yn variable and, there-
fore, minimizes the second order effects if required. There is still the possibility of
counter-intuitive phase responses, because of the term depending on xn. Finally, the
reset term ghp permits to move the state variable further away from threshold and to
increase the time during which the state vector is in the vicinity of the xn nullcline.
In the following case we leave ghp = 0.

The combined map (1 with u = yn + In + yrs and 8) can satisfy the mentioned
constraints, albeit at the cost of a larger number of tunable parameters compared to
the previously discussedmodels.We leave the detailed analysis of themap to another
investigation; the main purpose here was to serve as an example for demonstrating
how the slow subsystem can be modified to obtain desired properties.

In Fig. 6we demonstrate that the combinedmap can qualitativelymodel the exper-
imental observations of [21]. The obtained Arnol’d tongues have a similar structure,
including the skewness and a possible chaotic behavior for strong inhibitory pertur-
bations (positive Lyapunov exponents λ = limn→∞ 1

nΣ
n
i ln|P′(φi)|, where P(φi) is

given by 7). There are also positive Lyapunov exponents for strong excitatory inter-
action, but PRC at high K values (K > 0.25) slightly differ from the experimental
PRC. In the experimental setting, such large perturbation strengths, however, would
already relate to damaged cells [29].

In Fig. 7 we show that such phase return maps successfully predict phase locking.
The simulations of periodic forcing of the map agree well with the predictions from
the bifurcation diagram, obtained from first order PRC only. In this particular case,
period-2 phase locking was very stable, whereas period-1 and period-3 were some-
what more noisy. This variability could be caused by a slight jitter of the spiking
period and an accumulation of the second order effects over a longer period of time.

The average period of the limit cycle in this case is rather short (32 iterations),
which constrains the set of perturbation periods that can be tested in the simulations,
i.e., Ω can only be changed in relatively large steps of 
0.03. In such a case, if the
spiking period of the neuron is slightly jittered and the support of Ω for a particular
periodicity is not sufficiently large, some variability will be inherited, and high-
periodicity phase-locking might not be observable at all. This can be considered as
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Fig. 6 Periodic forcing of a Rulkov neuron. a Excitatory and b inhibitory PRC with very small
second order effects (K ∈ [0, 0.3] in a and K ∈ [0, 0.6] in b). c Comparison between the experi-
mentally obtained inhibitory PRC (black) [21] and the Rulkov model (red). d Corresponding phase
return map to c with period-3 orbit (Ω = 0.838). In the background the phase return map with
Ω = 0 is shown with a lighter color. e Bifurcation diagram (top) and corresponding Lyapunov
exponents (bottom) obtained from a polynomial fit to the phase return map (d). Chaotic interaction
(λ > 0) is possible for some interval of Ω . f Arnol’d tongues for inhibitory (left) and excitatory
(right) interaction obtained using spline interpolated phase return maps; color codes for λ values.
Spline interpolation is faster than manual fitting but it gives rise to some spurious positive λ. Model
parameters: α = 3.8, σ = 0.2, μ = 0.01, γ = 0.91, βy = 1, yrs = −2.89; K = 0.6 for c–e

a caveat to using map models. However, a more rigorous exploration of the matter
might still come upwith a slower spikingmapwith similar phase response properties.

4 Conclusions

In our work, we have provided evidence that the neuron models proposed by Rulkov
[1, 2] are well suited for modeling biologically plausible neural networks. Besides
their capability of reproducing realistic firing patterns, these maps also capture the
main qualities of the phase responses to pulse perturbations: the original Rulkov
model from [1] can reproduce the phase response properties of Class-II neurons,
while the hyperpolarizingmap from [2] can reproduce phase response curves charac-
teristic to Class-I neurons. Using the parameters of the model, desired particularities
of the phase responses can be achieved easily. In addition, we have demonstrated
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Fig. 7 Bifurcation diagram (a) can successfully predict period-2 (b), period-3 (c) and period-1
(d) phase locking in the simulations of periodic inhibitory perturbations (K = 0.25). Perturbation
events are marked by the red circles

that small modifications of the Rulkov model can provide such a system with the
ability to respond realistically to periodic stimuli, which supports the expectation
that a network of such elements will exhibit realistic activity.
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Treating Many-Body Quantum Systems
by Means of Classical Mechanics

Andrey R. Kolovsky

Abstract Many-body physics of identical particles is commonly believed to be a
sovereign territory of Quantum Mechanics. The aim of this contribution is to show
that it is actually not the case and one gets useful insights into a quantum many-
body system by using the theory of classical dynamical systems. In the contribution
we focus on one paradigmatic model of many-body quantum physics - the Bose–
Hubbard model which, in particular, describes interacting ultracold Bose atoms in
an optical lattice. We show how one can find/deduce the energy spectrum of the
Bose–Hubbard model by using a kind of the semiclassical approach.

1 Introduction

The semiclassical methods are known to be a powerful tool in studying quantum
systems. They use information about classical dynamics of the system to predict
its quantum dynamics or find the energy spectrum. Besides practical aspect, these
methods also contribute to our understanding of subtle relation between the quantum
and classical mechanics – an issue which might be even more important. Until now
the overwhelmingmajority of semiclassical studies have been done for single-particle
problems. Yet, there is other type of problems which can be addressed by using the
same kind of ideas – these are dynamical and spectral properties of an ensemble of
identical particles. In this contribution we shall give an example of application of
‘semiclassical methods’ to one of the paradigm models of the many-body physics –
theBose–Hubbard (BH)model. Thismodel describes, in particular, ultracold bosonic
atoms optical lattices [7], with a unique for the many-body physics experimental
control over the model parameters [6].
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2 Bose–Hubbard Model

Denoting by âl and â†l the bosonic annihilation and creation operators, [âl , â†l ′ ] =
�δl,l ′ , and by n̂l = â†l âl the number operator, the Bose–Hubbard Hamiltonian reads

̂H =
L

∑

l=1

εl n̂l − J

2

L
∑

l=1

(

â†l+1âl + h.c.
)

+ U

2

L
∑

l=1

n̂l(n̂l − 1) . (1)

In this Hamiltonian εl are the on-site energies, J is the hopping matrix element,
and U the microscopic interaction constant. Having in mind cold Bose atoms in the
one-dimensional optical lattice, the constant U is mainly determined by the s-wave
scattering length for neutral atoms, and the constant J by the lattice depth [7]. In
laboratory experiments both the scattering length and the lattice depth can be varied
in large intervals, which affords practically arbitrary ratio U/J . Notice, that the
Hamiltonian (1) preserves the total number of particles (atoms), which we denote by
N .

A remark concerning the boundary condition is in order. We assume a uniform
system (i.e., no spatial dependence for the on-site energies), for which we shall use
the periodic boundary condition if L ≥ 3. In this case the Hamiltonian (1) can be
rewritten in terms of the operators b̂k and b̂†k ,

b̂k = 1√
L

∑

l

exp

(

i
2πk

L
l

)

âl , b̂†k =
(

b̂k
)†

. (2)

Unlike the operators âl (â
†
l ), which annihilate (create) an atom in the Wannier states,

operators (2) annihilate or create an atom in theBloch states.Using the transformation
(2) and dropping the first term in the Hamiltonian (1) (which is a constant for a
uniform system) we have

̂H = −J
∑

k

cos

(

2πk

L

)

b̂†k b̂k + U

2L

∑

k1,k2,k3,k4

b̂†k1 b̂
†
k2
b̂k3 b̂k4 δ̃(k1 + k2 − k3 − k4) ,

(3)
where δ̃ is the periodic δ-function, i.e., δ̃(k) equals unity if k is a multiple of L and
zero otherwise. Depending on the addressed question this form of the BH model
might be more convenient than (1). In particular, it follows from (3) that for U = 0
the eigen-energies of the BH Hamiltonian are given by the equation,

E j = −J
∑

k

cos

(

2πk

L

)

nk ,
∑

k

nk = N . (4)

The total number of eigen-energies E j obviously coincides with dimension of the
Hilbert space,
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N = (N + L − 1)!
N !(L − 1)! , (5)

which is obtained by counting all possible distributions of N atoms among L wells.
It is very difficult task to find energies E j if U differs from zero. As it will be

explained below, in general case we cannot find them analytically1 while numerically
we are restricted to rather small system size because the dimension of the Hilbert
space grows exponentially with L and N . A way around these problems is to use
‘semiclassical methods’, where one is not bounded with small N and L . To this end
we introduce the classical counterpart of the quantum BH model.

3 Classical Bose–Hubbard Model

Formally, the classical counterpart of the quantumBHmodel is obtained by rescaling
the Hamiltonian (1) with respect to N and identifying the creation and annihilation
operators with c-number. This gives

H = − J

2

L
∑

l=1

(a∗
l+1al + c.c.) + g′

2

L
∑

l=1

|al |4 , (6)

where the constant g′ = UN is called themacroscopic interaction constant, to distin-
guish it from the microscopic interaction constantU . The Hamiltonian (6) generates
classical trajectories according to the Hamilton equation of motion,

i
d

dt
al = ∂H0

∂a∗
l

= − J

2
(al+1 + al−1) + g′|al |2al , (7)

which is known in the physical literature as the Discrete Nonlinear Schrödinger
Equation (DNLSE). Let us remark that the conservation law for particle number
takes the form of the norm conservation:

∑L
l=1 |al |2 = 1.

Historically, (7) was deduced by using the mean-field approach, where the com-
plex amplitudes al have themeaning of order parameters. For this reason the classical
Hamiltonian (6) is often referred to as the mean-field Hamiltonian. In the rest of this
section we justify the Hamiltonian (6) rigorously, without appealing to the mean-
field approximation. We shall follow an approach based on the notion of the Husimi
function.2

1This should be opposed to the Fermi–Hubbardmodel, where the spectrum can be found analytically
by using the Betha ansatz.
2A similar approach is based on the notion of the Wigner function [12–14]. The Husimi function,
however, has an advantage that it is positively defined.
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Given |Ψ (t)〉 to be the many-body wave function of the quantum Hamiltonian,
the Husimi function is defined as

f (a, t) = |〈a|Ψ (t)〉|2 , (8)

where |a〉 are the so-called coherent SU (L) states [11],

∣

∣a〉 = 1√
N !

(

L
∑

l=1

al â
†
l

)N

|vac〉 .

Note that the Husimi function (8) is a function of L complex amplitudes al and the
time t . In terms of the Husimi function (8) the Schrödinger equation for the wave
function |Ψ (t)〉 takes the form

∂ f

∂t
= {H, f } + O

(

1

N

)

, (9)

where {. . . , . . .} denotes the Poisson brackets, the c-number Hamiltonian H is given
in (6) and we refer the reader to the work [16] for the explicit form of terms which
are inverse proportional to N . The crucial point in the presented derivation of the
classical Hamiltonian is that (9) formally coincides with equation on the Husimi
function of a single-particle system if one identifies 1/N with the Planck constant.3

Thus one can use the common semiclassical theory to study the BH model. This
theory relates the energy spectrum of the quantum BH model (1) to the phase-space
structure of the classical BH model (6). We shall give examples in the subsequent
sections.

To conclude this section we also display the classical counterpart of the Hamil-
tonian (3):

H = −J
∑

k=
cos

(

2πk

3

)

b∗
k bk + g

2

∑

k1,k2,k3,k4

b∗
k1b

∗
k2bk3bk4 δ̃(k1 + k2 − k3 − k4) ,

(10)

where g = UN/L . Notice that the macroscopic interaction constant g in (10) differs
from the above introduced constant g′ by the factor L . Often one uses the constant
g also in (7). In this case, however, the amplitude al are normalized to L but not to
unity. To be certain, we shall characterize interactions by the constant g = UN/L
and restrict ourselves by the parameter region where g ≤ J .

3The effective Planck constant �e f f = 1/N should not be mismatched with the fundamental Planck
constant �which we set to unity from now on. We also mention that within the discussed formalism
al and a∗

l are the canonical variables, i.e., one does not interpret them as order parameters.
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4 Bose–Hubbard Dimer

We proceed with examples, where the simplest case corresponds to L = 2 – the
so-called BH dimer. Noticing that the BH system has two independent integrals of
motion – the energy and the norm – we immediately conclude that the dimer is an
integrable system. In fact, using the action-angle variables, al = √

Il exp(iθl), and
taking into account conservation of the norm, I1 + I2 = 1, the original system of
two degrees of freedom reduces to the following effective system of one degree of
freedom,

Hef f = gI 2 − J
√

1 − I 2 cos(θ) , |I | ≤ 1 , (11)

where I = (I2 − I1) and θ = θ2 − θ1.4 For g 	= 0 the phase portrait of the system (11)
resembles that of the mathematical pendulum. Small oscillations of this pendulum
have the frequency

Ω =
√

J 2 + 2gJ , (12)

which is know in the physical literature as the Josephson frequency. We mention,
in passing, that Josephson’s oscillations of cold atoms in a two-site optical potential
were observed in the experiment [1].

Quantizing the effective system (11) in terms of �e f f = 1/N one obtains the
energy spectrum of the BH dimer. As follows from the above analogy with the
pendulum, the low-energy spectrum of the BH dimer should be equidistant with the
level spacing given by the Josephson frequency Ω , and the high-energy spectrum
should consist of doubly degenerate levels, which correspond to the clockwise and
counterclockwise rotations of the pendulum. These expectations are fully confirmed
by the numerical analysis. Figure1a shows the energy spectrum of the BH dimer as
the function of themacroscopic interaction constant g for N = 40 where, to facilitate
the comparison, we rescale the spectrum by using the Josephson frequency (12). The
high- and low-energy regions, which are separated by the ‘quantum separatrix’, are
clearly seen in Fig. 1a. Let us also mention that in the limit N → ∞ the density of
state diverges at the separatrix [2].

5 Bose–Hubbard Trimer

The case L = 3 is more complicated because the classical BH trimer is a non-
integrable system with mixed phase space. It is largely an open question about the
volumes of regular and chaotic components for a given energy shell H(a) = E .

4Using one more canonical transformation, b1 = (a1 + a2)/
√
2 and b2 = (a1 − a2)/

√
2, one gets

a different form of the effective Hamiltonian, which is similar to (14) in Sect. 5. Naturally, this does
not affect the final results.
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Fig. 1 Energy spectrum of the 2-site BH model, left, and the 3-site BH model, right, for N = 40.
The energy is measured relative to the ground energy E0 and scaled with respect to the frequency
Ω given in (12) and (15), respectively. The value of the hopping matrix element J = 1

However, we can prove that the chaotic component vanishes at low energies and,
hence, we are left with a stability island.

The proof involves several steps. First we rewrite the Hamiltonian (10) for L = 3
in terms of the canonical variables bk and b∗

k . This gives

H = −J
1

∑

k=−1

cos

(

2πk

3

)

b∗
k bk + g

2

−1
∑

k1,k2,k3,k4=1

b∗
k1b

∗
k2bk3bk4 δ̃(k1 + k2 − k3 − k4) .

Next we switch to the action-angle variables, bk = √
Ik exp(iφk), and explicitly take

into account that
∑

k Ik = 1. This reduces our system of three degrees of freedom to
the system of two degrees of freedom:

H = (δ + g)(I−1 + I+1) + 2gI0
√

I−1 I+1 cos(φ−1 + φ+1) (13)

−g(I−1 I+1 + I 2−1 + I 2+1) + 2g
∑

±
I∓

√

I0 I±1 cos(2φ∓1 − φ±1) ,

where δ = J [1 − cos(2π/3)], I0 = 1 − I−1 − I+1 and the phases φ±1 of variables
b±1(t) are measured with respect to the phase of b0(t). The low-energy dynamics of
the system (13), which is associated with the low-energy spectrum of the quantum
system, implies I±1  I0. Keeping in the Hamiltonian (13) only the terms linear in
I±1, and using one more canonical transformation,
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I = I+1 + I−1 , θ = (φ+1 + φ−1)/2 ,

M = (I+1 − I−1)/2 , ϑ = φ+1 − φ−1 ,

we end up with the effective Hamiltonian which locally describes the low-energy
stability island:

Hef f = (δ + g)I + g
√

I 2 − 4M2 cos(2θ) , |M | ≤ I/2 . (14)

Note that Hef f does not include phase ϑ and, hence, the action M is a constant of
motion.

The obtained Hamiltonian (14) suffices to find the low-energy spectrum of the
3-site BH model. To do this we integrate the system (14) by introducing new action,
Ĩ = (1/2π)

∮

I (θ, E)dθ , and resolving the latter equationwith respect to the energy.
We get E = Ω Ĩ where

Ω =
√

δ2 + 2gδ . (15)

Finally, we quantize actions Ĩ and M in units of the effective Planck constant
�e f f = 1/N . This gives equidistant set of energy levels En = E0 + Ωn, with (n + 1)
degeneracy of the nth level. It should be stressed that the equidistant spectrum is an
approximationwhich is valid until some critical energy Ecr . If we go to higher energy
the spectrum becomes nonlinear and the degeneracy is removed, see Fig. 1b. It is also
seen in Fig. 1b that for high energies E ≈ E0 + ΩN/2 the regular spectrum coexists
with an irregular spectrum, which is consistent with the fact that high-energy energy
shells of the classical 3-site system contain both regular and chaotic components.

6 Many-Site Bose–Hubbard Model

For L � 1 the role of chaos becomes even more important. Now majority of eigen-
states of the BH model are chaotic states in the sense of Quantum Chaos [5, 15]. To
clarify the meaning of ‘majority of states’ we discuss the density of states ρ(E) of
the quantum BH model for L � 1.

Let us for the moment U = 0. Then the spectrum is known analytically, see (4).
It follows from this equation that ρ(E) has the region of support |E | ≤ J N and is
peaked around E = 0, see Fig. 2a.5 As g is increased the whole distribution shifts
to the right by the mean interaction energy Eint = gN and becomes profoundly
asymmetric, see panels (b) and (c) in Fig. 2. To relate the depicted distributions to
the classical BH model we scale the energy E and ρ(E) with respect to N and use
the Weyl law. This gives

5Slight asymmetry of ρ(E) with respect to E = 0 is related to the fact that L is odd. For even L
(for example L = 6) the distribution is perfectly symmetric, i.e., ρ(E) is an even function of E .
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Fig. 2 Density of states of the 5-site BHmodel for N = 20, panels a–c, as compared to the classical
‘density of states’, panels d–f. The energy is measured with respect to the mean interaction energy
Eint = gN . The macroscopic interaction constant g = 0, panels a and d, g = 1, panels b and e,
g = 2, panels c and f. The hopping matrix element J = 1

lim
N→∞ N

ρ(E/N )

N (N )
= ρcl(E) , (16)

whereN is given in (5),ρcl(E) is the phase-space volume of the energy shell H(a) =
E of the classical BH model, and we implicitly assume that ρcl(E) is normalized
to unity (i.e.,

∫

ρcl(E)dE = 1). For the considered g = 0, 1, 2 the classical density
of states ρcl(E) is shown in the panels (d–f) in Fig. 2. A nice agreement with the
quantum density of states indicates that N = 20 is already large enough to drop the
limit sign in (16). Let us also mention that for L � 1 and g  J the function ρcl(E)

can be well approximated by the following simple equation,

ρcl(E) = B exp

(

A

√

1 − E2

J 2

)

, (17)

where A = A(L) is the fitting parameter and B the normalization coefficient. We
shall use (17) together with (16) to approximate the density of states of the quantum
BH model when performing statistical analysis of its energy spectrum.

The next step is to identify the borders of chaos in Fig. 2. To answer this question
we again appeal to the classical BH model. Here the critical energy or, more exactly,
crossover interval can be found by using Monte-Carlo simulations. In more details,
we randomly generate initial condition a(t = 0), evolve it in time by solvingDNLSE,
and determine whether the trajectory is regular or chaotic. It was found that for L ≥ 5



Treating Many-Body Quantum Systems by Means of Classical Mechanics 45

and g ∼ J the crossover interval is close to the energy of the ground E0 ≡ Emin ≈
−J + g/2, which corresponds to the extended initial condition al(t = 0) ≈ 1/

√
L .

For example, for L = 5 and g = 1 the crossover interval is Emin + 0.05J < E <

Emin + 0.15J . It should be mentioned that there is another crossover interval which
is close to the maximal energy Emax ≈ gL , which corresponds to the localized initial
condition al(t = 0) ≈ δl,l ′ .6 In the context of cold atoms, however, only the lower
critical energy is of interest because the right tail of the density of states of the single-
band BHmodel usually overlaps with the spectrum originating from the second band
of the many-bands BH model.

7 Statistical Analysis of the Energy Spectrum

As stated in Sect. 6, all states of the quantum BH model in the central part of the
distribution ρ(E) are chaotic states. This can be proved by statistical analysis of the
eigenfunctions and eigen-energies, where the simplest test is the distribution P(s)
of the normalized distances s between two nearest energy levels,

s = (E j+1 − E j )ρ(E j ) . (18)

If the states are chaotic, this distribution should obey the Wigner–Dyson statistics,

P(s) = π

2
s exp

(

−π

4
s2

)

. (19)

The Wigner–Dyson statistics is usually opposed to the the Poisson statistics,

P(s) = exp(−s) , (20)

which is typical for integrable systems. We note that in the numerical analysis it is
more convenient to compare not distributions themselves but the integrated distrib-
utions

I (s) =
∫ s

0
P(s ′)ds ′ . (21)

The solid line in the lower panel in Fig. 3 shows the integrated level-spacing dis-
tribution (21) for L = 5, N = 19, and g = 1, where energies are taken from the
energy interval marked by the thick line in the upper panel.7 An excellent agreement

6Regular localized solutions of DNLSE are known as discrete solitons or breathers [4].
7For the periodic boundary conditions (which are used throughout the paper) the quantumBHmodel
possesses additional, pure quantum integral ofmotion – the total quasimomentum κ = 2πk/L . Thus
the whole spectrum can be decomposed into L independent spectra labeled by κ . In Fig. 3 we choose
κ = 2π/L subspace. The results for other κ look similar, except the case κ = 0 where one should
take into account the odd-even symmetry of the eigenstates.
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Fig. 3 Integrated density of states of the 5-site BH model for g = 1 and N = 19 (thin blue line
in the upper panel), and the integrated level-spacing distribution I (s) (solid blue line in the lower
panel) as compared to the integratedWigner–Dyson distribution (dashed red line) and the integrated
Poisson distribution (dash-dotted green line). The hopping matrix element J = 1. The energies are
taken from the interval marked by the thick red line in the upper panel, that comprises 60 presents
of the total number of states N = 1771

with the Wigner–Dyson distribution is noticed. Let us mention that this excellent
agreement of the numerical data with (19) also indicates the relative volume of the
chaotic component in the classical BH model to be close to unity in the considered
energy interval. In this way the quantum and classical analysis of the BHmodel com-
pliment each other. Furthermore, calculating P(s) for different g and approximating
the result by the Berry–Robnik distribution,8 we can estimate the relative volumes
of regular and chaotic components in the classical BH model. In particular, in the
considered case L = 5 the distribution P(s) changes from almost perfect Poisson
for g = 0.1 to almost perfect Wigner–Dyson for g = 0.5. Thus a transition to the
developed chaos in the classical BH model (in the considered energy interval, of
course) happens at g = 0.5.

To conclude this section we briefly discuss the energy interval E0 < E < Ecr ,
where the energy spectrum is regular. We can find this regular spectrum by gener-
alizing the approach of Sect. 5. In fact, the effective Hamiltonian (14) describes the
coupling of the mode k = 0 with the modes k1 = 1 and k2 = −1. If L > 3 the mode
k = 0 is also coupled to the modes k1 = k and k2 = −k. Repeating the analysis of
Sect. 5 we come to the effective Hamiltonian of the form (14) where the parame-
ter δ = J [1 − cos(2π/3)] is substituted by the parameter δk = J [1 − cos(2πk/L)].
Thus the low energy spectrum of the system is given by a sum of equidistant spectra
with the frequencies

8Berry–Robnik’s statistics gives level-spacing distribution for a systemwith mixed phase space and
interpolates between Poisson and Wigner–Dyson statistics.
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Ωk =
√

2gδk + δ2k , δk = J [1 − cos(2πk/L)] . (22)

If we restrict ourselves by small k  L , the frequencies (22) are approximated by

Ωκ = √

2gκ , κ = 2πk/L , (23)

which is nothing else as theBogoliubov dispersion relation for elementary excitations
of the Bose–Einstein condensate.

8 Conclusion

The presented results give the following picture of quantum-classical correspondence
between the classical (6) and quantum (1) BH systems.

The low-energy trajectories of the classical system are regular and encircle the 2L-
dimensional invariant torus. Topologically, this multi-dimensional torus is a tensor
product of L/2 four-dimensional tori defined by the effective Hamiltonians (14)
with δ substituted by δk = J [1 − cos(2πk/L). Quantizing these tori in terms of
the effective Planck’s constant �e f f = 1/N we obtain the lower-energy spectrum of
the quantum system, which for L � 1 coincides with the Bogoliubov spectrum of
elementary excitations above the ground state. Notice that, sincewe restrict ourselves
to values of the macroscopic interaction constant g of the same order as the hopping
matrix element J and assume N � 1, we have U  J . Thus the ground state of
the system is a super-fluid state. It is an open question whether one can extend the
semiclassical analysis into the region of large g, where the ground state of the system
is a Mott insulator.

As we go to higher energies the invariant tori become gradually destroyed. This
means that energy shells of the classical BH model contain both the regular and
chaotic components and, depending on the initial condition, the classical trajectory
is either regular or chaotic. With respect to the quantum BH model this is the most
subtle case because the energy spectrum becomes a mixture of the regular spectrum,
which is a reminiscent of the Bogoliubov spectrum, and an irregular spectrum.

With further increase of the energy the classical BH model shows a transition
to the developed chaos and the spectrum of the quantum system becomes fully
irregular. To avoid any misinterpretations we note that the term ‘irregular’ does
imply the eigen-energies to be random numbers. On the contrary, there are important
correlations between positions of the energy levels which are reflected, in particular,
in the Wigner–Dyson distribution for distances between the nearest levels. Because
the same correlations are present for eigenvalues of a randommatrix, the meaning of
the term ‘irregular’ is similarity of the spectrum with spectrum of random matrices.

In the work we focussed on the energy spectrum and did not pay much attention
to the eigenfunctions. It was shown in [8] that eigenfunctions of the BH model also
possess universal properties reflected, in particular, in the Breit–Wigner distribu-
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tion for the local density of states. This has important consequences for transport
phenomena with cold atoms. For example, if we address Bloch oscillations9 of in-
teracting Bose atoms, we find that they irreversibly decay [3, 10]. Remarkably, this
quantum dynamics is perfectly reproduced by solving classical (9) on the truncated
Husimi function [9]. This result provides one more example of successful treating
of a many-body system by means of classical mechanics.
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Mean-Field Transport of a Bose-Einstein
Condensate

Samy Mailoud Sekkouri and Sandro Wimberger

Abstract The expansion of an initially confined Bose-Einstein condensate into
either free space or a tilted optical lattice is investigated in a mean-field approach.
The effect of the interactions is to enhance or suppress the transport depending on the
sign and strength of the interactions. These effects are discusses in detail in view of
recent experiments probing non-equilibrium transport of ultracold quantum gases.

1 Introduction

Since the first realization of Bose-Einstein condensates in 1995 with ultracold alkali
atoms [1], experiments with ultracold quantum gases have launched a vast research
field for investigating the quantum nature of matter with an unprecedented experi-
mental precision [2, 3]. One of the directions investigated today is concerned with
the quantum transport of ultracold matter. Pioneering here are the recent experimen-
tal results by the two groups at ETH [4] and at NIST [5]. Many transport scenarios
of ultracold bosons and fermions were studied starting from a microscopic (many-
body) description [6, 7]. In a more general setting, mean-field quantum transport of
a Bose-Einstein condensate was investigated in the context of Bloch oscillations and
tunneling inWannier-Stark systems [8, 9], of barrier tunneling [10], of disorder, [11],
or of time-dependent potentials [12]. In almost all of the experimental realizations,
so far, what has been studied was essentially the expansion of a cloud of cold atoms
which is controlled by external fields and interactions. Along the same lines, we
propose in this contribution a relatively simple method to prepare the initial state,
namely within an steep harmonic trap. Transport occurs when the trap is opened
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in one direction. We investigate in detail how the particle current in such a setup
depends on the interactions, which we treat in mean-field approximation following
the celebrated Gross-Pitaevskii equation [13, 14].

2 Our Transport Setup

The dynamics of a Bose-Einstein condensate in mean-field approximation is
described by the Hamiltonian

H = p2

2m
+ Vint(r, t) + Vext(r, t) . (1)

The interatomic potential of a cold dilute gas of bosons is replaced by the effective
mean-field interaction

Vint(r, t) = g3D|ψ(r, t)|2 , (2)

where the coupling constant g3D = 4π�as
M N is determined by the number of atoms

N , their mass M , and the two-body s-wave scattering length as . The wave func-
tion is then normalized to unity. Please note that the strength and the sign of as can
be controlled quite well in the experiment [2, 14]. We restrict here to a quasi one-
dimensional situation, in which the condensate is well confined in the two transverse
directions. Such a reduction essentially leads to a rescaling of the coupling constant.
This rescaling depends on the precise geometry of the trapping potentials. A stan-
dard argument [2] reduces g3D to its one-dimensional version g1D = 2�ω⊥as , where
the transverse confinement frequency ω⊥ is assumed to be large compared to the
longitudinal one.

To simplify the problem, we express all quantities in the units of the longitudinal
harmonic oscillator confinement with frequency ω at t = 0. This means that we

express p → p̃ ≡ p(�ωm)− 1
2 and x → x̃ ≡ x

(
ωm
�

) 1
2 . In this units, the Hamiltonian

for t = 0 now reads

H̃(x̃, p̃; t = 0) = 1

2
p̃2 + g̃1D|ψ̃(x̃, t̃)|2 + 1

2
(x̃ − x̃0)

2 , (3)

and for t > 0 correspondingly

H̃(x̃, p̃; t > 0) = 1

2
p̃2 + g̃1D|ψ̃(x̃, t̃)|2 + 1

2
Θ(x̃0 − x̃)(x̃ − x̃0)

2 (4)

− Θ(x̃ − x̃0)
[
F̃ x̃ + Ã sin2(K̃ (x̃ − x̃0))

]
. (5)

The initially prepared state and the potentials are sketched in Fig. 1. The sinusoidal
term in (4) describes an optical lattice into which the condensate can expand. Ã is the
amplitude of the lattice and K̃ = π/d̃L determines its spatial period d̃L. The linear
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Fig. 1 Sketch of the experiments we are proposing. The initial state (red solid lines) is prepared
within an harmonic trap (blue lines for x < x0 and viola dashed lines for x > x0). The trap is
released on the right part of x0 to zero, which makes the initial wavepacket move towards the right.
We investigate two exemplary cases: without any external potential seen in a and with a tilted
periodic lattice seen in b. The total external potential at t > 0 is plotted by the overall blue lines in
both cases

potential with force F̃ controls the tilt of the lattice. In the next section we study the
temporal evolution in the sketched setups, in particular the dependence of the atomic
currents (towards the right) on the interaction strength g̃1D . In the following we drop
the tildes for simplicity, with the additional convention g ≡ g̃1D .

3 Numerical Results

Our main observable for the study of the mean-field transport of the condensate is
the following probability current density

j (x, t) = 1

2i

[
ψ∗(x, t)

∂ψ(x, t)

∂x
− ψ(x, t)

∂ψ∗(x, t)
∂x

]
. (6)

The current will obviously depend on the precise nature of the interaction (attractive
or repulsive) and its strength. We integrate the nonlinear Schrödinger equation deter-
mined by (4), using a finite difference spatial representation of the wave function
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Fig. 2 The particle current as a function of time at x = 2x0 for the following values of interaction
strength from left to right: g = 2 (black dashed line), g = 0 (blue solid line), g = −1 (viola dotted
line), and g = −2 (red dot-dashed curve). We observe clear maxima of the currents, whose position
on the time axis (denoted by τ ) is determined by the sign and the strength of the nonlinearity. The
lattice parameters are A = 1, dL = 4 and F = 0.043

and a norm-preserving Crank-Nicholson integrator, see e.g. [15] for details on the
integration scheme. For a grid-step size ofΔx , the time-dependent current at the grid
point xn is given by

j (xn, t) = i

2Δx
[ψ∗(xn + Δx, t)ψ(xn, t) − ψ∗(xn, t)ψ(xn + Δx, t)] . (7)

3.1 Case (a): Directed Free Expansion

For the case of the free expansion towards the right (case (a) in Fig. 1), we first plot
the current density as a function of the interaction strength g at the point x = 2x0,
with x0 = 20.5, please see Fig. 2. At this fixed position, the probability current as a
function of time shows a characteristic maximum, whose position on the time axis
is determined by g.

For repulsive interactions (g > 0), the wave packet tends to expand faster due to
the additional repulsive potential term in (3). For the attractive case (g < 0), the oppo-
site happens and the wave packet tends to stabilize and the expansion is slowed down.
Figure3 shows the same results for a window of positions from x = x0 to x ≈ 60
(above which the wave function is absorbed in order to avoid artificial back reflec-
tions). Interestingly, but not too surprisingly, the dispersion in the spatial-temporal
plane (x, t) is minimized by strong attractive interactions. Here the currentmaximum
is very stable and the dynamics of the condensate is almost free of dispersion similar
to a solitonic motion, see Fig. 3(d).

In order to quantify the effect of the nonlinearity g, we plot the dependence of
the times τ when the maximum density is reached at x = 2x0 in Fig. 4. While the
qualitative behavior of the enhanced expansion and the slowdown for positive and
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Fig. 3 Heat map of the current density j (x, t) as in Fig. 1 but for a window of positions x = xJ .
The two-dimensional plots show that repulsive interactions enhance the transport, see panel a for
g = 2, while attractive interactions slow it down, see panel c for g = −1 and d for g = −2. b is
the reference case without interactions. As an interesting side effect, the dispersion in the spatial-
temporal plane (x, t) is minimized by strong attractive interactions, see panel d, corresponding to
the dot-dashed line in the previous figure

Fig. 4 The times τ(g) of
maximal current at position
x = 2x0 extracted from data
sets such as shown in Fig. 2
and for the same lattice
parameters as there. For
positive nonlinearities g, the
scaling of the enhancement
of the expansion seems
logarithmic (see inset). For
negative g, the expansion is
slowed down a lot, which
can be seen by the steep
increase of the curve for
decreasing g < 0

negative g, respectively, is clear (see also [16]), we have no analytic explanation so
far for the precise form of the observed scaling of τ(g) seen in Fig. 4.

3.2 Case (b): Expansion into a Wannier-Stark Lattice

Optical lattices are by now a standard tool for the control of the motion of Bose-
Einstein condensates [3]. The presence of an optical lattice slows down the expansion
into it, while a constant negative tilt accelerates an initially localized wave packet
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Fig. 5 Oscillation frequencyω at g = 0 versus. the Stark force F for the case with left confinement
(blue symbols connected by dotted line) and without it (red symbols connected by dashed line).
In both cases, the scaling is linear as expected. The presence of the left part of the harmonic trap
affects only the slope. The lattice parameters are A = 1 and dL = 4

towards the right. However, when both potential are present simultaneously, c.f. our
setup shown in Fig. 1(b), the situation is less clear. A tilted lattice problem defines
the Wannier-Stark system, which was investigated with Bose condensates in great
detail before, see e.g. [8, 9]. In this system, again an initially localized wave packet
remains localized but it oscillates with a characteristic Bloch frequency ωB given by
the constant level distance of the energy spectrum (arising from the constant spatial
tilt). In our units,ωB = FdL, where dL is the lattice spacing. This linear scaling of the
oscillation frequency with the Stark force F is seen also in our expansion problem
in the absence of interactions (g = 0). Because of the presence of the harmonic
confinement on the left, the proportionality factor is slightly lower than one, as seen
in Fig. 5 (blue symbols connected by the dotted line). Releasing also the left part of
the trap, we instead observe the correct pre factor one, please see the red symbols in
Fig. 5. The frequencies are extracted from the current oscillations to the right of (but
close to) x0 after a short initial transient, necessary for the wave packet to adapt to
the presence of the tilted lattice.

More interesting is the oscillatory behavior in the presence of interactions. We
investigate again both cases of repulsive and attractive nonlinearity. The frequencies
are extracted as described above from the current oscillations. Our results are shown
in Fig. 6. A repulsive interaction with g > 0 increases the oscillation frequency. For
not too large positive g, this increase is linear, and we will come up with an intuitive
explanation below. For large nonlinearities a saturation is observed, see g > 1 in
Fig. 6. Here the repulsion leads to a fast expansion which in turn decreases the
density again. More complex is the case of attractive interactions with g < 0. For
small |g| < 1, the Bloch-like oscillations are rather stable. For large |g| > 1, again
the nonlinearity potential dominates the dynamics, in the sense that the nonlinear
term is larger than the kinetic term in (4). Here interaction-induced oscillations with
a frequency ω ∝ |g| occur. In this latter case, the density remains large during the
evolution because of the attractive forces, and the theory developed by Kolovsky in
[17] applies. There our observed linear scaling of the oscillation frequency with the
nonlinear coupling parameter is theoretically predicted.
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Fig. 6 Bloch-like oscillation
frequency ω as a function of
the nonlinear coupling
constant g. While an
attractive interaction (g < 0,
see a) slows down the
oscillations in the region
−0.8 < g < 0, a repulsive
one, see b, increases the
frequency. For large negative
g < −1, the nonlinear
potential dominates the
dynamics and
interaction-induced
oscillations with a frequency
ω ∝ |g| occur. The lattice
parameters are the same as in
the previous figure

In the following we concentrate on the case of repulsive interactions. Here we can
explain the initial linear increase in the oscillation frequency seen Fig. 6(b) by the
local level shift induced by the nonlinear potential term in (4). This shift depends on
the densities in the lattice sites which is largest in the “central” well centered at x0
(at least at and close to t = 0). This shift then leads to an effective increase of the
difference ΔE of the two energy levels in the neighboring wells, and consequently
to a larger oscillation frequency. We may estimate

ΔE ≈ g
∫

dL

dx |ψ(x, t)|2 . (8)

Because of the oscillations, we take the times t of maximal density differences in
the two wells for computing the above estimate. In principle, we can redo the effect
of the nonlinear potential by rescaling the Stark force from F to F − F ′, where
F ′ ≈ ΔE/dL. This reduces the problem to the noninteracting one with the same
Block-like oscillation frequency determined just by F alone. Corresponding numer-
ical simulation for the current density are shown in Figs. 7 and 8. The former plot
nicely corroborates the effective compensation of the nonlinear potential in the tem-
poral oscillations of the current. The latter figure highlights the good compensation
comparing the currents globally in the spatial-temporal plane (x > x0, t).

Of course, our estimate given in (8) is a bit too rough in order to be perfect
for all times (in particular because of the time-dependence of the process). Yet,
this possibility of controlling the dynamics of a Bose-Einstein condensate is quite
interesting. We refer to similar situations where the effect of the interaction was
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Fig. 7 Temporal evolution of the current to the right but close to x0 for the three cases: a g = 0, F =
0.043 (black solid line), g = 0.2, F = 0.043 (blue symbols), and b g = 0.2, F = 0.043 − F ′ =
0.029 (red solid line). In b the nonlinear shift of the local energy level (where the atomic density is
large) is corrected by a reduction of the Stark force with F ′ = 0.029. We observe good agreement
between the oscillation frequencies of the black (a) and the red (b) curves. The lattice parameters
are chosen as in the previous two figures

approximately cancelled by applying appropriate external potentials in theory [18]
and an actual experiment at Innsbruck [19].

4 Conclusions and Perspectives

Wepropose a rather simple experiment to probe the effect of interparticle interactions
in the non-equilibrium dynamics of a Bose-Einstein condensate. We have seen that
the time-dependent atomic current towards the right can be well controlled in our
setup. Interactions enhance or suppress the transport or the oscillations depending
on their sign and their strength.

Preliminary computations on a full three dimensional evolution with strong con-
finement in the transverse dimensions seem to confirm our one-dimensional results
(provided that the geometry of the confinement is matched such as to guarantee the
same effective nonlinearity along the longitudinal direction). Interesting would be
the case of an effective two-dimensional problem under so-called pancake confine-
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Fig. 8 Temporal evolution of the current as a function of position x = xJ and time t . Shown are in
panel a the data for the some parameters as in Fig. 7a at g = 0, and in panel b as in Fig. 7b. As noted
previously the two cases are very similar due to the compensation of the effect of the nonlinearity
in b

ment as recently studied in the context of mean-field transport in Kaiserslautern [20].
Here both directions are equally important and the expansion and transport of the
condensate may be controlled even along both dimensions simultaneously.
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Continuous and Differentiable
Approximation of a TaO Memristor Model
for Robust Numerical Simulations

Alon Ascoli, Ronald Tetzlaff and Leon Chua

Abstract This paper proposes the introduction of appropriate continuous and dif-
ferentiable approximations to discontinuous and piecewise differentiable functions
respectively adopted in state equation and Ohm’s based law of the mathematical
model of an extended memristor recently fabricated at Hewlett Packard labs. The
study of this model is particularly timely because the material at the basis of the
relative memristor device, i.e. Tantalum oxide, has been recently classified, together
with Hafnium oxide, as one of the most plausible candidates for a large-scale manu-
facturing of memory resistive devices, especially for memory applications. However,
recent studies have demonstrated that the adoption of discontinuous and/or piece-
wise differentiable functions in the differential algebraic equation set describing the
complex dynamics of these devices may be the source of serious convergence issues
in standard software packages. This calls for an impeding necessity to ameliorate
mathematical descriptions of real memristors. In this paper we present a thorough
study which aims at deriving the most appropriate set of continuous and differen-
tiable approximants to the discontinuous and piecewise differentiable functions of
the TaO memristor model.
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1 Introduction

The introduction of memristors [1] into the realm of electrical circuit elements is
promising to revolutionize the world of electronics in the years to come. Several
challenges have to be yet overcome before a large-scale deployment of this non-
linear dynamical device in the integrated circuit market, but some companies [2]
have already engineered memristor-based circuits and systems which either outper-
form or complement the functionalities of state-of-the-art hardware solutions. The
performance of the device is usually evaluated by taking into account a number of
factors. For example, in memory applications [3] the most important quality mea-
sure are nonlinearity, off-to-on resistance ratio, endurance, retention, and sensitivity
to process/voltage supply/temperature fluctuations. Recently, materials have been
ranked in terms of the scores memristors based upon them attain for each of these
attributes. Tantalum oxide (TaO) is one of the first materials in the table [4]. It is
therefore worth to analyse the corresponding memristors, aiming at understanding
the nonlinear dynamics [5] emerging in these nanoscale structures [6].Recently aTaO
memristor was manufactured and modeled at Hewlett Packard labs [7]. According to
the latest classification [8], this nano device belongs to the class of extended mem-
ristors [9]. The mathematical description descends directly from physics laws, and
is very accurate. Therefore it may be taken as reference for simulations on circuits
and systems containing these memristors. However, discontinuous and piecewise
differentiable functions respectively appear in state equation and Ohm’s based law
of the model. It was recently revealed that serious convergence issues may arise in
software packages for the numerical integration of differential algebraic equations
(DAE) [10] in case the model contains discontinuous and/or piecewise differentiable
functions. It is therefore opportune to look for a proper continuous and differentiable
approximation to the original mathematical description of the TaO memristor. This
paper first introduces classes of possible continuous and differentiable kernels for
the replacement of the discontinuous and piecewise differentiable functions present
in the original model, and then carries out a detailed investigation aimed at selecting
the most appropriate approximations. The resulting continuous and differentiable
DAE set accurately captures the dynamics of the original model, and does not suffer
from convergence issues, even in circuits employing a large number of memristors.
This study complements recent research developments on numerical techniques for
simulations on memristor devices, circuits, and systems [11].

2 Model

In 2013 Hewlett Packard announced the manufacturing of a novel memristor nano
device based upon TaO [7]. The corresponding mathematical model, revealing the
high degree of nonlinearity inherent into the two-terminal element, is the combination
of a differential equation governing the evolution of the state x ∈ [0, 1], namely
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Table 1 TaO memristor model parameter values

A /s−1 σof f /V xof f β /A−1V−1

10−10 1.3 · 10−2 4 · 10−1 500

B /s−1 σon xon
1 · 10−4 4.5 · 10−1 6 · 10−2

σp /A−1V−1 Gm /S a /S b /V− 1
2

4 · 10−5 2.5 · 10−2 7.2 · 10−6 4.7

dx

dt
= f (x, vm ) =

[
A sinh

(
vm

σof f

)
exp

(
−
x2of f
x2

)
exp

(
1

1 + βmimvm

)

step(−vm )

]
+

[
B sinh

(
vm
σon

)
exp

(
− x2

x2on

)
exp

(
imvm
σp

)
step(vm )

]
, (1)

where step(·) = 1+sign(·)
2 is the unit step function, and of an algebraic constraint

relating current im through the device to voltage vm across it, i.e.

im = W (x, vm)vm . (2)

Here W (x, vm) denotes the memductance function, expressed by

W (x, vm) = Gmx + a exp
(
b
√|vm |

)
(1 − x), (3)

where | · | denotes the modulus function. The memristor may be classified as a first-
order voltage-controlled extended memristor according to the latest classification
[12]. Themodel parameters, reported in Table1, shall be used throughout the analysis
presented in this paper.

3 Continuous and Differentiable DAE Set

The convergence properties of standard software packages for numerical integration
of DAE sets may be negatively affected by the presence of discontinuity and/or
piecewise differentiability in the models [10]. The mathematical description for the
TaO memristor, provided in Sect. 2, adopts the modulus function in the expression
for the memductance, given in (3), and the step function in the definition of the
state equation, reported in (1). We propose to replace the modulus function with a
differentiable approximating kernel falling within the following class:
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Fig. 1 Plots of gρ(vm) versus vm for ρ ∈ {101, 102, 103}. The piecewise differentiable function,
the proposed kernels are approximating functions of, is also shown

gρ(·) = (·)
(

1

1 + exp(−ρ ·) − 1

1 + exp(ρ ·)
)

, (4)

where ρ ∈ R+ defines the concavity of gρ(·) in the origin. Illustrative plots of the
approximating kernels for ρ ∈ {101, 102, 103} and of the original piecewise differ-
entiable modulus function are shown in Fig. 1 as a function of the memristor voltage.

The selection of the most appropriate differentiable kernel from the class pro-
posed in (4) is based upon the capability of the resulting memductance function
approximation to track with satisfactory accuracy the static behaviour of the nano
device [7]. Here static behaviour denotes the device mode of operation under con-
stant state, when the memristor acts in general as a nonlinear resistor. This mode
is under way as long as the control voltage is applied for a sufficiently small time
interval and assumes properly low values, so that any state change from the initial
condition x(0) = x0 may be neglected. As a result, one may analyze just Ohm’s
based law (2) with x = x0 without taking care for the state equation. Further, it is
opportune to remark that the value of the concavity parameter in the function gρ(·)
has a significant influence on the static behaviour only for state values close to the
lower bound, and for |vm | ≈ 0V. Considering a non-disruptive memristor control
voltage range, specifically [−0.3, 0]V, dashed line curves in Fig. 2 illustrate, under
values for ρ equal to 101(plot(a)), 102 (plot(b)), and 103 (plot(c)), the static behaviour
of the nanoscale element resulting from the use of the approximating kernel gρ(·)
for the modulus function | · | in (3). The numerical results referring to a state initial
condition set to 0, 10−4, 10−3, and 10−2 are highlighted in red, black, blue, and pink
respectively. In each plot the numerical solutions, resulting from the adoption of
the modulus function, are also shown for comparison purposes as solid curves (the
association between colours and initial states is the same as for the dashed curves).
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Fig. 2 Current–voltage characteristics observed under the assumption that the excitation signal
has a sufficiently small amplitude, and is applied for a properly limited amount of time so that the
resulting memristor state change from the initial condition is negligible. The state value at time
t = 0 s takes values in {0, 10−4, 10−3, 10−2}. The solid and dashed curves respectively refer to
the use of the piecewise differentiable and differentiable versions of the memductance function. In
the latter case the concavity parameter ρ is chosen equal to 101, 102, and 103 in plots a, b, and c
respectively

The dashed curves better match the solid ones in plot (c). It follows that, among the
elements of the kernel class expressed by equation (4), the one with ρ = 103 repre-
sents a near optimal differentiable approximation to the modulus function. In order
to confirm the appropriateness of this choice for ρ, we then examined the graphs of
im versus vm over the same memristor control voltage range as in Fig. 2 for a set of
initial states uniformly spaced in the existence domain [0, 1]. An accurate agreement
between the numerical results referring to the original piecewise differentiable mem-
ductance function and to the proposed differentiable approximation with ρ = 103 in
gρ(·) was observed. Next, we propose to substitute the step function step(·) in the
state equation with a continuous kernel within the class expressed by

fk(·) = 1

1 + exp(−k ·) , (5)

where k = f ′
k(0), and the superscript ′ denotes differentiation with respect to the

argument. With reference to Fig. 3, where the horizontal axis reports the memristor
voltage, the pink trace is the graph of the unit step function, while black, red, and
blue curves depict the shape of the approximating kernel fk(·), given in equation (5),
under values for k set to 30, 40, and 50 respectively.

At this stage investigations aiming at choosing the most suitable candidate kernel
for an accurate continuous approximation of the function step(·), responsible for the
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Fig. 3 Graphs of unit step function step(·) (a) and proposed approximating kernel fk(·) for k ∈
{30, 40, 50}. The independent variable is the memristor voltage
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V
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Fig. 4 aCircuit under test for the selection of themost appropriate kernel for an accurate continuous
approximation of the unit step function. b Asymmetric shape of the voltage waveform sourced by
the voltage generator

memristor transition between on and off state, are performed. A circuit composed of
the series combination between a linear resistor of value R = 70.1� and the TaO
memristor was excited through the application of a triangular waveform generated
by a standard voltage source v. Plots (a) and (b) in Fig. 4 respectively show test
circuit and excitation signal. The latter is characterized by a period T = 1s, and,
most importantly, exhibits distinctly-valued amplitudes, i.e. 0.8V and 1.2V, under
positive and negative polarity respectively.

In the simulations of Fig. 5 the state initial condition is set to x0 = 0.065. Plot (a)
shows the steady state pinched hysteresis loops emerging in the memristor current–
voltage plane from numerical integration of the model Eqs. (1) and (2) upon replace-
ment of the unit step function, appearing in the state equation, with the continuous
kernel given in (5), and of the modulus function in the memductance expression
contained in Ohm’s based law with the approximating kernel gρ(·) with ρ = 103.
The black, pink, and blue traces respectively refer to values for k set to 30, 40, and
50. Adopting the discontinuous function within differential (1), and the piecewise
differentiable modulus function in the memductance expression (3) within Ohm’s
based law (2), the corresponding numerical result is plotted in red in Fig. 5(b). Among
the traces of plot (a), the blue one most closely tracks the numerical result derived
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Fig. 5 aMemristor current–voltage pinched hysteresis loops observed at steady state upon numer-
ical integration of the TaOmemristor model with differentiable kernel gρ(·)with ρ = 103 replacing
| · | in (2) and continuous function fk(·) substituting step(·) in (1). Traces referring to values of
k set to 30, 40, and 50 are respectively shown in black, pink, and blue. The latter one best agrees
with the pinched hysteresis loop, drawn in red in plot b and obtained from the numerical solution
to the original discontinuous and piecewise differentiable model proposed by HP engineers (see
Fig. 6 in [7]). The blue curve from plot a is also graphed in plot b to highlight the accuracy of the
approximation. See the text for details on test circuit, input, and initial condition

from the discontinuous and piecewise differentiable DAE set, as is evident from the
observation of plot (b), where it is superimposed over the red trajectory.

Therefore, from the class of kernels expressed by (5), the one chosen for the
continuous approximation to the step function has k equal to 50.

The accuracy of the proposed continuous and differentiable variant of the HP
TaO memristor model was confirmed through an extensive number of simulations
covering distinct test circuits, inputs and initial conditions.

Let us show an exemplar from the investigations. Test circuit, and state initial con-
dition are kept unaltered as compared to the simulation of Fig. 5. The input waveform
driving the resistor-memristor series circuit shares the same attributes with the signal
of Fig. 4(b), except for the periodwhich is swept here in {1, 10−2, 10−4, 10−6, 10−8} s
so as to analyse the frequency dependence of the steady state pinched hysteresis
loops in the memristor current–voltage plane. As expected, the pinched hysteresis
loops shrink as the input period decreases. The numerical results in plot (a) refer to
the numerical integration of the original discontinuous and piecewise differentiable
model Eqs. (1) and (2), while the curves in plot (b) were derived through numeri-
cal solution of the approximated DAE set, where fk(·) with k = 50 replaces step(·)
in the state equation, and gρ(·) with ρ = 103 substitutes | · | in the memductance
expression within Ohm’s based law. Each curve in plot (b) matches accurately the
corresponding curve in plot (a) (Fig. 6).
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Fig. 6 Monotonic decrease in lobe area of the steady state memristor current–voltage pinched
hysteresis loop with the frequency of excitation. The text provides details on test circuit, input
source, and state initial condition. Numerical results descending from solution of discontinuous and
piecewise differentiable model and proposed continuous and differentiable variant are respectively
illustrated in plots a and b

4 Conclusions

The availability of reliable models of real memristors [13] is a key preliminary
requirement for a comprehensive investigation of their utilization in integrated cir-
cuit design [14]. Hewlett Packard engineers have recently developed an accurate
model, based on physics laws, for a Tantalum oxide extended memristor manufac-
tured in house. Convergence issues may arise in the numerical integration of the
model due to the presence of discontinuous and piecewise differentiable functions in
state equation and Ohm’s based law respectively. This paper introduces a continuous
and differentiable approximation to the original TaO memristor model for robust
numerical simulations. The approximated differential algebraic equation set sup-
ports the analysis of multi-memristor circuits, which is crucial for the exploration of
the full potential of the promising Tantalum oxide nano-device in future electronics
applications.
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Ultrawideband Microwave 3–7GHz Chaotic
Oscillator Implemented as SiGe Integrated
Circuit

E.V. Efremova and A.S. Dmitriev

Abstract Structure of chaotic generator is proposed that provides chaotic oscil-
lations with required form of signal spectrum. A model system on 0.25-µm SiGe
component library is developed, and IC layout is designed. An experimental sample
ofmicrowave chaotic sourcewith bipolar transistor as the active element is fabricated
with 0.25-µm SiGe process. The system demonstrates generation of ultrawideband
chaotic oscillations of 3–7GHz frequency range. Results of numerical simulation
and experimental study of the chip are analyzed.

1 Introduction

At present, a great interest is attracted to the use of ultrawideband (UWB) signals
for wireless communications. A set of signal types is offered, e.g., ultrashort pulses,
chirps, OFDM-signals, etc. [1–6]. One of the promising types of information carriers
for UWBwireless communications is UWB chaotic radio pulse [7]. This type of sig-
nals is included in standards IEEE 802.15.3a (UltrawidebandWireless Personal Area
Networks) [8] and IEEE802.15.6 (Wireless BodyAreaNetworks) [9]. Several gener-
ations of communication devices based on chaotic technology are already developed
[10]. Potential application areas are local personal networks, sensor networks,mobile
devices, etc. UWB equipment intended for use in such areas employs an unlicensed
3.1–10.6GHz frequency range to transmit data in communication networks com-
posed of a huge number of transceivers. Appearance of such tasks stimulates active
development of carrier sources, i.e., generators of microwave chaotic signals.
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Prospects of a wide use of microwave chaos in wireless communication systems
depend on possibility of constructing chaotic generators with preassigned character-
istics. Consumer electronics and sensor networks impose restrictions on the proper-
ties of chaotic transceivers. Chaotic generators for such applications must produce a
UWB chaotic signal in a prescribed frequency band with rather smooth power spec-
trum envelope and prescribed power spectral density. At the same time, such devices
must be compact, have low power consumption and repeatable characteristics. Ide-
ally, chaotic generator must be implemented as a chip.

By now, basic principles of synthesizing low-dimensional oscillators with preas-
signed power spectrum are already developed [11, 12]. In particular, these principles
work well for oscillators with a transistor as the active element. Computer simulation
methods formicrowave chaotic sources with actual element characteristics taken into
account were developed [13]. Using these methods, a number of lumped-component
generators for various frequency bands were designed [13, 14].

The next step to be done is implementation ofUWBmicrowave chaotic generators
as microchips. A peculiarity of such systems is very small size of micro-chips in
comparison with the characteristic wavelength of generated signal. So, they cannot
contain any distributed elements, theymust be lumped-parameter systems.Moreover,
there are rather strong restrictions on element values. From practical point of view,
only small-value inductances can be used. Another feature of passive elements on
the die is strong nonideality, especially high ohmic losses. Also, elements interact
through the chip substrate, which significantly complicates the original oscillator
structure.

An IC chaoticmicrowave oscillator on SiGe technologywas first developed in [15,
16]. Experimental IC generator provided chaotic oscillations of 3–8GHz frequency
band with 50 µW signal power.

At the same time, for practical use (including UWB communications) chaotic
oscillators with higher power output and more smooth spectrum envelope are
demanded. Solving this problem is the aim of the present work.

2 Oscillator Model

Chaotic oscillator circuit, based on a single-transistor active element and a passive
quadripole closed in the feedback loop, was used. As was shown earlier, choos-
ing parameters of the passive quadripole, one can form the power spectrum of the
generator output signal [13].

This approach was used in the design of UWB chaotic generator. Electric circuit
of the proposed generator is presented in Fig. 1. The proposed structure is shown to
produce chaotic oscillations in a wide parameter range, whereas the frequency band
is defined by frequency selective properties of the passive quadripole in the feedback
loop and the output signal tap circuit.
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Fig. 1 Electric circuit of chaotic generator

Silicon-germanium (SiGe) 0.25-µm technology was taken for IC fabrication. The
reasons were a possibility to use a bipolar transistor and sufficiently high boundary
frequency, which was an important characteristic for chaotic oscillators.

To design and simulate generator microchip, we used Cadence IC software. This
is a standard specialized tool for full-cycle microchip design, from electric circuit to
fabric-ready topology. It allows us to use the component libraries given by manufac-
turers and to adapt the system to a concrete technology process.

Thus, the first stage of generator design is deduction of schematic circuit diagram.
At the next stage, ideal elements of the generator circuit are replaced with models
of bipolar transistor and passive components from SiGe 0.25-µm process library.
Passive elements from the process library are described by equivalent schemes, that
take into account substrate leakage current, skin-effect, etc. To simulate the bipolar
transistor, a high-dimensional SPICE-model is used, that takes into account frequency
and nonlinear effects.

Realistic inductive elements have non-zero resistance, whereas base-emitter and
emitter-collector junctions have capacitances. Model elements from the technology
library complywith these factors. To obtain generation at high frequencies, capacities
C1 and C2 must be small. Decreasing these values leads to the situation when they
become comparable to the capacities of base-collector, base-emitter junctions. At
the same time, the active resistance of the inductor is quite big, so there is no need in
additional resistors. This allows us to simplify the systemand employ the capacities of
base-emitter and emitter-collector junctions as capacitors C1 and C2 of the generator
circuit, and replace resistances R1, R2, R3, R4, R5 with active resistances of the
corresponding inductors.

To test generator experimentally, the oscillator IC is placed in QFN16 package.
Since the package can affect the dynamics of the oscillator, it is reasonable to take
its impact into account at the stage of crystal design, in order to compensate possible
negative effects. With this purpose, an equivalent circuit of the package was added
to the oscillator model.
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3 Simulation

After replacing the ideal elements with elements from the technological library, the
system was simulated to calculate time-domain and spectral characteristics of gener-
ated oscillations. For communication applications the spectrum of chaotic generator
as a UWB signal source must be smooth enough within the operation frequency
range. Moreover, the chaotic mode must be stable under small variations of the volt-
age supply. To achieve this property, the system component values are selected in
such a way as to obtain wide parameter area, in which chaotic mode with smooth
spectrum envelope is realized. As a result, a chaotic oscillator with nonideal active
and passive elements is synthesized, that generates chaotic oscillations in 3–7GHz
frequency band.

In the generator model, as the supply voltage is increased the following bifur-
cations take place. First, periodic oscillations of the main frequency are excited
(Fig. 2a), then a frequency grid appears (Fig. 2b, c) and then comes continuous spec-
trum (Fig. 2d, e), that corresponds to chaotic mode. The transition from regular to
chaotic mode occurs through a cascade of period-doubling bifurcations. A further
voltage increase leads to destruction of the chaotic mode (Fig. 2f).

Synthesized generator model provides generation of chaotic oscillations in the
frequency band F = 3–7GHz. The power is about P = 1.6mW at supply voltage
VE = 2V and current consumption I = 26mA. Largest Lyapunov exponent of the
mode is equal to 0.1.

At the last stage of developing chaotic generator, microchip topology is designed
(Fig. 3), based on the synthesized oscillator with nonlinear elements.

Design of microchip topology consists of placing the system elements on silicon
substrate and connecting these elements with connection pads. Insertion of the pads
and interaction of the elements via substrate make essential effect on the system
dynamics. This effect can be seen in Fig. 4.

Here the result of the system dynamics simulation is shown for the same parame-
ter set as in Fig. 2d, but with some artifacts taken in consideration. Actually, in this
case the effect of parasitic capacitance was taken into account. Though the frequency
range and power consumption remain almost the same, the power spectrum enve-
lope (Fig. 4b) becomes non-uniform and the output power decreases. Speaking of the
microchip topology, artifacts can lead to not only degradation of spectral characteris-
tics of the chaotic signal, but to destruction of the chaotic mode itself. It is especially
sensitive to resistive effects. That is why at the last stage of simulation, element
arrangement on the substrate must be optimized in order to minimize the influence
of topology artifacts on generator characteristics. Also, the system parameters must
be corrected to compensate effect of unavoidable topology artifacts.
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Fig. 2 Model. Power spectrum density of SiGe 0.25µm generator IC versus frequency, a VE =
0.8V, b VE = 1.16V, c VE = 1.7V, d VE = 1.8V, e VE = 2.0V, f VE = 2.3V

4 Experiment

A set of experimental samples of SiGe microchips was fabricated according to the
developed model. The chip area was about 1.6 sq.mm. For experimental studies the
chip was placed in a plastic package, the chip pins were connected with the package
terminals with thin wires.

Experimental investigation of the microchip shows that with increasing supply
voltage periodic oscillations are excited first at about 2GHz. After that a frequency
grid appears in the power spectrum (Fig. 5a), that consists of the main frequency and
its odd and even harmonics. This is followed by a set of period-doubling bifurcations
(Fig. 5b, c) and transition to a chaotic mode with ragged power spectrum envelope
(Fig. 6a). After that goes an area in which regular and chaotic modes change each
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Fig. 3 Integrated circuit topology

Fig. 4 Waveform and power spectrum density of a chaotic mode of the generator model (parasitic
capacitance is taken into account) at VE = 2V

other, and finally the system comes to a mode with continuous power spectrum
(Fig. 6b). Further voltage increase leads to destruction of the chaotic mode (Fig. 6c).
Comparison of Fig. 2 andFigs. 5 and 6 show that, as awhole, the scenarios of dynamic
mode evolution in the model and the experimental system coincide. Signal power
spectra occupy the same frequency range, the transition from regular to chaotic
modes occurs through cascade of period doubling bifurcations. Note that the region
of chaotic modes (with the power spectrum in Fig. 6c) is quite large, about ΔVE =
0.35V.
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(a)

(b)

(c)

Fig. 5 Experiment. Power spectrum density of IC generator on SiGe 0.25 µm versus frequency,
a VE = 0.93V, b VE = 1.01V, c VE = 1.08V. X-axis step is 1GHz, Y-axis step 10dB
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(a)

(b)

(c)

Fig. 6 Experiment. Power spectrum density of IC generator on SiGe 0.25 µm versus frequency,
a VE = 1.28V, b VE = 2.1V, c VE = 2.36V. X-axis step is 1GHz, Y-axis step 10dB
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Fig. 7 Power spectrum of
chaotic mode of the
generator from [14]. X-axis
step is 1GHz, Y-axis step
10dB

In operation mode, at supply voltage VE = 2.1V, the generator produces chaotic
oscillations in the frequency band 3–7GHz (Fig. 6c). This agrees with the simula-
tion results. Current consumption in this mode is I = 26mA, which is close to the
calculated I = 24mA. Output signal power is about P = 300µW.

Earlier an SMT (surface-mount technology) lumped-component generator of 3–
8GHz chaotic oscillations (Fig. 7) was developed and investigated [14]. The signal
power of this system was about 300 µW. So, the proposed and developed IC chaotic
oscillator demonstrates spectral and power characteristics close to those of the SMT
generator.

5 Conclusions

SiGemicrochipwas developed and fabricated. It generates ultrawidebandmicrowave
chaotic oscillations of 3–7GHz frequency band. Experimental results are in good
agreement with simulation, which justifies the approach and opens ways for mass
production of UWB microwave chaotic generator chips. This, in turn, allows design
and mass production of consumer communication devices based on UWB chaotic
signals on modern microelectronic technology.

In addition to 3–7GHz frequency band, other areas of microwave range are also
in demand. So, development of integrated UWB chaotic generators for different
frequency ranges becomes an actual task.Generators ofUWBmicrowave oscillations
can be used in numerous applications such as wireless personal and sensor networks,
mobile robots, etc.
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Cryptanalysis of a Random Number
Generator Based on a Chaotic Oscillator

Salih Ergün

Abstract This paper introduces an algebraic cryptanalysis of a random number gen-
erator (RNG) based on a chaotic oscillator. An attack system is proposed to discover
the security weaknesses of the chaos-based RNG. Convergence of the attack system
is proved using master slave synchronization scheme where the only information
available are the structure of the RNG and a scalar time series observed from the
chaotic oscillator. Simulation and numerical results verifying the feasibility of the
attack system are given. The RNG does not fulfill NIST-800-22, Diehard and Big
Crush statistical test suites, the previous and the next bit can be predicted, while the
same output bit sequence of the RNG can be reproduced.

1 Introduction

People have needed to keep their critical data secure since they began to communicate
with each other. Over the last decades there has been an increasing emphasis on using
tools of information secrecy. Certainly, random number generators (RNGs) have
more prominently positioned into the focal point of research as the core component
of the secure systems. Although many people are even unaware that they are using
them, we use RNGs in our daily business. If we ever obtained money from a bank’s
cash dispenser, ordered goods over the internet with a credit card, or watched pay
TV we have used RNGs. Public/private key-pairs for asymmetric algorithms, keys
for symmetric and hybrid crypto-systems, one-time pad, nonces and padding bytes
are created by using RNGs [1].

Being aware of any knowledge on the design of the RNG should not provide a
useful prediction about the output bit sequence. Even so, fulfilling the requirements
for secrecy of cryptographic applications using the RNGdictate three secrecy criteria
as a “must”: 1. The output bit sequence of the RNG must pass all the statistical tests
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of randomness; 2. The previous and the next random bit must be unpredictable [2]
and; 3. The same output bit sequence of the RNG must not be able to be reproduced
[3].

An important principle ofmodern cryptography is theKerckhoff’s assumption [3],
states that the overall security of any cryptographic system entirely depends on the
security of the key, and assumes that all the other parameters of the systemare publicly
known. Cryptanalysis is the complementary of cryptography. Interaction between
these two branches of cryptology form modern cryptography which has become
strong only because of cryptanalysis revealing weaknesses in existing cryptographic
systems.

There are four fundamental random number generation methods out of all RNG
designs reported in the literature: 1.Amplification of a noise source [4, 5]; 2. Jittered
oscillator sampling [6, 7]; 3. Discrete-time chaotic maps [8, 9] and; 4. Continuous-
time chaotic oscillators [10, 11]. Although the use of discrete-time chaotic maps
in the realization of RNG has been widely accepted for a long period of time, it
has been shown during the last decade that continuous-time chaotic oscillators can
also be used to realize RNGs [10, 11]. In particular, a so-called RNG based on a
continuous-time chaotic oscillator has been proposed in [10].

In this paper we target the RNG reported in [10] and further propose an attack
system to discover the security weaknesses of the targeted system. The strength of
a cryptographic system almost depends on the strength of the key used or in other
words on the difficulty for an attacker to predict the key. On the contrary to recent
RNG design [11], where the effect of noise generated by circuit components was
analyzed to address security issue, the target random number generation system [10]
pointed out the deterministic chaos itself as the source of randomness.

Advances in computing power necessitate a continuous chase between security
and attacks. Together with constantly increasing communication rates, increases in
computing power eventually reveals the need for more secure and fast RNGs. In
comparison with RNGs based on the other common techniques, which are advanta-
geous in the sense that true random behavior can be mathematically proven, it is seen
that RNGs based on continuous-time chaotic oscillators can offer much higher data
rates. Following up in this direction, we investigate the usefulness of the proposed
attack methods for the security analysis of chaos based RNG designs.

The organization of the paper is as follows. In Sect. 2 the target RNG system is
described in detail; In Sect. 3 an attack system is proposed to cryptanalyze the target
system and its convergence is proved; Sect. 4 illustrates the numerical results with
simulations which is followed by concluding remarks.

2 Target System

Chaotic oscillators are categorized into two groups: discrete-time or continuous-
time, respectively regarding on the evolution of the dynamical systems. In com-
parison with RNGs based on discrete-time chaotic sources it appears that RNGs
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based on continuous-time chaos can be implemented using less complex and more
robust structures, particularly due to the absence of successive sample-and-hold and
multiplier stages.

In target randomnumber generation system [10], a continuous-time double-scroll-
like chaotic attractor is utilized as the core of the RNG. This chaotic system is derived
from the negative-gm LC tank oscillator and expressed by the following (1):

ẋ1 = ax1(s1 − 1) − y1
ẏ1 = x1 − z1
ṡ1 = c − a

2 [(s1 − 1)2 + x21 ]

2ż1 = y1 − 2z1 + k

⎧
⎪⎨

⎪⎩

b i f x1 ≥ xsat√
2abx1

√
1 − ( x1√

2xsat
)2 i f |x1| < xsat

−b i f x1 ≤ −xsat

(1)

The equations in (1) generate chaos for different sets of parameters. The chaotic
attractor shown in Fig. 1 is obtained from the numerical analysis of the system with
a = 0.4, b = 0.15, c = 0.8 and k = 8.

Target random number generation mechanism is illustrated in Fig. 2 where bit
generation method is based on jittered oscillator sampling technique. As depicted in
Fig. 2 output of a fast oscillator is sampled on the rising edge of a jittered slower clock
using a D flip-flop where the jittered slow clock is realized by the sum of triangular
wave and a chaotic signal.

In this design, if the fast and the slower clock frequencies are known as well as the
starting phase difference ΔT , the output of the fast oscillator, sampled at the rising
edge of the jittered slower clock, can be predicted. It can be shown that the output

Fig. 1 Numerical analysis results of the chaotic system for a = 0.4, b = 0.15, c = 0.8 and k = 8
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Fig. 2 Target random number generation system

bit sequence S(bit)i is the inverse of least significant bit of the ratio between the total
periods of the jittered slower clock and period of the fast clock:

S(bit)i =
(

� (
∑i

j=1 Tslow j )−ΔT

T f ast /2
�mod2

(2d f ast )

)′
(2)

where T f ast = 1
f f ast

, f f ast , d f ast are the period, frequency and the duty cycle of
the fast clock, respectively, and the periods of the jittered slower clock Tslow j are
obtained at times t satisfying:

s(t) = x1(t) + tw(t) = Q with ds
dt > 0 (3)

where x1(t) is the chaotic signal, tw(t) is the triangular wave signal and Q is the
threshold value used to generate slower clock. We have numerically verified that,
for high f f ast

fslow center
ratios, the effect of ΔT becomes negligible and the mean value

(moutput ) of the output sequence Sbit approaches the fast clock duty cycle d f ast

where frequency of the triangular-wave, corresponding to mean frequency of the
jittered slower clock fslow center , determines the throughput data rate ( frng). It should
be noted that, anyone who knows the chaotic signal output can reproduce the same
output bit sequence.

The authors of [10] have preferred to use FIPS-140-1 [12] statistical test suite
in order to analyze output randomness of their chaos-based RNG design. However,
NIST-800-22 [13], Big Crush [14] and Diehard [15] statistical test suites which
are available at the publication date of target paper [2] weren’t applied to output
bit stream of the target RNG. It should be noted that, the target random number
generation system [2] doesn’t satisfy the third secrecy criteria, which states that
“RNG must pass all the statistical tests of randomness.”
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3 Attack System

After the seminal work on chaotic systems by Pecora and Carroll [16], synchroniza-
tion of chaotic systems has been an increasingly active area of research [17]. In this
paper, convergence of attack and target systems is numerically demonstrated using
master slave synchronization scheme by means of feedback method [17]. In order to
provide an algebraic cryptanalysis of the target random number generation system a
attack system is proposed which is given by the following (4):

ẋ2 = ax2(s2 − 1) − y2
ẏ2 = x2 − z2 + d(y1 − y2)
ṡ2 = c − a

2 [(s2 − 1)2 + x22 ]

2ż2 = y2 − 2z2 + k

⎧
⎪⎨

⎪⎩

b i f x2 ≥ xsat√
2abx2

√
1 − ( x2√

2xsat
)2 i f |x2| < xsat

−b i f x2 ≤ −xsat

(4)

whered is the coupling strengthbetween the target (master) and attack (slave) systems
and the only information available are the structure of the target random number
generation system and a scalar time series observed from y1.

In this paper, we are able to construct the attack system expressed by the (4) that
synchronizes (y2 → y1 for t → ∞) where t is the normalized time. We define the
error signals as ex = x1 − x2, ey = y1 − y2 and ez = z1 − z2 where the aim of the
attack is to design the coupling strength such that |e(t)| → 0 as t → ∞.

The master slave synchronization of attack and target systems is verified by the
conditional Lyapunov Exponents (CLEs), and as firstly reported in [16], is achievable
if the largest CLE is negative. CLEs for the attack system are calculated from the
set of ordinary differential equations given in (4) where standard QR decomposition
method of Eckmann and Ruelle (Reviews of Modern Physics, 1985) is used.

In Fig. 3, largest CLE graph is drawn as a function of coupling strength d while
a scalar time series is observable from y1. As drawn in the figure, when 0.66 < d <

0.99 then the largest CLE is negative and hence identical synchronization of target
and attack systems starting with different initial conditions is achieved and stable
[16]. (Largest CLE = −0.0232169 for d = 0.67). However for the values of d out of
the given range, largest CLE is positive and identical synchronization is unstable.

Log |ex (t)|, Log |ey(t)| and Log |ez(t)| are shown in Figs. 4, 5, and 6 respectively
for d = 0.71 (where the synchronization effect is better than that of d = 0.67) which
indicate that the identical synchronization is achieved in less than 340t (Largest CLE
= −0.0661455 for d = 0.71).

Particularly, we have reported preliminary results of an other cryptanalysis in [18]
where auto-synchronization scheme is used. In this work we recall this paper and
further propose a novel attack system where both target random number generation
mechanism and target chaotic system are different from the previous work [18].
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Fig. 3 Largest CLEs as a function of coupling strength d

Fig. 4 Synchronization error Log |ex |
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Fig. 5 Synchronization error Log |ey |

Fig. 6 Synchronization error Log |ez |

4 Numerical Results

We numerically demonstrate the proposed attack system using a 4th-order Runge–
Kutta algorithm with fixed step size and its convergence is illustrated in Figs. 4, 5,
and 6. Numerical results of x1 − x2, y1 − y2, and z1 − z2 are also given in Figs. 7, 8,
and 9, respectively illustrating the unsynchronized behavior and the synchronization
of target and attack systems.

It is observed from the given figures that, master slave synchronization is achieved
and stable. As shown by black lines in these figures, no synchronous phenomenon
is observed before 340t . In time, the proposed attack system converges to the target
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Fig. 7 Numerical result of
x1 − x2 illustrating the
unsynchronized behavior
and the synchronization of
target and attack systems

Fig. 8 Numerical result of
y1 − y2 illustrating the
unsynchronized behavior
and the synchronization of
target and attack systems

system and identical synchronization is achieved where colored lines depict synchro-
nized behaviors of chaotic states in Figs. 7, 8, and 9, respectively.

Since the identical synchronization of attack and target systems is achieved
(x2 → x1) in 340t , the estimated value of S()i bit which is generated according to the
procedure explained in Sect. 2 converges to its fixed value. As a result, it is obvious
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Fig. 9 Numerical result of
z1 − z2 illustrating the
unsynchronized behavior
and the synchronization of
target and attack systems

that identical synchronization of chaotic systems is achieved and hence output bit
streams of target and attack systems are synchronized.

It is clearly shown that master slave synchronization of proposed attack system is
achieved. Hence, output bit sequences of target and attack systems are synchronized.
As a result, cryptanalysis of the target random number generation system not only
predicts the previous and the next random bit but also demonstrates that the same
output bit sequence of the target random number generation system can be repro-
duced. In conclusion, the target system [10] satisfies neither the second, nor the third
secrecy criteria that a RNG must satisfy.

5 Conclusions

In this paper, we propose an algebraic attack on a random number generator (RNG)
based on a chaotic oscillator. An attack system is introduced to discover the security
weaknesses of the chaos-basedRNGand its convergence is proved usingmaster slave
synchronization scheme. Although the only information available are the structure
of the target RNG and a scalar time series observed from the target chaotic system,
identical synchronization of target and attack systems is achieved and hence output
bit streams are synchronized. Simulation and numerical results presented in this work
not only verify the feasibility of the proposed attack but also encourage its use for the
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security analysis of the other chaos-based RNG designs. Proposed attack, renders
generated bit streams predictable, thereby qualifying the target RNG to be used as a
not random but pseudo random source.
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Part III
Networks



Experiments on Clustering and Synchronous
Patterns in a Configurable Network
of Chaotic Oscillators

Soudeh Yaghouti, Carlo Petrarca and Massimiliano de Magistris

Abstract We present new experimental results on a recently developed set-up,
implementing a dynamically configurable network of chaotic oscillators with Chua’s
circuits as nodes. The set-up has been designed and tailored to easily perform real
time experiments on complex networks with arbitrary topology.We focus here on the
emergence of symmetry related synchronization patterns, as well as on the switching
among different clusters due tomodification of the network structure and/or coupling
strength, that are experimentally analyzed for the first time in such type of networks.
The observed behavior confirms basic theoretical expectations on small networks,
as recently appeared in literature. Moreover the scalability to higher complexity
network, as allowed by the considered set-up, is briefly discussed.

1 Introduction

The analysis of oscillatory networks, with possibly chaotic nodes, has received a
plenty of scientific interest in the past and recent years (for an extensive review refer
to [1, 2]). Their distinguishing characteristics from other modeling paradigms of
real phenomena are: (i) collective behavior (better known as “emerging dynamics”
differing substantially from individual “stand-alone” ones; (ii) the concept of com-
plexity, that arises from proper combination of non linearity of single nodes and the
richness of the interconnection structure. Such interest basically bases on the vast
spectrum of potential application domains, ranging from biological systems to social
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networks or, in the specific area of circuit and systems, from electric power grids to
neural networks.

Synchronization [3] of such networks is one of the most studied effects; in partic-
ular, complete synchronization, which implies the coincidence of all state variables,
has been widely explored and can be analytically predicted using theMaster Stability
Function (MSF) [4]. At the same time, the transition from nonsynchronous to syn-
chronous state is a fundamental question in order to understand the synchronization
mechanisms [5]. For instance, it has been shown that during such a transition the
system can undergo phase synchronization [6, 7] or can form clusters, i.e., groups of
state variables in which states belonging to the same cluster are synchronized, while
states belonging to different clusters are not correlated [8].

In this context it has been recognized the importance of electronic analog real-
izations of complex networks as prototypical models of different real systems [9],
motivated by the availability of well developed simulation tools and, in principle,
by the possibility of realizing prototypes as integrated structures. Nevertheless there
are quite few experimental realizations, especially when high cardinality and recon-
figurable systems are concerned. We designed and realized an “ad hoc” discrete
electronic implementation of a re-configurable network of chaotic oscillators, based
on an entirely settable set of interconnections and a robust implementation of Chua’s
circuits as nodes [10–14]. This unique experimental realization allows, besides the
setting of the main node’s dynamic parameters, a complete and dynamic control on
the coupling network in terms of topologies, link type, direction and strength. A high
number of data acquisition channels permits the recording and real time processing
of the node’s states. As a result, flexible experiments can be easily carried out and
the setup can be viewed as an “analog simulator” of a quite general structure net-
work, drastically reducing the time for getting results in realistic configurations, as
compared to simulations. At the same time, the effects induced by the coexistence
of non-perfectly identical oscillators, i.e., nodes realized with real components, are
naturally taken into account.

In this work we use the above mentioned experimental set-up to describe the tran-
sition process towards synchronization in networks of non linear oscillators, when
some property of the interconnection network is intentionally varied, or the topolog-
ical structure is suddenly altered by removing or switching some link. In particular,
we wish to explore the possible clustering of node’s dynamics related to properly
defined symmetries in the interconnecting network. We have experimentally found a
complex transition from complete synchronization to the uncorrelated regime, with
the emergence of clusters described by specific patterns. The results are compared
with some theoretical findings as in [15].

2 The Experimental Setup

The structure and realization of the experimental setup has already been described
in quite detail in previous papers [10, 11, 14], and will not be repeated. For the sake
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Fig. 1 a Chua’s circuit typical schematic, reference parameters, b Chua’s diode characteristic,
c general schematic of the interconnecting network topology

of clarity only its major features will be briefly summarized hereafter. The network
is based on a modular set of Chua’s circuits whose dynamics can be individually
settled onto periodic or chaotic trajectories. The network nodes are interconnected
via a fully reconfigurable link network, with adjustable topologies. Figure1 depicts a
schematic draw of theChua’s nodes and the interconnecting links alongwith symbols
and names of parameters used within the paper.

In the design and simulation phase, requirements in accuracies of realization have
been determined, in order to ensure uniformity in the operating conditions between
the circuits incorporated in the network. Components have been properly selected
to fulfill such realization requirements, as described in [10]. Although the realized
setup allows in principle arbitrary choice in determining the structure and the inter-
connected variables, we will consider in the following the specific case of linking the
voltages vc1i across capacitor C1i (i = 1, . . . , N ,where N is the number of nodes),
as schematically depicted in Fig. 1. The nodes are connected through diffusive links
via settable resistance values Rlink ; in particular the link resistances span in the
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range 100 � to 12.8 k� in 255 steps of 50 �, in order to properly scan the transition
from complete synchronization to complete unsynchronized state, for the considered
topologies.

A modular USBmulti-channel acquisition system allows to measure and monitor
the variables of interest (nodes’ states) in real time. Up to 64 state variables can be
synchronously acquired. The whole network is controlled via a USB interface from
a PC running LabVIEW. A typical full range scan of the parameters range of 255
steps takes about 45 min, this time being mainly dominated by the setting time for
the link network at each step.

Evaluation of the synchronization level of the acquired waveforms has been per-
formed by introducing a suitable index Icc calculated by extending at N waveforms
the definition of the cross correlation index Icc(xi , x j ) between two time series xi (k)
and x j (k):

Icc(xi , x j ) =

Ns∑

k=1

[(
xi (k) − Xi

) (
x j (k) − X j

)]

√
Ns∑

k=1

[
xi (k) − Xi

]2 [
x j (k) − X j

]2
(1)

where Ns is the number of samples of the signal, X p = 1
Ns

Ns∑

k=1
xp(k), p = i, j is the

mean value of the sequence xp(k). Icc(xi , x j ) is 1 when the signals xi and x j are
identical, it is −1 when they are opposite signals, it is 0 when they are uncorrelated.

In the case of N discrete signals xp with p = 1, . . . , N the correlation index Icc
can be defined by first calculating the average trajectory as:

x(k) = 1

N

N∑

k=1

(
xp(k) − X p

)
, (2)

then defining N correlation coefficients Icc(xp, x̄) and calculating their mean value

Icc = 1

N

N∑

p=1

Icc(xp, x) (3)

Again, the index is bounded in [−1, 1], approaching 1 when all traces are fully
synchronized. As will be shown in the following, the plotting of the index (1 − Icc)
will give a better and clearer resolution of the waveform synchronization.
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Fig. 2 The topologies
considered in paper for a 5
nodes network (the
red-dashed lines indicate
some possible topological
symmetries): a original
network with node 1
connected to all the others; b
same network with the link
2–5 different from the
others; c link 1–4 removed
from the network (a); d link
1–3 removed from the
network (a)

(a) (b)

(d)(c)

2.1 Experimental Results

Recent articles have analyzed the transition towards synchronization and the pos-
sible growth of synchronous patterns in networks of coupled nonlinear oscillators
[5–9, 15]. They have theoretically and numerically investigated the role of the net-
work topology and the influence of special links between nodes beyond the complete
synchronization regime [16]. In particular it has been demonstrated how also small
size regular networks allow to analyze the emergence of topological clustering and
synchronous patterns in the transition to complete synchronization. For our exper-
iments we have here considered a simple five-Chua-nodes network, as depicted in
Fig. 2a, in which all nodes, when uncoupled, are settled at identical nominal para-
meters with double scroll chaotic dynamics (for details about the set-up see [10]).
In this reference network, we have investigated the transition towards complete syn-
chronization both as a function of the coupling strength, as well as a function of some
topological changes.

The main information regarding the interconnection network is well expressed by
the rank N − 1 couplingmatrixC = (ci j ) (where ci j represents the coupling strength
between nodes i and j , with cii = − ∑

∀ j �=i
(ci j )), being it related to both topological

and physical interconnection parameters. The analysis of its properties is used to
predict the stability of the complete synchronization for linearly coupled identical
nodes (via MSF method), as well as for analysis of partial synchronization (stability
of clusters), as shown in [15, 16].

Topological symmetries, as resulting from invariant permutations in matrix C
(and easily identified at a glance for small networks), are fundamental in the process
of creation of symmetry related synchronous clusters in a regime of non complete
synchronization, and for the analysis of their stability. Following the concepts of sta-
bility along the synchronous dynamics as defined in MSF theory, one can extend the
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ideas to the case of partial (clustered) synchronous manifold, and the correspond-
ing transverse manifold by linearizing the perturbed motion around synchronous
dynamics. This is done, after defining a permutation matrix P leaving invariant the
adjacency matrix A, and block diagonalizing C as:

Ĉ = M−1CM =
[
Ctran 0
0 Csyn

]

(4)

M : M−1PM = P̂ = diagonal

In thisway the eigenvalues set ofC (0 = λ1 < λ2 < · · · < λN ) is divided into two
groups, each belonging to one diagonal block,Csyn , with dimension n2, representing
the synchronous subspace and Ctran , with dimension n1, indicating the subspace
of transverse motions (with 0 eigenvalue belonging to Csyn), satisfying the sorting
relations (0 = λ1syn < λ2syn < · · · < λn2syn), (λ1tran < λ2tran < · · · < λn1tran)with
N = n1 + n2.

In a network with equal coupling strength ε, the topological condition for get-
ting stable clusters is given from the damping of all transverse motion modes, i.e.,
ελktran > σc for all k = 1, . . . , n1,whereσc is the threshold obtained byMSFbeyond
which network is globally synchronized. At the same time, if we wish to avoid the
trivial global synchronization, at least one of the synchronous modes (except the first
one which represents the global synchronization manifold) should be unstable i.e.,
ελ2syn < σc, which consequently results in the inequality [15, 16]:

λ2syn < λ1tran (5)

With reference to the five nodes network of Fig. 2a, a preliminary analysis has
been carried out for the evaluation of the global cross correlation index as a function
of the coupling resistance Rlink (for the case of equally weighed links). At each Rlink

step the resulting waveforms have been recorded and the cross-correlation index
Icc calculated (referred to the state variable vc1). The observed trend of (1 − Icc) as
a function of Rlink is shown in Fig. 3: synchronized state is characterized by very
low values (in the order of 10−6) of the index, and complete synchronization is
lost by a sudden and sharp jump of about two orders magnitude. The solid vertical
line indicates the theoretical synchronization threshold (Rth = 8843 �) as calculated
with theMaster Stability Function approach, showing a very good agreement to what
experimentally observed. After the sharp jump at the synchronization threshold, the
curve trend exhibits a quite slow continuous increase to higher values towards unity,
when the correlation becomes negligible. At such intermediate cross correlation
levels one can expect that, although not completely synchronized, the waveforms
still preserve some correlation. Figure4 shows the waveforms corresponding to two
topical points of Fig. 3: the complete synchronization just below the threshold, Fig. 4a
(Rlink = 9442 �), and its loss above the threshold (Rlink = 9478 �) where the time
behavior of vc1at node 1 differs substantially from all other waveforms, whereas all
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Fig. 3 Cross correlation index (1 − Icc) versus Rlink for network topology of Fig. 2a; solid vertical
line represents the MSF theoretical threshold for complete synchronization
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Fig. 4 vc1 waveforms for the network topology of Fig. 2a: a below the synchronization threshold;
b above the synchronization threshold, showing lag synchronization among nodes 2, 3, 4 and 5
(node 1 is acting as “average” reference node)

the remaining nodes 2, 3, 4 and 5 exhibit some form of “lag” synchronized dynamics.
Note that the absence of clustering, also observed at higher values of the coupling
resistance, is in agreement, for the considered case, to theoretical results given in
[15].

In order to show the effects of changes in topology the following experiments
have been realized: the original network of Fig. 2a has been reconfigured twice, each
time by removing one link. By removing the link between nodes 1 and 4 we get
the network of Fig. 2c; by removing the link 1–3 we obtain the network of Fig. 2d.
In both cases, as shown in Fig. 2, the symmetries of the network change and the
transition from the synchronized state towards the unsynchronized state behaves
differently, as shown in Fig. 5. Unlike the previous case, (Fig. 3) they do not exhibit
a sudden loss of synchronization, but a smoother transition within a finite interval
of coupling resistance values. The global behavior of the two topologies, from the
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Fig. 5 Cross correlation index Icc versus Rlink the network topologies 2c (a) and 2d (b). Red
topical points in Fig. 6a correspond to Rlink = 6278 �, 7106 �, 11306 �, respectively

complete synchronization perspective, is very similar, as expected due to their dual
symmetries.

With reference to the topology of Fig. 2c,wewill show thewaveforms correspond-
ing to the topical points in Fig. 5a. At the first point the waveforms are well synchro-
nized, corresponding to the low value of their average cross correlation (1 − Icc)
(Fig. 6a). At the second point they are no longer completely synchronized, whereas
the network still keeps some coherence among the nodes by creating some clusters,
formed by two couples of nodes (1–2) and (3–5) (Fig. 6b), that reflect the symmetry
in the topology. Such clustered synchronization is definitively lost after a second
jump in the index at the third point, as confirmed by the waveforms of Fig. 6c.

To better show the topology related clustering behavior, it is possible to calcu-
late the relative correlation index Icc(xi , x j ) between the two generic waveforms
xi and x j , as defined in (1). For the considered case, in Fig. 7a, b we report such
index as function of the link resistance, for the two considered topologies of Fig. 2c,
d. With reference to the 2c topology, the correlation between nodes 3–5 and 1–2
are shown in Fig. 7a. It is possible to observe that the clustering of nodes 3–5 is
maintained in quite a large resistance range, while the correlation between nodes
1–2 decreases continuously as the link resistance increases. Moreover, at a cer-
tain threshold (Rlink = 11300 �) the cluster (3–5) suddenly disappears, whereas the
cluster (1–2) is only partially recovered: as a consequence, the network undergoes
a sudden jump towards the globally unsynchronized state. The analysis of Fig. 7b,
referring to topology (2d), reveals the duality of the two cases, notwithstandingminor
differences due to realization tolerances.

A last experiment has been considered, to study how the growth of synchronous
patterns can be affected by varying the coupling strength (weight) of a single link,
where all the rest stay unchanged, as theoretically discussed in [15]. The reference
topology is that indicated in Fig. 2b in which, leaving the basic symmetry unaffected,
we change theweight (that is the value of the link resistance) between the nodes (2–5),
keeping all other link values fixed (Rlink = 10 k�).
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Fig. 6 Waveforms for topology (2c): a complete synchronization; b formation of clusters; c com-
plete loss of synchronization
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Fig. 7 Relative cross correlation index Icc(xi , x j ) versus Rlink : a for the topology (2c); b for the
topology (2d)

First of all we observe that, even for very small value of the link resistance
Rlink(2−5), the global synchronization is never achieved. However it is very interest-
ing to observe that (Fig. 8), with increasing Rlink(2−5), clusters between nodes (2–5)
and nodes (3–4) are first formed, then they disappear in the interval [7.9 − 10.8] k�,
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Fig. 8 Relative cross
correlation index Icc(xi , x j )
versus Rlink for topology
(2b), as a function of the link
resistance Rlink(2−5)
between nodes (2 − 5)
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where they are substituted by different clusters formed by the couples of nodes (2–
3) and (4–5). By further increasing the link resistance above 10.8 k�, the clusters
(2–5) and (3–4) appear again while clusters (2–3) and (4–5) disappear. Such behav-
ior is better brought to evidence by means of the oscillator’s deviation [5] from the
synchronous manifold of the corresponding cluster, defined as:

Δvc1i (k) = (vc1i (k) − 〈vc1(k)〉) (6)

where 〈vc1(k)〉 is themean value at kth sample of thewaveforms belonging to the clus-
ter. It has been calculated both for cluster (2–5) and (2–3) in Fig. 9a at three different
values of the link resistance. The mutually exclusive formation and disappearance
of clusters is visually distinguishable.

We complete the analysis of this case by evaluating the eigenvalues of synchro-
nous and transverse manifolds. In Fig. 9b their dependency on Rlink(2−5), within the
considered range, is given. The clusters, previously evidenced experimentally, are
now explained in terms of the reciprocal relation-ships between transverse and syn-
chronous eigenvalues subsets, according to inequality (5).

At Rlink(2−5) = 10 k� we have all equal links weight and the coupling strength ε

value is below the MSF threshold, where complete synchronization is not possible.
For smaller values of Rlink(2−5) wegetλ2syn < λ1tran , in thisway satisfying inequality
(5) and, accordingly, having the possibility of stable clusters. For example, the vertical
line R1 in Fig. 9b is the value of Rlink(2−5) where the cluster formation between (2–5
and 3–4) is proved experimentally as reported in Fig. 9a. Interestingly, for Rlink(2−5)

larger than 10 k� the appearance of a stable cluster is reported experimentally in
some region where λ2syn > λ1tran , (i.e., Rlink(2−5) = R3 in Fig. 9b). This result is
only apparently in contrast to results given in [15], since in that case linearization of
the whole system is given about the global synchronous manifold.
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Fig. 9 a Oscillator’s deviation Δvc1i for clusters (2–5) (red) and cluster (4–5) (black); b coupling
matrix eigenvalues dependency on the link resistance Rlink(2−5). The value Rlink(2−5) = 10 k�
represents the situation of equal links weights, with the network coinciding in this case to that of
Fig. 2a

2.1.1 Conclusions

We have reported a new set of experiments on the transition from complete synchro-
nization to patterns of clusters in complex networks with topological symmetries,
as a function of topology and/or global/individual coupling strengths of the links.
Emerging of some clusters have been observed, according to theoretical expecta-
tions, as well as the switching among possible clusters related to the modification
of the network structure and/or coupling strength. This study, although preliminary
and confined to small networks and few topologies, has revealed the wide poten-
tial of the considered experimental realization for such kind of investigations. The
scalability of the setup to higher complexity network will be exploited in the future
in wider experimental campaigns on the topologically induced clustering, in which
of theoretical tools for their prediction could be validated. In particular we plan to
explore complete networks of 6 and 7 nodes (that are in the full capability of the
present set-up), in this way greatly enlarging the combinations of possible clusters
to be evidenced.

References

1. Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001)
2. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure

and dynamics. Phys. Rep. 424(4), 175–308 (2006)
3. Arenas, A., Diaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex

networks. Phys. Rep. 469(3), 93–153 (2008)
4. Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Phys.

Rev. Lett. 80(10), 2109 (1998)



104 S. Yaghouti et al.

5. Pecora, L.M., Sorrentino, F., Hagerstrom,A.M.,Murphy, T.E., Roy,R.: Cluster synchronization
and isolated desynchronization in complex networks with symmetries. Nat. Commun. 5, 4079
(2014)

6. Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: From phase to lag synchronization in coupled
chaotic oscillators. Phys. Rev. Lett. 78(22), 4193 (1997)

7. Zhou, C., Kurths, J.: Noise-induced phase synchronization and synchronization transitions in
chaotic oscillators. Phys. Rev. Lett. 88(23), 230602 (2002)

8. Zhou, C., Kurths, J.: Hierarchical synchronization in complex networks with heterogeneous
degrees. Chaos: an Interdisciplinary. J. Nonlinear Sci. 16(1), 015104 (2006)

9. Corinto, F., Biey, M., Gilli, M.: Nonlinear coupled CNNmodels for multiscale image analysis.
Int. J. Circuit Theory Appl. 34(1), 77–88 (2006)

10. de Magistris, M., di Bernardo, M., Di Tucci, E., Manfredi, S.: Synchronization of networks of
non-identical Chua’s circuits: analysis and experiments. IEEE Trans. Circuits Syst. I: Regul.
Papers 59.5, 1029–1041 (2012)

11. Colandrea, M., de Magistris, M., di Bernardo, M., Manfredi, S.: A fully reconfigurable exper-
imental setup to study complex networks of Chua’s circuits. In: Proceedings of NDES 2012
Nonlinear Dynamics of Electronic Systems (VDE), pp. 1–4 (2012)

12. Petrarca, C., Yaghouti, S., deMagistris, M.: Experimental dynamics observed in a configurable
complex network of chaotic oscillators. In: Nonlinear Dynamics of Electronic Systems, pp.
203–210. Springer International Publishing, Berlin (2014)

13. Petrarca, C., Yaghouti, S., Corti, L., de Magistris, M.: Analogic realization of a non-linear
networkwith re-configurable structure as paradigm for real time analysis of complex dynamics.
In:Advances inNeuralNetworks:Computational andTheoretical Issues, pp. 375–382. Springer
International Publishing, Berlin (2015)

14. de Magistris, M., di Bernardo, M., Manfredi, S., Petrarca, C., Yaghouti, S.: Modular experi-
mental setup for real-time analysis of emergent behavior in networks of Chua’s circuits. Int. J.
Circuit Theory Appl. 44, 8, 1551–1571 (2016)

15. Fu, C., Lin, W., Huang, L., Wang, X.: Synchronization transition in networked chaotic oscil-
lators: the viewpoint from partial synchronization. Phys. Rev. E 89(5), 052908 (2014)

16. Ao, B., Zheng, Z.: Partial synchronization on complex networks. EPL (Europhys. Lett.) 74(2),
229 (2006)



Complex Structures and Behavior from
Elementary Adaptive Network Automata

Daniel Wechsler and Ruedi Stoop

Abstract Adaptive networks are systemswhere a network structure evolves in inter-
action with, and depending on, node dynamics and where the node dynamics evo-
lution depends on the actual network structure. This is a setting of fundamental
relevance for neuronal culture development, for which often power law characteris-
tics and indications of a critical state are found. Investigating an extremely simple
instance of this computational paradigm of adaptive networks, we find particular
rules and parameters for which power-law statistics emerge, which provides evi-
dence that this fundamental framework is able to provide robust network structure
evolution towards a critical state, an issue of great current interest.

1 Introduction

The paradigm of life at the edge of chaos [1] places the theory of Per Bak of nature
self-organizing towards criticality [2] in an evolutionary context. The exact way how
this may or even has to happen in a measure-theoretic sense, has, however, not been
answered. If this theory is relevant to nature, we should be able to find fundamental
computational principles that based on evolutionary principles would lead to such
a state, where an asset would be if such computational paradigms could be related
in some sense to biological data. Since the fitness landscape guiding evolution is,
in terms of dimensions, variables and interrelation interdependencies, beyond what
possibly could be described in a model without severe simplification (and hence
the optimality function is not seizable), evolutionary optimization in its standard
approach does not apply, and the question emerges, how this could be circumvented
in a mathematical and physics framework.
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This question could be pursued in various ways. One approach would be to con-
sider network optimization based on some global measure, such as, e.g., a weighted
convex combination of normalized averaged path length and normalized density of
the network [3]. It can be shown that if such an optimization is implemented by
genetic algorithms, the optimal network structures that we arrive at for a substan-
tial interval of the convexity parameter, yields emergence of hubs, which can be
associated with the often observed in nature presence of power laws.

One of the simplest, and yet most fundamental formulation of the problem to
understand the routes alongwhich these phenomena emerge, is, however, the adaptive
network paradigm, in which the fitness landscape paradigm is mapped onto instances
of computational rules. In this way, the development is guided by fixed rules that
act locally, without having access to globally measured quantities. The rule itself
can be interpreted as expressing fundamental properties of the network that is dealt
with. In this work, we implement this paradigm in the computational model of an
elementary adaptive automata [4]. Here, the situation is similar to the elementary
cellular automaton (ECA) paradigm [5, 6], where only a small set of rules is able
to generate a language of Turing power (in the sense of the Chomsky hierarchy of
languages [7]), could be seen as a computational paraphrase of a critical state.

We will see that a few rules in our paradigm have the potential to generate a
critical network state, if associated parameters are appropriately chosen. The in-
depth analysis of one of these rules shows explicitly how from our simple model, an
extremely rich interplay between topology and node dynamics emerges. As a result,
it appears that we have found a minimal model of an adaptive network that can be
used to study in more detail the properties of this class.

Our formulation links the notions of a network with that of a computational
paradigm. Because of the fundamental nature of the network notion, networks arise
in a variety of different scientific disciplines, where they have been mainly used to
successfully describe collective and statistical features of ensembles consisting of
coupled actors (the nodes of the network). Examples are traffic networks, power
grids or the Internet, trade networks, phone call graphs, or collaboration networks.
Other networks are the product of biological evolution and manifest themselves, for
instance, in gene networks, food webs, or neural networks.

To demonstrate how the two viewpoints are related, a straightforward pathway
is provided by the 2d-version of a cellular automaton, the game of life [8] (that
also has been shown to host Turing power). If we consider the plane as a lattice of
cells (squares) with each one having exclusively state spin up or state spin down
property (cf. Fig. 1), the spin property may change according to some update rule.
Conventionally, the new state will depend on the state the square had before, the
states of the topologically neighboring squares (usually, the four-fold von Neumann
neighborhood of range 1 or range 2 (12 neighbors in the latter case) is considered),
and the implemented update rule. By connecting cells to the neighbors that are in the
same state (or by looking at the system’s adjacency matrix), we arrive in a natural
manner at the structure of a network.

In rare cases (in terms of rules, parameters and initial conditions), we obtain net-
works that are in a sense ‘invariant’ under evolution by the rule, such as the ‘glider’
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Fig. 1 Glider structure, able
to move across a 2d-lattice,
upon time evolution defined
by the game-of-life
automaton. During
movement, such structures
are often oscillating in their
form

of Fig. 1. For such subnetworks, it was investigated how the dynamical behavior of
the ensemble depends on the topology of the underlying network [9–13]. These
investigations pointed out that the topology has a crucial influence on the dynami-
cal processes occurring on the network [10, 11] and they led to a variety of well-
established models of collective dynamics given a complex, such as scale-free, or a
small-world network topology. For instance, small-world networks would lead to a
faster convergence in opinion formation [14] or scale-free networks would entail a
higher vulnerability of the spread and persistence of diseases [15].

Networks that change in time in configuration and size according to a nontrivial
rule are the next level of complexity. In the literature, the terms ‘adaptive’ or ‘co-
evolutionary network’ are used to refer to this class of dynamical networks [16]. This
paradigm is becoming well-recognized as an important challenge to network science
[9, 17, 18], as many real-world networks demonstrate instances where the evolution
of the topology and the dynamical process on the network are deeply coupled (e.g.,
virus spreading). Due to the different time-scales that may distinguish network shap-
ing and node dynamics, for providing sufficient variability of the evolving networks,
a probabilistic notion may be necessary within the computational rule.

A noteworthy example of study of adaptive networks is in connection with self-
organized criticality [2] of neural networks (Fig. 2). Self-organized criticality is a
property of certain dynamical systems to evolve towards a critical state, where sys-
tem observables have no characteristic scale and follow a power law distribution.
This state has been found to be maximally efficient in terms of information-related
measures, such as the storage and transmission of information [19–22] and sensitiv-
ity to sensory stimuli [20, 22]. In addition, empirical evidence has shown that the
size of neural avalanches (phases of ongoing neural activity interrupted by phases of
quiescence) follow a power law distribution [23], supporting a hypothesis that the
brain ‘operates at criticality’. The precise mechanisms that allow biological neural
networks to converge to this critical state are, however, not known. The authors of [24]
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Fig. 2 Situation advocating the presence of a critical state: Tuning of the avalanche distribution
in biological neural networks using pharmacological agents [19]. a Subcritical regime induced by
excitatory antagonist CNQX. b Critical regime, normal network. c Supercritical regime induced by
inhibitory antagonist PTX

proposed a model of an adaptive threshold network based on simple local rewiring
rules, that robustly self-organizes towards a critical state. There are a number of
other recent studies on adaptive networks covering topics such as consensus forma-
tion [25, 26], emergence of cooperation [27] or organization dynamics [28]. More
recent contributions have emphasized the relation to critical branching processes [19,
29–33], which provides an improved correspondence between cortical experiments
and exponents obtained at criticality.

A model of an adaptive network thus includes an evolving network, and a dynam-
ical process that takes place on the network nodes and their interaction. It requires
a coupling between the two evolutions, such that their temporal evolutions mutually
depend on each other. The state of a node evolves according to a rule that depends on
the states of its neighboring nodes. That way a dependence of the dynamical process
on the network topology is achieved. Conversely, the network topology depends on
node dynamics by modifying the connections through a rule that takes into account
the dynamical state of the system. This general definition of an adaptive network
model of course allows for various possible implementations.
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As a side-note, from biology, this paradigm can be seen as a mapping of a process
of evolving neural cultures. In a recent study of in vitro neuronal activity of disso-
ciated hippocampal neurons recorded from micro-electrodes, we found that the spa-
tiotemporal correlations decay, as a function of the time, in an exponential manner.
For activity that consists of isolated bursts, this would be equivalent to an exponen-
tial decay of the spike frequency within the burst. We consequently modeled bursts
by exponentially decaying spiking probability and found avalanche size distribu-
tions that are well-modeled by power laws. Also for inter-event interval distributions
that in many respects are more natural observables than spike frequency distribu-
tions, we found avalanche-size power laws, for the experimental data, as well as
for the data generated from our model. Moreover, we were able to calculate within
this framework the power law exponents analytically and to compare them with the
experimental data, resulting in a good agreement. In the present work, we exhibit
evidence for even a simpler, computationally more direct process that may lead to
power law distributions.

2 A Ring that Rules Them All

Automata are considered the simplest and themost generic form of complex systems;
they have become the canonical examples for the emergence of complex collective
behavior through local interactions of simple units [10, 34]. The success of cellular
automata as an intuitive modeling paradigm for complex systems [34] inspired the
design of the automaton used in this work. While for cellular automata the rules
determine the states of its cells at the next time step, in the derived adaptive automaton
paradigm the rules define the transformation of the network topology depending on
the dynamical state, but, moreover, also on the current connectivity.

The evolving network is represented by a directed and unweighted graph with a
fixed number of nodes N , so that it is at any time step t fully characterized by the
N × N adjacencymatrix At . The entries of At (i, j) ∈ {0, 1} determinewhether there
exists a connection from node i to node j . Self-connections are not allowed; therefore
A( j, i) = 0, ∀i = j . To distinguish between the source and the target node of a
directed connection, the term ‘input’ or ‘preceding’ node will be used for the former,
and ‘successor’ node to refer to the latter. The number of incoming connections of a
node is its ‘in-degree’ kin and the number of outgoing connections is its ‘out-degree’
kout .

The dynamics of the nodes is binary: Each node can only be in one of two states
S ∈ {0, 1}; usually, we will use the term ‘active’ if a node is in state 1 and ‘inactive’
for state 0. At any time t , the dynamical state of the automaton is fully defined by
the vector St of size N , where entry St (i) indicates the state of the node i .

The dynamical state is updated according to a probabilistic transition. Whether
node i will be active at time t + 1 depends on the number ki of active nodes projecting
on node i at time t , ki = ∑N

j=1 St ( j)At ( j, i). Each of them can put node i into the
active state with probability pac. The total probability of node i for being in the active
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Fig. 3 Rule table of
automaton 21 St(j) StA )i(t(j,i) At+1(j,i)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

state at time t + 1 is therefore

P(St+1(i) = 1) = 1 − (1 − pac)
ki , (1)

where all nodes in the network are updated simultaneously. If the node is not activated
by at least one of its inputs, it will become inactive. The topology is thus updated
by the removal and creation of edges. As the state of the system is determined by
whether a link from node j is pointing to node i , which involves St ( j), St ( j) and
At ( j, i), and since these tree values are all binary, there are in total eight possible
configurations. For each of these eight configurations it can be specified whether an
edge should be established, At+1(i, i) = 1, or not, At+1( j, i) = 0. This allows for
22

3 = 256 different mappings.
Each such mapping is called a ‘rule’, or an ‘automaton’. It can be represented by

a table that lists all possible St (i), At ( j, i), St (i) configurations together with the
rule-specific value of At+1( j, i). Figure3 provides an example of a rule table.

A particular position in a rule table can be addressed by the short form

RS( j)A( j,i)S( j) ∈ {0, 1}.

For a convenient way of referencing, each rule is named the decimal correspondent
to the binary number R000R001R010R011R100R101R110R111. For example, the rule in
Fig. 3 extracted as 00010101 evaluates to 0 · 27 + 0 · 26 + 0 · 25 + 1 · 24 + 0 · 23 +
1 · 22 + 0 · 21 + 1 · 20 = 21, i.e. rule 21. This follows the standard enumeration of
the rules found for elementary cellular automata [4, 6].

An important ingredient of our approach is that like in most real-world networks,
the structure evolvesmuch slower compared to the dynamics of the nodes. To account
for this, the removal or creation of an edge is only effectuated with a probability pem
per each update step. In this way, for small pem , the topology evolves much slower
than the node state. For pem = 1, topology and node dynamics evolve at the same
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pace. The model that we look at is therefore an example of a probabilistic automaton
[6], although of a somewhat particular kind.

3 Emerging Topologies

Themodel space is therefore characterized by the rules, by node activation probability
pact and by edge mutation probability pem . Our aim still is to identify regions in
model space where non-trivial network topologies and node dynamics can arise.
The isolation of such regions requires a screening process; however, the following
obvious distinction can be made:

• the network has converged to a state where all nodes are inactive. The only rule
table positions that are effective in this situation are R000 and R010. Their values
consequently determine the resulting network topology. The four possible combi-
nations and the resulting topologies are then defined by Fig. 3.

• the network has converged to a state where all nodes are persistently active. This
happens if the topology is kept in a configuration with a high in-degree that lets the
probability of the nodes to be active to be close to one. Whether this can happen
depends in particular on R101 and on R111 (for more details see the next sections).
Complex network topologies and complex dynamical behavior only arise in
regions where the automaton is able to maintain an intermediate activity level.
Therefore, of interest is the average activity level to which the network converges,
under the action of the automaton, defined as the fraction of nodes that are active
at a particular time step. Averages are denoted by the symbol 〈.〉.

• the network has converged to a static topology, pem = 0. Here, the final activity
level depends directly on the activation probability pact and on the average in-
degree 〈kin〉 (note that 〈kin〉=〈kout 〉).

• we deal with a trivial rule:
Rule 0 is the rule that only removes edges from the network. If pem > 0, this leads
to a completely disconnected and therefore inactive network.
Rule 255, in contrast, only creates new edges and never removes existing ones. For
pem > 0, the network ends up fully connected with the final activity depending on
the activation probability.
Rule 51 is the static rule: Since for all positions in the rule table At = At+1, the
connectivity of the network never changes and therefore its activity is determined
by the initial connectivity and the activation probability.

The two dynamical extremes are separated by usually a narrow band in which
the activity settles down to intermediate levels (e.g., Fig. 5). In such regions, one
can expect to find a non-trivial interplay between topology and node dynamics,
which might give rise to complex system level-properties. Since each rule, however,
manifests a unique dependence of the topology on the dynamics, one can expect to
encounter various characteristic situations of behavior in the pem × pact parameter
space.
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4 Classes of Emergent Behavior

With just a few exceptions, the behavior of an automaton is independent of the rule
table positions R001, R010 and R011. Hence if only these entries are changed in a
rule, the same dependence of the average activity on pact and on pem is observed.
Grouping rules together that only differ in R001, R010 and R011 leaves 32 groups
of eight rules each. For 29 groups the dependence of the average activity on pact
and on pem is almost identical. Only for three of these groups, the behaviors of
the rules within the group are significantly different. According to this scheme, all
rules can be assigned to eleven classes, corresponding to the eleven basic types with
eight classes having eight rules, two classes having 32 rules and one class having
128 rules. According to the classifications logic, an x (=‘arbitrary’) occurs wherever
appropriate. Each class was given a name that reflects its general behavior in terms
of average activity, evaluated by simulating each rule for pact and pem combinations
covering the parameter space at regular intervals of Δpact = Δpem = 0.025. Due
to the large number of simulations (430336 in total) required for a screening at
this resolution, modest networks of N = 50 nodes were used. The networks were
initialized with pkinit = 0.5 and painit = 0.5 and the automaton was iterated for T =
1000 time steps. These are the classes of emergent behavior (partial fulfillment):

• Trivial class:
Pattern: 0xxx 0000
Rules: 0, 16, 32, 48, 64, 80, 96, 112

One straight critical line
• One straight ‘critical line’ separates the region where activity dies out (inactive
region) from the region where activity sustains (active region). For a large subset,
the transition does not depend on pem .

Rules: 6, 7, 9, 11, 12, 13, 14, 15, 22, 23, 25, 27, 28, 29, 30, 31, 38, 39, 41, 43, 44,
45, 46, 47, 54, 55, 57, 59, 60, 61, 62, 63, 70, 71, 73, 75, 76, 77, 78, 79, 86, 87,
89, 91, 92, 93, 94, 95, 102, 103, 105, 107, 108, 109, 110, 111, 118, 119, 121, 123,
124, 125, 126, 127, 134, 135, 137, 139, 140, 141, 142, 143, 150, 151, 153, 155,
156, 157, 158, 159, 166, 167, 169, 171, 172, 173, 174, 175, 182, 183, 185, 187,
188, 189, 190, 191, 198, 199, 201, 203, 204, 205, 206, 207, 214, 215, 217, 219,
220, 221, 222, 223, 230, 231, 233, 235, 236, 237, 238, 239, 246, 247, 249, 251,
252, 253, 254, 255

• straight ‘critical line’, but overall gradient-like dependence on pem
Pattern: xxxx 10x1
Rules: 8, 10, 24, 26, 40, 42, 56, 58, 72, 74, 88, 90, 104, 106, 120, 122, 136, 138,
152, 154, 168, 170, 184, 186, 200, 202, 216, 218, 232, 234, 248, 250

• straight ‘critical line’, but overall gradient-like dependence on pem
Pattern: 1xxx 0011
Rules: 131, (147), 163, (179), (195), (211), (227), (243)
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• inclined critical line, without gradient.
Pattern: 0xxx 0011
Rules: 3, 19, 35, (51), (67), (83), (99), (115)

• inclined critical line, with gradient.
Pattern: 0xxx 0001
Rules: 1, 17, 33, 49, 65, 81, 97, 113

One curved critical line
• curved critical line, almost no gradient, except for high pem . The region where the
average activity takes intermediate values is in this case limited to the vicinity of
the critical line, getting slightly more pronounced towards higher pem .
Pattern: xxxx 010x
Rules: 4, 5, 20, 21, 36, 37, 52, 53, 68, 69, 84, 85, 100, 101, 116, 117, 132, 133,
148, 149, 164, 165, 180, 181, 196, 197, 212, 213, 228, 229, 244, 245

• curved critical line, but with gradient.
Pattern: 1xxx 0001
Rules: 129, 145, 161, 177, 193, 209, 225, 241

Two critical lines
• Straight first critical line:
Pattern: 1xxx 0010
Rules: 130, 146, 162, 178, 194, 210, 226, 242 (straight first transition line)

Pattern: 0xxx 0010
Rules: (2), 18, (34), 50, 66, 82, 98, 114

• Curved first critical line, not fully developed
Pattern: 1xxx 0000
Rules: 128, 144, 160, 176, 192, 208, 224, 240

5 Exemplary Discussion of a Class with Critical Behavior

In the following, we investigate the 1xxx 0001 pattern class, by focusing, specifically,
on rule 209.

5.1 Rule 209

This class is an exception to the regularity that mainly rules having R101 = 0 and
R111 = 1 exhibit, by showing large regions of intermediate activity. This fact together
with the inspection of results of individual simulations suggested an in-depth analysis
of rule 209, the rule table of which is shown in Fig. 4. Figure5 shows the activity
heat map for rule 209. It was obtained from simulations based on networks of size
N = 100.
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0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

St(j) StA )i(t(j,i) At+1(j,i)

Fig. 4 Rule table of automaton 209

Fig. 5 Activity heatmap for rule 209. The color indicates the average activity of the last 50 iterations
of simulations over T = 1000 time steps in the pact , pem parameter space. For all simulations the
network size was N = 100. The resolution is 80 × 80 simulations (Δpact = Δpem = 0.0125). The
dashed line indicates the cut along which we will sample the behavior of the rule

We will focus in the following on the cross section indicated in Fig. 5 by a dashed
line at pem = 0.2. For all simulations in the subsequent investigations, networks of
size N = 100 were considered. In Fig. 6 we compare the average activities exhibited
by the rules 129 (a), 177 (b), 209 (c) and 225 (d) along the cross section (dots). The
average was extracted from the last 50 iterations of simulations over 4000 time steps.
The sharp transition apparent there is an artifact caused by the limited simulation
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Fig. 6 Average activity along a cross section parallel to the pact axis at pem = 0.2 for the rules
129 (a), 177 (b), 209 (c) and 225 (d) (dots). Solid lines: Average activity predicted by the mean
field model. Insets: In- versus the out-degree of all nodes in the last 50 iterations (pact = 0.06)

duration. The larger pact , the longer the automaton initially stays in a phase of full
activity, until it eventually converges to its equilibrium activity level.

5.2 Node Dynamics of Rule 209

The three raster plots shown in Fig. 7 exhibit the obtained node dynamics. They
show the states of 50 nodes over 100 time steps, from simulations at pact = 0.03
(a), pact = 0.079 (b) and pact = 0.14 (c). The nodes are aligned horizontally, and
their state at a certain time step (vertical axis) is indicated by a single dot in the
image (black = active, white = inactive). There are notable qualitative differences
in the behavior of the node dynamics. In (a) all nodes erratically switch from active
to inactive. This results in a rather disordered and random raster plot. In (c) only
about half of the nodes switch between active and inactive. The remaining nodes are
constantly active during the considered time window. The resulting vertical stripes
make the raster plot look fairly ordered. The behavior in (b) appears to lie somewhere
between (a) and (c).
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Fig. 7 Node dynamics of rule 209 at pact = 0.03 (a), pact = 0.079 (b) and pact = 0.14 (c) (pem =
0.2). The raster plots show the states of 50 nodes (horizontal direction) over 100 time steps (vertical
direction). Black = activated node, white = inactive node

To estimate the Lyapunov exponent for the adaptive network automaton, amethod
proposed in [35] was used. The automaton is initialized at t = 0 with a random state
and a random network. To account for a convergence phase, the automaton is iterated
for t0 time steps. Hereafter, the state of the automaton at the next time step t0 + 1 is
computed for the original state St0 and a minimally perturbed state Ŝt0 . Of interest
is the change of the initially minimal distance H(St0 , Ŝt0) upon iteration of both.
As distance function H , the normalized Hamming distance is used (computed as
the fraction of entries in the two state vectors that are not identical). The minimal
perturbation corresponds to the flip of a single entry in the state vector; this results in
a Hamming distance of 1/N . To get a reliable estimate, the procedure is repeated m
times and an average 〈H(St0+1, Ŝt0+1)〉 is calculated. This finally yields an estimate
of the Lyapunov exponent as

λ = log
H(St0+1, Ŝt0+1)

H(St0 , Ŝt0)
.

Figure8 shows the convergence behavior of the method for the three activation
probabilities from above. The vertical axis is the Lyapunov exponent λ and the
horizontal axis corresponds to the number of samples m used to compute the average
distance at the next time step. The method nicely converges, after a few thousand
repetitions. According to the obtained results the node dynamics are chaotic at pact =
0.03 (λ ≈ 0.95) and stable (or ordered) at pact = 0.14 (λ ≈ −0.29). For pact =
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Fig. 8 Convergence of the Lyapunov exponent λ. The horizontal axis indicates the number of
samples used to compute the average distance 〈H(St0+1, Ŝt0+1)〉. The three curves show the con-
vergence for three activation probabilities for rule 209 at pem = 0.2. Resulting Lyapunov exponents:
λ = 0.954680 for pact = 0.03, λ = −0.007172 for pact = 0.079, λ = −0.285562 for pact = 0.14

Fig. 9 Dependence of the
Lyapunov exponent on
activation probability (edge
mutation rate pem = 0.2).
There are two ordered
(λ < 0) and a chaotic
(λ > 0) regime, separated by
two critical points
pact ≈ 0.025 and
pact ≈ 0.079

0.079, the Lyapunov exponent is close to zero, indicating that the node dynamics
might be determined by a critical state of the network and its update rules.

5.2.1 Mean-Field Approximation of Node Dynamics

In what follows, we exhibit the mean field approximation of the adaptive network
automaton is exhibited. The idea is to analytically infer the time evolution of the aver-
age activity 〈A〉 and the average in-degree 〈kin〉 for a network of size N (note 〈kin〉 =
〈kout 〉). The approximation is based on the assumption that correlations between in-
and the out-degree are negligible or cancel out. Hence it is expected that on average
for a particular node i it holds that kin(i) = kout (i). The mean field model is imple-
mented using a two dimensional iterated map with 〈A〉 and 〈kin〉 defining its state at
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time t . Given the average in-degree 〈k〉:= 〈kin〉 ∈ [0, N − 1] and the average activity
〈A〉 ∈ [0, 1] at time t , the expected number of active preceding nodes a randomly
chosen node i has is 〈k〉〈A〉. By substituting this expression for ki into the activation
function (1) we get the following approximation for the average activity at the next
time step:

〈A〉t+1 = 1 − (1 − pac)
〈k〉t 〈A〉t (2)

The change Δ〈kin〉 of the average in-degree in a single time step depends on the
probability P(m) with which position m in the rule table is applied for a randomly
chosen pair { j, i} of nodes. The probability that there is a connection from node j
to node i is given by P(At ( j, i)=1) = 〈kin〉t (N − 1)−1. The likelihood that a ran-
domly chosen node is active is equal to P(St ( j)=1) = P(St (i)=1) = 〈A〉t . Using
these approximations, P(m) can be written as

P(m) = P(St ( j)=m j ) · P(At ( j, i)=m j,i ) · P(St (i)=mi ), (3)

with

P(St ( j)=m j ) = m j 〈A〉t + |m j − 1|(1 − 〈A〉t ),
P(At ( j, i)=m( j, i)) = m j,i 〈k〉t (N − 1)−1 + |m j,i − 1|(1 − 〈k〉t (N − 1)−1),

P(St (i)=mi ) = mi 〈A〉t + |mi − 1|(1 − 〈A〉t ),

m j , m j,i , mi ∈ {0, 1} being the values of St ( j), At ( j, i) and St (i) of position m in
the rule table.

Given the probability P(m)withwhich each position in the rule table is applied for
a randomly chosen pair of nodes, one can calculate the expected connectivity change
of that node pair. This change depends on the particular rule. For a single positionm in
the rule table it equals to P(m) · (Rm − m j,i ) · pem . Here, Rm is the value At+1( j, i)
defined for the particular rule at position m in the rule table. Summing over all eight
rule table positions and accounting for the number of nodes N , the expected change
of the average in-degree Δ〈kin〉t is given by

Δ〈kin〉t = (N − 1) ·
7∑

m=0

P(m) · (Rm − m j,i ) · pem . (4)
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From this, the final map is defined by

〈A〉t+1 = 1 − (1 − pact )
〈kin〉t 〈A〉t

〈kin〉t+1 = 〈kin〉t + (N − 1) ·
7∑

m=0

P(m) · (Rm − m j,i ) · pem .
(5)

Themean-field equations, used in Fig. 6, are useful when systematically searching
for non-trivial topologies, sincewe expect those to occurwhenwe observe a deviation
between mean field approximation and the simulations.

5.3 Two Critical Points in Dependence of pact

The dependence of λ across the cross section is exhibited in Fig. 9. In the considered
range of activation probabilities three dynamical regimes can be identified, which are
separated by the two critical points pcrit−act ≈ 0.025 and pcrit+act ≈ 0.079. Below pcrit−act
and above pcrit+act , the node dynamics are ordered. Between the two critical points a
chaotic regime extends with a maximum at pact = 0.03. The two critical points were
found by manually tuning the activation probability and repeatedly measuring the
Lyapunov exponent.

At pcrit−act , the activation probability is too low for a sustained activity: Independent
of the initial connectivity, after a certain number of iterations, activity dies out. Only
the targeted reactivation of a node in the dead state triggers an avalanche of activity
that lasts for a variable number of time steps.

Figure10a shows a log-log histogram of the distribution of the durations of such
avalanches. The data were acquired from a simulation over 106 time steps. As soon
as the automaton reached a dead state, a randomly chosen node was reactivated and
the duration d of the triggered avalanche was recorded. The distribution follows a
power law with an exponential cutoff. The exponent was estimated to be α ≈ 1.734
for data in the range dmin = 8 to dmax = 80, using a maximum likelihood method
[36].

At pcrit+act , the activity, however, is sustained. Therefore the duration for which
individual nodes were continuously active was considered. Figure10 shows a log-log
histogram of the frequency with which sequences of continuous activity of length
l occur in a simulation over 16 × 103 time steps. This distribution also follows a
power law over a large range of the data. The critical exponent was estimated to be
α ≈ 2.06 for data of lmin ≥ 11.

The two critical points are qualitatively different. The point pcrit−act corresponds
to the critical activation probability below which activity dies out and above which
a certain level of activity sustains. Such a point can be expected to occur at every
transition from an inactive region to an active region and thus cannot be seen as
a particularity of the interplay between topology and node dynamics. At pcrit+act ,
however, the case is different: It is clearly the adaptive nature act of the system
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Fig. 10 Power law
distributions occurring at the
critical points a pcrit−act and b
pcrit+act . The log-log
histogram for pcrit+act shows
the frequency of avalanches
of activity of duration d
acquired from a simulation
over 106 time steps. The
critical exponent was
estimated to be α = 1.7341
(σ = 0.0039) using a
maximum likelihood method
(for the range dmin = 8 to
dmax = 80). For pcrit+act the
log-log histogram shows the
frequency of sequences of
continuous activity of length
l of individual nodes. The
critical exponent was
estimated to be α = 2.06527,
for a simulation over
16 × 103 iterations

that allows the node dynamics to operate at the border between ordered and chaotic
behavior. As a consequence, in the subsequent analysis, let us exclusively focus on
the behavior at pcrit+act .

5.4 Network Topology at the Critical Point pcr i t+act

Figure11 shows the distribution of the in-degrees (a) and the out-degrees (b) of a
typical network evolving at pcrit+act . The distributions were generated by including
the degrees of all nodes in the last 100 time steps of a simulation over T = 1000
iterations. Two things are worth noting. First, the symmetry; the two distributions
are almost mirror images of each other. Second, recalling that the in-/out-degrees are
negatively correlated, it is apparent that the nodes tend to separate into two distinct
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Fig. 11 a In- and b out-degree distributions of a typical network evolving at pcrit+act . Distributions
are based on the degrees of all nodes in the last 100 iterations of a simulation over 1000 time
steps. The two-peaked histogram structures reflect the basic ingredients of complex behavior as the
competition between (here: two) rivaling attracting states

Fig. 12 Time evolution of the out-degrees of 40 nodes over a duration of 900 time steps at pcrit+act

groups. One group consists of nodes with a low in-degree and a high out-degree.
These nodes cause the smooth peaks of the distributions. The other group is made
of nodes with a high in-degree and a low out-degree, found in the distorted tails of
the distributions.

Figure12 exhibits the dynamical behavior of the network topology. It shows the
time evolution of the out-degrees of 40 nodes over 900 iterations. The dense and
erratic region at high kout corresponds to the smooth peak in Fig. 11b. The steady
region around kout = 20 accounts for the peaks in the tail. The area in-between is
characterized by a transient behavior of the out-degrees. The degrees either slowly
approach the steady region or they erratically climb towards the dense region. The
corresponding plot for the in-degrees looks almost identical. The only difference is
that the dense region is found at low values and the steady region at high values of
kin . The dynamical behavior of the degrees implies that nodes occasionally migrate
between the high in-degree/low out-degree group and the low in-degree/high out-
degree group.
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Fig. 13 a Time evolution of the in-degree, the out-degree and the dynamical state of a single node
at pcrit+act . The state is indicated by the background color (gray = active, white = inactive). b The
probability with which the considered node was activated during the observed period

5.5 Critical Behavior at pcr i t+act as the Interplay Between
Topology and Node Dynamics

The critical node dynamics and the non-trivial structure observed at pcrit+act are interde-
pendent phenomena. The underlyingmechanism can be best understood by analyzing
the behavior of a single node. Figure13a shows the time evolution of the in-degree,
the out-degree (lines) and the state of a particular node (gray background = active,
white = inactive).

The degrees almost symmetrically oscillate with respect to each other around the
mean in- /out-degree (〈kin〉 = 〈kout 〉 ≈ 50). Two different phases are recognizable.
In the first phase the node is mostly active and characterized by a high in-degree and
a low out-degree. At around t = 1700, the behavior changes. The node enters a phase
of sporadic activity that goes along with a low in-degree and a high out-degree. The
strong fluctuations in this phase are a consequence of the low in-degree that reduces
the likelihood of the node of being activated. Figure13b illustrates the drop of the
activation probability as the node enters the phase. The two phases correspond to
two topologically different node groups. The transition therefore designates a switch
of the node between the two groups. To understand the mechanism causing the
symmetric oscillation, we consider the change of the degrees of a node i caused by
a single application of the edge mutation rules Fig. 4.

If node i is active, the only positions in the rule table that cause a change of its
degrees are R001 = 1 and R110 = 0. Hence only connections to and from inactive
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Active Inactive
+incoming edges

+activation probability

-incoming edges

-activation probability

Activation

Inactivation

Fig. 14 Scheme of the emergent behavior of rule 209: Two feedback loops dominate the behavior
of a single node. Consecutive activity leads to an increase of the in-degree and consequentially
promotes subsequent activation (self-loop/green circle). In contrast, consecutive inactivity lowers
the in-degree and therefore reduces the likelihood of subsequent activation (self-loop/red circle)

nodes are modified. R001 affects all inactive nodes that have no outgoing connection
to node i . In a single time step, on average a fraction of pem of these nodes will
establish a connection to node i . R110 affects all inactive nodes to which node i
currently has an outgoing connection. In a single time step on average, a fraction
pem of these connections will be lost. Since the set of inactive nodes changes with
every iteration, an active node constantly acquires incoming and loses outgoing
connections. Consequentially, if one would force a node into the active state for a
sufficient duration, it would eventually end up having incoming connections from
all other nodes, and no outgoing connections. The smoothness of the change of the
degrees is because the fraction of inactive nodes is low (〈A〉 ≈ 0.84), and therefore
only a few connections are modified at once. If, however, node i is inactive, the
major changes of the degrees are caused by the positions R001 = 1 and R110 = 0.
Both modify the connections to and from active nodes. R001 = 1 affects all active
nodes towhich node i has no outgoing connection. In one time step, node i establishes
a fraction pem connections of those nodes. R110 = 0 affects all active nodes that have
a connection to node i . In a single time step, an average of a fraction pem of these
connections are removed. Since most nodes are active, more connections are created
and removed at once. This explains the jumps in the degrees observed if nodes
turn inactive. The positions R000 = 1, R010 = 0 also affect the degrees of i in the
case it is inactive. They cause the creation and removal of connections from and to
active nodes. Since the two positions are counteracting each other, their effect on
the degree fluctuations is only marginal. The described mechanisms describe two
positive feedback processes counteracting each other: First: The longer a node is
continuously active, the higher is the probability that it will be active in the next time
step. That is because active nodes acquire incoming edges and the more incoming
edges a node has the more likely it is subsequently active. Second: The longer a
node is continuously inactive, the lower is the chance that it will be active in the next
time step. This because inactive nodes lose incoming edges and the fewer incoming
edges a node has the less likely it will be active in the next time step. This effect is
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slightly damped since inactive nodes can gain incoming edges from other inactive
nodes (R000 = 1). The first feedback process explains the presence of the power law
in the length distribution of sequences of continuous activity of single nodes. This
is essentially the realization of a rich get richer mechanism well known to result
in heavy tail distributions [37]. Investigations on the robustness of this mechanism
have revealed that the typical degree distribution and the critical node dynamics
evolve almost independently of the initial configuration of the network. As long as
the initial density of connections is enough to sustain activity, the automaton robustly
self-organizes toward that peculiar configuration. This behavior can be comprised in
the schematic Fig. 14.

6 Conclusion

Here we have introduced the adaptive network automaton as a minimalistic model
of an adaptive network. The main object of this work was to clarify whether this
concept is a suitable research framework to shed light on the relation between local
rules and emerging global behaviors in adaptive networks.

Through systematic simulations of the 256 rules, we could identify those para-
meter space regions that favor the emergence of complex structure and behaviors.
Inherent regularities in the rule space further allowed to derive a rule classification
scheme that served as a guideline for more in-depth investigations. The detailed
analysis of rule 209 revealed that the interplay between topology and node dynamics
generates a complex network topology with a robust convergence towards a critical
state. This behavior was shown to arise from the manifestation of two counteracting
positive feedback processes, causing a separation of the nodes into two topologi-
cally distinct groups. The results demonstrate that simple binary node dynamics in
combination with local edge mutation rules are sufficient to produce behavior char-
acteristic of adaptive networks. However, the present results give only a glimpse on
the full behavioral repertoire of the automaton. For most of the rules and parame-
ter combinations, it is currently unknown to what type of topologies or dynamical
behavior they give rise to. In order to eliminate these blind spots, additional sim-
ulations covering the interesting parameter space regions will be necessary. With
efforts along our approach and by employing the observables used in our work,
the regions in the parameter space where the automata might operate at criticality
can be extracted with some effort. We also introduced a mean-field approximation
based on an iterated map. It adequately predicts the behavior of the automaton in the
cases whenever the network is not strongly correlated. This approach turns out to
be useful when searching for non-trivial topologies, since we expect them to occur
when we observe a deviation between mean field approximation and the simulations.
A screening based on such quantities would render a more detailed picture of the
parameter space, allowing to devise a comprehensive map relating the rules to the
emerging global behaviors. Such a map could be the starting point to investigate
more specific questions, like for instance: What are the necessary conditions under
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which the automaton converges towards a critical state? Or: Which rules and para-
meter combinations promote the formation of specific network topologies, like for
example, scale-free networks?

We have shown that our model is even amenable to analytical treatment and
also allows for an intuitive understanding of the emerging behaviors. Therefore, the
adaptive network automaton opens up promising new perspectives for research on
adaptive networks. While we believe our model to provide a solid framework for
studying adaptive network behavior, further investigations will be needed to clarify
to what extent the generality of the approach is limited by the implementation chosen
by us.
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Hebbian Learning Clustering with Rulkov
Neurons

Jenny Held, Tom Lorimer, Carlo Albert and Ruedi Stoop

Abstract The recent explosion of high dimensional, high resolution ‘big-data’ from
automated bioinformatics measurement techniques demands new methods for unsu-
pervised data processing. An essential analysis step is the identification of groups
of similar data, or ‘clusters’, in noisy high-dimensional data spaces, as this permits
to perform some analysis steps at the group level. Popular clustering algorithms in-
troduce an undesired cluster shape bias, require prior knowledge of the number of
clusters, and are unable to properly deal with noise. Manual data gating, often used
to assist these methods, is based on low-dimensional projection techniques, which is
prone to obscure the underlying data structure. While Hebbian Learning Clustering
successfully overcomes all of these limitations (by using only local similarities to
infer global structure), previous implementations were unsuited to deal with big data
sets. Here, we present a novel implementation based on realistic neuronal dynamics
that removes also this obstacle. By a performance that scales favourably compared
to all standard clustering algorithms, unbiased large data analysis becomes feasible
on standard desktop hardware.

1 Introduction

Data analysis beginswith detecting structure.High-dimensional big-data has changed
the face of this fundamental step.Biological experiments now routinely produce auto-
mated high-throughput, high-dimensional measurements of unknown data elements,
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which can no longer be feasibly analysed manually. The large data volume requests
an unsupervised simplification by partitioning the data into groups of similar data
items, which are expected to manifest on high dimensional structures in the space
of measured features [4]. As a result, clustering algorithms have become a standard
tool in the analysis of such data sets. The goal of such algorithms is to autonomously
infer structure from the similarity between data items and find classes, or ‘clusters’,
of similar data. An automated clustering procedure, however, faces several difficul-
ties. First, the data may contain clusters of any shape, where generally the global
cluster shape depends on the point-to-point proximity of data items in a non-trivial
way. In particular, it is well known that stable periodic solutions of non-linear dy-
namic systems are distributed over convex-concave shrimp-like regions in parameter
space [14, 15] and that this distribution is generally preserved in the feature space
of the system [4]. Therefore, shape biases that preclude the identification of such
complex, non-convex clusters need to be avoided. Second, the number of clusters
is generally unknown and may even change over time, and should thus be found in
an autonomous, unbiased way. And third, the measurements usually include noise,
which asks for a method to classify data as outliers.

Traditional clustering algorithms, such as the partitional k-means [11] and the
hierarchical Ward’s [18] algorithms, or variations of these, are now widely used in
the bioinformatics community [2, 3, 19]. Both methods, however, introduce strong
biases that make them infeasible choices for unknown data sets. The k-means al-
gorithm is based on an optimisation procedure, where the distances between points
and their respective cluster centres is minimised globally. This requires the repeated
computation of distances between points and representations of sets of points, which
are obtained through an averaging process. In averaging over all points in a cluster,
however, information about the shape of the set is lost and as a result a convex shape
bias is imposed. Moreover, the k-means algorithm intrinsically imposes a bias on
the number of clusters, which has to be pre-specified, and cannot deal with outliers,
since all data items have to be assigned to a cluster. Ward’s algorithm, at first sight,
seems to avoid bias resulting from to global distance measures, as it constructs a
hierarchy of clusters by recursively merging points and groups of points based on
their separation. Although at a low hierarchical level this only takes into account
local measurements of distance, on higher hierarchical levels it still involves the
measurement of global distances between sets of points. This once more prevents
the identification of convex-concave shapes, independently of the distance measure
used [4]. Similar to the k-means algorithm, outliers cannot be dealt with properly,
and the number of clusters remains dependent on the hierarchy level, so that none of
the above mentioned criteria for unbiased clustering are met.

In this paper, we exhibit a solution to these issues. The key to successfully clus-
tering data in an unbiased way is to use local information only, and from this to infer
the global data structure. Neural network inspired algorithms, such as Sequential
Superparamagnetic Clustering (SSC) [12] and Integrate-and-Fire Hebbian Learning
Clustering (I&F HLC) [8], perform this inference in a natural way, mapping the
computational task on a problem addressed in the cortical learning context with the
Hebbian learning principle. In the HLC procedure, data items (i.e. points in the space
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(a) (b) (c)

Fig. 1 a A two-dimensional synthetic data distribution. b The initial HLC network structure.
c Evolved HLC network structure, exposing three main clusters, were points identified as outliers
are not shown [8]

of measured features) are interpreted as neurons with an internal dynamics and the
ability to interact with each other via nearest neighbour coupling. Local structure
is initially extracted from the data by translating pair-wise distances between data
items into similarities. This topological similarity is then converted into dynamical
similarity by constructing a network of pair-wise coupled neurons and imposing a
coupling strength that is positively correlated with the synchrony between neurons.
The Hebbian learning principle, which uses the bio-inspired rule that only the cou-
pling between neurons with highly correlated dynamics is strengthened, can now
be used to let the global structure emerge in a self-organised way: The coupling
between highly synchronous neurons will be increased at the cost of the coupling
strength between less synchronous neurons, so that initial fluctuations in similarity
are amplified in such a way that only intra-cluster connections are strengthened. An
example of an initial and final state of such a network extracted from an example data
set is shown in Fig. 1. As a result of this procedure, clusters will emerge as groups of
strongly coupled, synchronised neurons. The principle of preferential reinforcement
of some connections at the cost of others reflects the fundamental homeostatic ten-
dencies of natural physical systems with sparse resources, and has been linked to the
occurrence of power law distributions in the network connectivity and the emergence
of community structures in networks at mesoscopic scales [5, 9].

Previous implementations of the HLC, however, were computationally too ex-
pensive to be effectively applied to large data sets. Our new implementation of the
HLC principle improves upon the I&F HLC algorithm by making use of the bio-
logically more realistic and lean Rulkov neuron dynamics as well as the inherently
sparse nature of the network. Fast nearest neighbour and graph searching algorithms
as well as our sparse implementation, using the local nature of the interactions, now
allow a linear scaling of computation time with the number of data items, as well as
the clustering of data sets with more than 105 measurements, which was not possible
previously.

We will first describe the structure and behaviour of the algorithm, demonstrate
its stability and time performance, and validate its ability to identify clusters with-
out shape bias with several synthetic data sets. We then analyse a biological mass
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cytometry data set of human bone marrow cells and point out potential drawbacks
of manual and standard algorithmic clustering procedures.

2 The Rulkov Neuron Hebbian Learning Clustering
Algorithm (RHLC)

The aim of a clustering algorithm is to extract global structure from local density
information in an unbiased way. The HLC succeeds in this by using exclusively local
(i.e. point-to-point) topological similarities between data items to impose dynamic
similarity between representative neurons, which is then used in theHebbian learning
procedure to identify groups of similar data. In order to achieve this, local structure
needs to be extracted from the data first. We can encode this local information in
a weighted network that favours connections between data items that are similar,
where this similarity is interpreted as pair-wise proximity in the feature space. A
natural way to construct such a network from the original set of measurements, with
N data items of dimension d, is to impose a nearest neighbour coupling. Therefore,
as a first step, the k nearest neighbours of each item i are found based on the pair-
wise distances di j , where an appropriate distance measure, for instance Euclidean
distance, is chosen. Thus, a sparse non-symmetric adjacencymatrixA is constructed,
where Ai j = 1 if j is a nearest neighbour of i and Ai j = 0 otherwise. An example
2D data set and the graph representing the initial adjacency of points are shown
in Fig. 1a and b respectively, where the direction of the connections is omitted. A
weighting that encodes pair-wise similarity can then be realised in the choice of an
initial coupling strength gi j between the two neurons, at time t = 0:

gi j,t=0 = Ai j exp

[
−ε

(
di j
d0

)2
]

, (1)

where d0 is the average distance between all neighbours in the network and ε ∈ R>0

is a scaling constant. A different measure that results in an increase in similarity for
decreasing distance may also be feasible.

The similarity encoded statically in these weights can now be translated into a
dynamic similarity. To this end, the data items are interpreted as neuronswith internal
dynamics, on which the coupling imposes dynamic correlation, or ‘synchrony’. The
input to a neuron, which is coupled only to its neighbours, also contains information
about the dynamics of more distant parts of the network, mediated by the dynamics
of structures of neurons connecting these parts. Thus, intermediate- and large-scale
synchronisation patternsmay emerge even though not all neuronswithin these groups
are coupled directly. In order for the final weight structure to represent these large-
scale correlations, Hebbian learning is used to adjust the weights to represent the
‘true’ similarity between data points. In this process, the neuron group interactions
allow for initial local variations in similarity to be either amplified or smoothed out.
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For instance, groups of neurons may collectively behave synchronised despite small
variations in the weights, so that all intra-group connections may be strengthened.
On the other hand, the lack of similar driving inputs will cause neurons from different
groups or outliers to behave less similarly, so that their initial dissimilarity can be
amplified in the learning process. The final weight structure, as shown for instance
in Fig. 1c, therefore essentially represents global dynamic similarity, as opposed to
topological proximity.

Here, the dynamics imposed on the nodes is given by the Rulkov neuron model
[13], which in contrast to the I&F model used in earlier implementations is realistic
in the sense that it is capable of producing any real-life neuron behaviour, including
spiking, bursting, and silent phases. Each node has two time-discrete state variables,
a fast evolving (membrane) potential xi,t and a slowly evolving (phase) potential yi,t ,
given by

xi,t+1 = f (xi,t , yi,t + βi,t ) , (2)

yi,t+1 = yi,t − μ(xi,t + 1) + μ(̃σi + σi,t ) , (3)

where σ̃i represents a constant input current driving the uncoupled neuron, and the
evolution of the fast variable is given by

f (x, y) =

⎧⎪⎨
⎪⎩

α
1−x + y if x ≤ 0,

α + y if 0 < x < α + y,

−1 if x ≥ α + y.

(4)

where μ and α are constants. Nodes can interact via the Rulkov coupling equations,
with a strength proportional to the coupling gi j,t :

βi,t = βc
1

k

k∑
j=1

gi j,t(x j,t − xi,t ) , (5)

σi,t = σc
1

k

k∑
j=1

gi j,t(x j,t − xi,t ) , (6)

where the parameters βc, σc ∈ [0, 1] are constants that may be used to weight the
influence of the coupling on the fast and slow potentials.

The currents βi,t and σi,t allow the neurons to communicate and synchronise for
large coupling strengths. In the Hebbian learning procedure, this dynamic similarity
needs to be quantified. It is essential that such a measure of synchrony and the
coupling strength between neurons interact appropriately. This includes the direction
of change, i.e. an increase in synchrony as a result of an increase in coupling strength
(and vice versa), and a preferably small time scale on which the synchrony reacts to a
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change in coupling. These requirements are realised in ameasure of phase synchrony,
where the synchrony Si j,t at time t , measured over a preceding time period τ , is given
by means of the population Pearson correlation between the slow potentials of the
neurons:

Si j,t =

t∑
�=t−τ

(
yi,� − yi

) (
y j,� − y j

)
√

t∑
�=t−τ

(
yi,� − yi

)2 t∑
�=t−τ

(
y j,� − y j

)2 , (7)

where yi is the average potential of the i th neuron over the period τ .
A single Hebbian update rule, that comprises both a tendency for global synchro-

nisation and a restriction of the same due to resource sparsity, can now be realised.
These two counteracting principles, mediated locally, eventually result in the forma-
tion of global and mesoscopic structures, from which clusters can be extracted. With
this aim, the learning rule is formulated such that the coupling between two neurons
will be increased or decreased depending on the nodes’ synchrony relative to the
average synchrony in the network, such that high synchrony results in an increase in
coupling and low synchrony in a decrease:

gi j,t+1 = gi j,t + τ

t

(
c1Si j,t − c2S

)
, (8)

where c1, c2 ∈ [0, 1] and S is the average synchrony in the network, given by

S =
∑

i, j∈N,Ai j=1

Si j,t . (9)

An example of the development of some weights between different neurons is
shown in Fig. 2. It can be seen that the weights settle to an equilibrium where only
neurons within a cluster will maintain their strong connections.

Finally, the clusters are to be extracted from the resulting global weight structure.
Towards the end of the learning process, the system will be driven into state where
the number of strong weights does not change significantly any more (i.e. all strong
connections are found) while the number of intermediate-strength connections be-
comes small (due to a strong increase or decrease in the learning procedure). That
is, it has become clear whether two neighbours do have a strong correlation or not.
At this stage, the final structure is found and the learning procedure can be stopped.
To determine when this stage is reached, a stopping coefficient κ , which is given by
the ratio of still-learning connections n� to the total number of strong connections
ns in the network, is defined:

κ = n�

ns
. (10)
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Fig. 2 a Development of several weights within a cluster, where all weights are increased in the
Hebbian learning procedure. b Development of weights among low-density noise data (top three
weights) and the weights with neurons from an adjacent cluster. The weights among noise data are
increased initially, due to the fact that the nodes are in an environment of similar density, but overall
remain small in compensation for the increase in coupling strengths within clusters

The number of connections that are still learning is determined using two thresh-
olds θ1 and θ2. Still-learning connections are said to have weights in the intermediate
range with θ1 < gi j < θ2, while strong connections have a high coupling strength
gi j > θ2. The learning process is stopped when κ falls below a small threshold,
κ ≤ ω, indicating a low number of still-learning weights compared to already settled
weights.

In the final step, clusters are defined as structures of strongly coupled nodes.
These can be extracted from the network as subgraphs of nodes with weights above
a certain threshold. In our implementation, this is done by applying the fast Tarjan’s
algorithm [16] in the graph of weights above threshold θ2.

3 Stability and Computational Complexity of the RHLC

3.1 Stability of the RHLC Results

While the numerical values of some parameters used in the algorithm have biological
or computational motivation and the algorithm is stable towards changes in others,
mainly two parameters directly influence the clustering result and may be used for
tuning. These are the coupling initialisation parameter ε and the number of nearest
neighbours k. For a synthetic data set, where the ideal clustering result is known, we
can measure the quality of any RHLC clustering for ranges of these parameters. In
Fig. 3, we present an example outcome of such an experiment, where we measure
the quality of a clustering result using the Jaccard index ([6, 7], see Appendix),
a measure of similarity between sets, where an index close to 1 indicates a good
clustering result.
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Fig. 3 a A synthetic 3D data set with two intertwined rings that represent convex-concave-shaped
clusters, and background noise data, simulating outliers. b The clustering result quality as function
of the parameters k and ε, where a Jaccard index close to 1 (yellow region, points d and e) marks a
good clustering result, while low Jaccard indices (green region, points c and f) indicate poor results.
In the top left parameter region a tendency towards large clusters is observed, in the bottom right
region a tendency towards small clusters, where the specific results are displayed in c–f respectively

It is clear that there is a region of stability, where changes in the parameters do
not alter the clustering result significantly. However, with more extreme values, a
preference for larger or smaller clusters can be induced, as shown in Fig. 3c and f. A
large number of nearest neighbours or a low value of ε, which increases the average
similarity between neurons, favours larger clusters, whereas low similarity and few
neighbours effectively splits clusters up into smaller clusters. A hierarchy becomes
apparent, and the naturalness of a cluster can be inferred from its stability, where
the most natural clusters will be the most robust with respect to changes in these
parameters.
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The numerical values of the other parameters and initial conditions used in this
implementation are motivated by simulations with toy data sets or theoretical argu-
ments, and are presented for completeness in the Appendix.

3.2 Computational Complexity of the RHLC

Our HLC implementation makes use of the computationally lean (discrete) Rulkov
neuron dynamics and the local nature of the interactions (and therefore sparse form
of the interaction matrices), and is thus able to achieve a favourable scaling of com-
putation time with respect to the number of data items. From Fig. 4, a practical
estimation of the complexity of the RHLC (Matlab implementation) reveals a scal-
ing of ≈O(N ), similar to the k-means algorithm (Matlab implementation) and the
k-means related algorithm ‘flowPeaks’ (R implementation) [3], which is used in the
flow cytometry community. The I&F HLC (C implementation, of which no sparse
version exists at this time) and Ward’s algorithm (Matlab implementation) show a
scaling of ≈O(N 2).

The HLC algorithms have an offset in computation times compared to classical
algorithms, due to the network initialisation and repeated computation of the neuron
potentials and synchrony, but due to the local nature of interactions, a linear scaling
can be achieved. In the RHLC algorithm, the k-nearest neighbour search requires
O(kN log(N )) and the connected components search O(N + kN ). The computation
of synchrony and the weight updates occur with O(kN ), multiplied by the number

Fig. 4 Computation times of
several clustering algorithms.
The estimated slope values
indicate a favourable
behaviour of the RHLC (2)
which scales with O(N ),
similar to the flowPeaks (4)
and k-means (5) algorithms.
The I&F HLC (1) and
Ward’s (3) algorithms scale
with O(N 2). The offset of
the HLC algorithms due to
the network initialisation and
repeated neuron potential
computation may be reduced
further by parallelisation
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of weight updates required until the learning procedure is stopped. With our learning
rule and the Rulkov neuron dynamics, we were able to reduce the number of updates
required by a factor of ≈0.5 compared to the I&F HLC. The limiting factor for very
large data sets will thus be the network initialisation. The local interaction rules,
however, also open up the possibility of parallelisation, which would further reduce
the total computation times and therefore the computation time offset.

4 Application to Data

Wefirst analyse a biologically relevant clustering paradigm [4] that is ideal for testing
the requirements for an unbiased clustering algorithm posed in the beginning. The
data set, shown in Fig. 5a, contains two convex-concave shapes of different sizes as
well as noise data. The dataset illustrates the complex relationship between local and
global similarity, where the membership of a point to a cluster is mediated by local
connectivity, not necessarily global proximity. As a result it can be seen in Fig. 5b
that Ward’s algorithm, which implicitly uses the assumption of global proximity, is
unable to identify the clusters, while the RHLC finds them in a natural way (Fig. 5c).

A promising real-life application of our automated clustering approach is the
identification of cell types. Many diseases, such as acute myeloid leukemia, manifest
themselves in functionally and phenotypically diverse cells, the classification of
which is essential for disease identification and relapse prevention. Human bone
marrow, containing a variety of distinct and well-characterized immunological cell
types, presents an ideal benchmark case for phenotypic clustering [10]. We therefore
analyse here a mass cytometry dataset of healthy human bone marrow cells (data and
description of experimental method: [1]). In the analysis, 13 different surface marker
expressions were used as cell features. These are the integrated elemental reporter
signals recorded in a time-of-flight mass cytometer, induced by transition element
antibody tags labelled with elemental isotopes. A standard method for cell type

(a) (b) (c)

Fig. 5 a The initial 2D convex-concave synthetic data set, with background noise data items.
b Ward’s clustering result, where the clusters are not identified correctly. c With the RHLC, a
close-to-ideal clustering result is obtained
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identification in mass cytometry data is an expert manual gating procedure, where
constant thresholds are introduced in a series of biaxial plots to separate classes of
cells (this procedure is described in detail in [1]). Here, we compare the expert cluster
labels, resulting from this manual low-dimensional gating procedure, with the results
of the analysis of the gated dataset in higher dimensions with Ward’s and the RHLC
algorithms. For the visualisation of the results, t-SNE projections [17] have become
a standard tool, allowing the mapping of high dimensional data to a low-dimensional
space while aiming to preserve relative inter-item distances.

The classification results on the manually gated dataset are presented in Fig. 6,
where Ward’s clustering was given, a priori, the number of clusters found by man-
ual gating. With the benefit of this strong additional information, Ward’s clustering
performs generally well, but fails to correctly identify some clusters, and splits some
clusters that are identified by RHLC and manual gating as one cluster. RHLCmerges
some of the clusters that are distinguished by the manual gating (such as the three
clusters in Fig. 6a surrounded by a dashed line, which as the most striking exam-
ple, become a single cluster in the RHLC clustering, Fig. 6c). Searching for features
that give rise to the distinction missed by RHLC, we look at the two-dimensional
orthogonal projections in Fig. 7, which reveal thin, linear, separating gaps, that were
introduced by the gating procedure. However, these two-dimensional projections
may be misleading regarding the significance of the gap in the full high-dimensional
feature space. Comparing the size of the gaps with the average nearest neighbour
distance in the high-dimensional space, we find that the average size of the gap is
roughly equal to (or in some cases even smaller than) the average nearest neighbour
distances within the respective clusters. RHLC, therefore, does not perceive these
gaps as significant, and the most reasonable clustering configuration is the one where
these clusters are merged. We note that RHLC, through specific choices of k and ε,

Fig. 6 The t-SNE projections [17] of 30000 cells from the gated healthy human bone marrow
benchmark data [1], where colours encode cluster labels. a Expert cluster labels, which were found
by biaxial manual gating [1]. b Ward’s cluster labels, where the ideal number of clusters (24) was
supplied. c Most stable RHLC clustering result. While Ward’s clustering is very sensible to small
separations and density gradients, the very stable RHLC result suggests generally larger clusters
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Fig. 7 a The t-SNE map of three manually labelled clusters. b The two-dimensional projection
of the same clusters in the only two separating dimensions. c In all other dimensions, the clusters
occupy roughly the same ranges, such as demonstrated with these example features. Here, the
standard mass cytometry data transformation, asinh of the data divided by 5, was applied

can be tuned to separate these clusters as well. However, the computational stability
with respect to parameter variation of the result shown in Fig. 6c emphasises that
even in the gated data set the involved cell types are perceived as very similar.

5 Conclusions

We presented the basic principles, implementation, and results of a neuronal net-
work based clustering algorithm that combines the robust, self-organised design of
the Hebbian learning clustering with the biologically realistic Rulkov neuron dy-
namics and an efficient sparse implementation. By using unsupervised learning in
an artificial neural network based on local interactions, global information about the
cluster membership can be extracted avoiding the shape biases of standard clustering
algorithms. Additionally, its hierarchical response to changes in certain parameters
allows the evaluation of the stability and thus naturalness of a cluster.

We demonstrated the algorithm’s ability to identify convex-concave clusters in
the presence of noise data with several synthetic data sets. For a high-dimensional
biological bone marrow data set, we showed that RHLC, by using information from
all dimensions simultaneously,mayprovide insights that are not accessible bymanual
clustering procedures.

The use of Rulkov neuron dynamics and our sparse implementation now allows
the fast analysis of large data sets, where the possibility for further optimisation
by parallelisation is given. This opens up new possibilities to analyse large, high-
dimensional, unknown data sets, without prior knowledge about the number, shape,
or density of clusters.
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Appendix

Parameters and Initial Conditions

The initial potentials of the neurons are randomised around {xi , yi } = {−1,−3},
which are values that a standard uncoupled neuron will visit naturally in its cycle.
The algorithm is stable with respect to this random initialisation. The parameter
ranges that may in principle be used are presented in Table1.

We find that generally, the best results are obtained with the initialisation parame-
ters k ∈ {10 . . . 100} and ε ∈ [0.5, 2], where the clustering result is in general stable
for ranges of these parameters, as shown in Fig. 3. The Rulkov neuron parameters are
set to allow all types of neuron dynamical behaviours, a fast evolution of the poten-
tials, and non-weighted coupling (α = 8, μ = 0.1, and βc , σc = 1). The parameter
τ is chosen τ = 50, which was found to be the minimum time required for the syn-
chrony to be measured reliably. Higher values are equally suitable but increase the
computation time. The parameters c1 and c2 were chosen c1 = 1

2 and c2 = 1
3 to allow

for a global increase in coupling strength in the initially generally weakly coupled
network. The thresholds θ1 and θ2 define what is a weak and a strong connection,
respectively. Two Rulkov neurons generally behave synchronously for large values
of gi j and less synchronous for low values, so here we choose θ1 = 0.2 and θ2 = 0.9.
The value of ω has to be chosen small to ensure that the number of still-learning
connections has become small enough compared to the number of already-settled
connections. In our implementation, motivated by experiments with toy data sets,
we choose ω = 0.4.

The constant parameters σ̃i are computed by

σ̃i = Gi

max
i

Gi
, (11)

Table 1 Parameters and their ranges in the Rulkov HLC algorithm

Parameter Range Description

k {1, 2, . . . , N − 1} Number of nearest neighbours

ε R>0 Coupling initialisation parameter

βc,σc [0, 1] Rulkov neuron dynamical parameters

μ (0, 1) Rulkov neuron dynamical parameter

α R>0 Rulkov neuron dynamical parameter

τ N Time over which synchrony is measured

θ1, θ2 R | θ1 < θ2 Thresholds for weak and strong weights

c1, c2 [0, 1] Weight update parameters

ω R>0 Stopping criterion
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where the total coupling strength Gi of a neuron is given by the sum over all initial
coupling strengths to all its neighbours, normalised by the number of neighbours,

Gi = 1

k

k∑
j=1

gi j,0 . (12)

This initialisation of σ̃i ensures that neurons in similarly dense regions have a
similar constant input current and tend to behave synchronously from the beginning.

We note that further deparametrisation may be possible by altering the Hebbian
learning rule to include a local measure of the average synchrony, so that it is of the
form gi j,t+1 = gi j,t + τ

t

(
Si j,t − Si

)
, where Si is the average synchrony in the neigh-

bourhood of neuron i only. This would complement the algorithms local nature and
provide the possibility of a further increase in stability.

Jaccard Similarity

The Jaccard index is for two clusterings cr and co is given by

J (cr , co) = a(cr , co)

a(cr , co) + e(cr , co) + e(co, cr )
, (13)

where a(cr , co) is the number of observation pairs that are in the same cluster in cr as
well as co, and e(cr , co) is the number of observation pairs that are in the same cluster
in cr but not in co. The Jaccard index is thus large (J (cr , co) ≈ 1) for high similarity
between the clusterings, and low (J (cr , co) ≈ 0) for low similarity. Therefore, if a
given clustering result cr is compared to some optimal clustering result co, a Jaccard
index close to 1 indicates a good clustering result.
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Abstract The fundamental question in the new field of Network Physiology is how
physiologic states and functions emerge from networked interactions among diverse
physiological systems. We present recent efforts in developing new methodology
and theoretical framework adequate to identify and quantify dynamical interactions
among systems with very different characteristics and signal outputs. In this chapter,
we demonstrate the utility of the novel concept of time delay stability and a first
Network Physiology approach: to investigate new aspects of neural plasticity at the
level of brain rhythm interactions in response to changes in physiologic state; to
characterize dynamical features of brain-organ communications as a new signature
of neuroautonomic control; and to establish basic principles underlying hierarchical
reorganization in the network of organ-organ communications for different physi-
ologic states and functions. The presented results are initial steps in developing an
atlas of dynamical interactions among key organ systems in the human body.
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1 Introduction

The human organism comprises various physiological organ systems, each with its
own structural organization and functional complexity, leading to transient, fluctu-
ating and nonlinear output dynamics [20, 22]. The state and function of the human
organism is defined by the characteristics of individual organ systems, and by how
systems’ dynamics change in response to neuroautomomic regulation and external or
pathologic perturbations [10, 23, 25, 27, 39, 40]. Another key feature of the human
organism is the presence of complex signaling and interaction processes between
organ systems and sub-systems. These interactions occur through different coupling
feedbacks, at multiple levels of integration and across spatio-temporal scales to opti-
mize and coordinate physiologic organ functions. In addition to the state of individual
organ systems, coordinated network interactions among organ systems are essential
to maintain health and generate distinct physiologic states, e.g., wake and sleep;
light and deep sleep; dreams; consciousness and unconsciousness. Disrupting these
communications can lead to dysfunction of individual systems or to a collapse of the
entire organism as observed in coma and multiple organ failure [8]. Yet, despite the
importance to basic physiology and clinical medicine, we do not have established an-
alytic and computational methodology and theoretical framework to probe emergent
physiologic state and function out of networked interactions among diverse organ
systems.

Recent developments in the new field, Network Physiology [6, 19], which focuses
on inferring coupling and dynamical interactions among organ systems based on
continuous streams of synchronized recordings of key physiologic parameters, may
help overcome limitations in the current state-of-the-art. In contrast to traditional
complex network theory, where edges/links are constant and represent static graphs
of association, novel approaches in Network Physiology focus on dynamical aspects
of organ communications in real time, on the evolution of organ interactions and the
collective network behavior in response to changes in physiologic state and condition.

While initial steps were made in this direction [6, 30], major challenges remain
that would require a coordinated interdisciplinary effort spanning from statistical
physics, applied mathematics to biomedical signals processing, human physiology
and clinical medicine. These challenges arise from several levels of complexity in-
herent to the dynamics of organ systems: (i) each organ is a multi-component system
with its own structural complexity and regulatory mechanism leading to complex
emerging dynamics characterized by fluctuating, intermittent and non-linear output
signals [21, 24]; (ii) organ systems operate on a broad range of time scales from
ms to hours and exhibit different types of output dynamics – oscillatory, stochastic
or mixed – and thus, earlier concepts of treating them as chaotic oscillators need to
be extended [1, 12, 47]; (iii) interactions between organ systems vary in time and
moreover, certain pairs of organ systems can communicate through multiple forms
of coupling [2–4].Most importantly, global network dynamics of the entire organism
can not be simply expressed as a sum of the behaviors of individual systems, and can
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be strongly influenced by minor changes in the relative strength of their interactions,
even when the network topology between these systems remains unchanged.

To address these challenges, recent nonlinear methods based on phase synchro-
nization [2, 3, 41], coherence [7, 13, 33, 35], mutual information [15], transfer
entropy [14, 16, 45, 46] and Granger causality [43] have been proposed to infer
nonlinear interactions between pairs of dynamical systems. Efforts have focused on
extending these methods to quantify direct or indirect interactions, the strength and
directionality of links and the functional forms of coupling in physiological net-
works. In this chapter, we present a first Network Physiology approach based on
the novel concept of time delay stability, which is suitable to identify and quantify
physiologic interactions among diverse organ systemswith distinct output dynamics.
We report first findings utilizing this new framework to (1) investigate brain-brain
network interactions across distinct brain rhythms and locations, and their relation
to new aspects of neural plasticity in response to changes in physiologic state; (2)
characterize dynamical features of brain-organ communications as a new signature
of neuroautonomic control; (3) to establish basic principles underlying coordinated
organ-organ communications, and construct first atlas (maps) of dynamical organ
interactions across distinct physiologic states.

2 Time-Delay Stability Method: A New Approach
to Physiologic Network Interactions

The structural and neuronal networks that control physiological systems lead to a
high degree of complexity, which is further compounded by various coupling and
feedback interactions that continuously vary in time, and the nature of which is not
understood. These systems operate on different time scales, from msec to hours,
and exhibit multiple coexisting forms of coupling. To quantify these interactions
and characterize how they change in time under different physiological conditions,
we study the time delay with which modulations in the output dynamics of a given
system are consistently followed by corresponding modulations in the signal output
of another system (time delay stability, TDS). Periods with constant time delay
indicate a stable physiological interaction, and stronger coupling between systems
results in longer periods of TDS [6].

Our TDS approach is a natural extension of previous efforts to develop methods
sensitive to infer bivariate and multivariate interactions between dynamical systems
based on cross-correlation, cross-coherence [35], Granger causality and mutual in-
formation [15, 16, 43], aiming to quantify linear and nonlinear characteristics of
dynamical coupling [14, 42]. Measures derived from each of these methods reflect
specific aspects of dynamical coupling and physiological regulation including the
detection of direct or indirect links, the hierarchy of network interactions and di-
rectionality of links. While the sign of the time delay is naturally related with the
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directionality of interactions [31, 32], here we focus on time delay stability as a
measure of coupling strength between dynamical systems.

In our analyses, physiological output signals are first re-sampled at 1Hz and nor-
malized to zero mean and unit standard deviation within overlapping time windows
ofΔt = 60swith amoving step of 30 s (effectively de-trending the signals), as shown
in Fig. 1a. Synchronous bursts in the normalized signals lead to pronounced cross-
correlation calculated in windows of Δt = 60s and in steps of 30s (Fig. 1b). The
time delay τ0 is determined by the position of the maximum of the cross-correlation
function in each moving window Δt . We identify two systems as linked if their cor-
responding signals exhibit a time delay that does not change by more than ±1 s for
several consecutive time windows Δt . Specifically, we track the values of τ0 along
the series τ0(Δt) — when for at least four out of five consecutive time windows
Δt (corresponding to a period of 5 × 30 s) the time delay remains in the interval
[τ0 − 1, τ0 + 1] these segments are labeled as stable (Fig. 1c). The procedure for
determining intervals with stable time delay is repeated for a sliding time window
with a step size one along the entire series τ0(Δt).

Longer periods of TDS between the output signals of two systems reflect more
stable interaction/coupling between these systems. Such interpretation is analogous
to quantification of coupling strength between nonlinear chaotic oscillators based on
the concept of phase synchronization — higher value of the coupling constant has
been theoretically linked with increased percent of phase synchronization between
the output signals of the oscillators [34, 37, 38]. Thus, the strength of coupling in
our analysis is determined by the percentage of time in the recordings when TDS is
observed: higher percentage of TDS corresponds to stronger coupling. The % TDS
is calculated as the fraction of segments with stable time delay out of the entire
time series τ0(Δt). We obtained % TDS for each pair of physiological systems and
we construct a TDS matrix to derive the dynamical network of organ interactions,
as shown in Fig. 1d, e. The TDS measure focuses on the stability of coordinated
modulation between dynamical systems and provides complimentary information on
physiological coupling to alternative measures based on spectral coherence, mutual
information or transfer entropy [15, 16, 33]. We note that in the context of TDS,
strong physiologic coupling is defined as long periods of time delay stability, which
can result only from active coordination (i.e., strong links) between physiologic
systems.

We analyze continuously recorded multi-channel physiological data obtained
from 36 healthy young subjects (18 female, 18 male, with ages between 20–40,
average 29years) during night-time sleep (average record duration is 7.8 h). We
focus on physiological dynamics during sleep as sleep stages are well-defined phys-
iological states, and external influences due to physical activity or sensory inputs are
reduced during sleep. Sleep stages are scored in 30s epochs by sleep lab technicians
based on standard criteria [36]. Specifically, we analyze EEG data from six scalp
locations (frontal left - Fp1, frontal right - Fp2, central left - C3, central right - C4,
occipital left - O1, and occipital right - O2), the electrocardiogram (ECG), respira-
tion, the electrooculogram (EOG), and the electromyogram (EMG) of the chin and
leg. In order to compare these very different signals with each other and to study
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(a)

(b)

(c)

(e)

(d)

Fig. 1 Schematic presentation of the time delay stability (TDS) method and TDS matrix
representing the degree of coupling between different frequency bands across brain locations.
a Segments of brain EEG power spectra Sδ and Sσ for the δ- and σ -band shown for four consecutive
60 s time windows. b Coordinated bursts in Sδ and Sσ lead to pronounced cross-correlation Cδσ

within each time window. The time lag τ0 that corresponds to the peak in the cross-correlation
function Cδσ (τ ) represents the time delay between the two signals. c Time delay τ0 between Sδ

and Sσ plotted as a function of time for consecutive 60 s windows moving with a step of 30 s.
Four red dots represent τ0 for the four windows shown in the above panels. Note the transition
at ∼1200 s from a segment with strongly fluctuating τ0 to a stable time delay regime with τ0 ≈
constant. Such regime of time delay stability (TDS) indicates the onset of physiological coupling.
The fraction of time when TDS is observed in the EEG recording, i.e. % TDS, quantifies the
degree of coupling strength. Longer periods of TDS between Sδ and Sσ reflect stronger coupling.
d TDS matrix representing the degree of coupling between different physiologically relevant EEG
frequency bands (δ , θ , α , σ , β , γ1 , γ2) derived from the C3 channel. Matrix elements represent
%TDS, where the color code is shown in the vertical bar. e Block-matrix representing the degree
of TDS coupling between EEG channels (Fp1, Fp2, C3, C4, O1, O2) and between EEG frequency
bands. Each off-diagonal block element corresponds to a specific pair of EEG channels and each
diagonal block element represents the coupling between different frequency bands within the same
EEG channel, as shown in d

interrelations between them,weextract the following time series from the rawsignals:
the spectral power of seven frequency bands of the EEG in moving windows of 2 s
with a 1 s overlap: δ (0–4Hz), θ (4–8Hz), α (8–12Hz), σ (12–16Hz), β (16–20Hz),
γ1 (20–34Hz) and γ2 (34–100Hz) [11]; the variance of the EOG and EMG signals
in moving windows of 2 s with a 1 s overlap; heartbeat RR intervals and interbreath
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intervals are both re-sampled to 1Hz (1 s bins) after which values are inverted to ob-
tain heart rate and respiratory rate. Thus, all time series have the same time resolution
of 1 s before the analysis.

To confirm that the TDS method captures physiologically relevant information
about the endogenous interactions between systems, we perform a surrogate test
where we pair physiological signals from different subjects, thus eliminating phys-
iological coupling. Applying the TDS method to these surrogate data, we obtain
almost uniform rank distributions with significantly decreased link strength due to
the absence of physiological interactions. The results of this surrogate test indicate a
significant ten-fold decline (outside 5 standard deviations) compared to real physio-
logic coupling between organ systems across all physiologic states (sleep stages). In
contrast, the same surrogate test applied to traditional cross-correlation analysis does
not show a difference between the rank distributions from surrogate and real data,
indicating that the TDS measure extracts hidden information that is not accessible to
the traditional linear cross-correlation analysis. The details of these statistical tests
are presented in an earlier work [6].

3 Brain-Brain Networks: New Aspects of Neural Plasticity
in Response to Change in Physiologic State

Research work on brain structure and brain dynamics in last decades has actively
focused on structural, dynamical and functional brain maps constructed from fMRI,
MEG, or BOLD signals [9]. Dynamics of brain wave rhythms and their distribution
across brain areas have been studied in the context of different physiologic states
under healthy conditions [13, 17, 44], in relation to cognitive and memory function
[28], and under pathological deviations [7].

Our approach based on the TDS method focuses on the coordinated bursting
activity of brain waves in different frequency domains, specifically focusing on
cross-brain-wave interactions at the same location and same-brain-wave coordina-
tion across brain areas. Generally, this integrative approach allows us to investigate
how multi-component dynamical systems self-organize as a result of network inter-
actions among components in order to generate complex functions, and to elucidate
mechanisms underlying the evolution of systems dynamics across states and condi-
tions.

3.1 Hierarchical Reorganization of Brain Wave Interactions

Utilizing our TDS method and network approach, we identify and quantify coupling
between brain waves defined by physiologically-relevant EEG frequency bands. We
build a network of brain wave interactions, where network nodes represent diverse
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brain waves at different brain locations and network links represent the strength of
TDS coupling between brain waves across the entire brain.

We find that brain-wave network links exhibit complex patterns in the coupling
strength between frequency bands across different brain locations, as represented
by the TDS block-matrix elements (Fig. 1e). Moreover, we find that during distinct
physiologic states (sleep stages) the entire brain adjusts the configuration and strength
of network connections (defined by % TDS) between brain waves, leading to a
hierarchical network re-organization with transitions across physiologic states [29].
This demonstrates a remarkable neural plasticity in the way brain waves coordinate
their bursting activity at the integrated system level to produce physiologic functions
associated with each physiologic state [29]. Specifically, the network of brain wave
interactions undergoes a pronounced transition from a less connected state during
Deep Sleep and REM to a highly connected state in Light Sleep and Wake (Fig. 2).

Generally, the strongest links in the network structure of brain wave interactions
are those links between brainwaves of different frequencies at the sameEEG-channel
location (i.e., intra-channel interactions), as representedby thediagonalmatrix blocks
in the TDS matrix. In contrast, interactions among brain waves from different EEG-
channel locations (i.e., inter-channel links) are weaker, as represented by the off-
diagonalmatrix blocks (Fig. 1e). Further, considering all inter-channel links those that
represent interactions between the same brain waves exhibit strongest coupling, as
shown by the dominant diagonal elements in each off-diagonalmatrix block (Fig. 1e).

We find that these network features are consistently observed for all sleep stages,
indicating a universal and robust structure in brain wave interactions independent of
physiologic states.Moreover, our results show that a significant part of the brainwave
interactions across different brain areas is mediated through the coupling between
brain waves in the same frequency bands (Fig. 2).

We uncover that different dominant structures (“building blocks”) underlie gen-
eral network connectivity and link strength during different sleep stages [5]. Specif-
ically during DS, we find that the network is characterized by strong Frontal-Frontal
(Fp1-Fp2) and Central-Central (C3-C4) links. In contrast, Occipital-Occipital (O1-
O2) links are less prominent and weaker in strength. In addition, same hemisphere
Frontal-Central interactions (Fp1-C3 and Fp2-C4) are more dominant, with higher
connectivity and stronger links, compared to Central-Occipital (C3-O1 and C4-O2)
interactions. Further, same-hemisphere Frontal-Occipital (Fp1-O1 and Fp2-O2) in-
teractions and cross-hemisphere interactions (diagonal links) are not pronounced
during DS (Fig. 2, where interactions with link strength >45% TDS are shown).

Notably, the majority of brain-brain interactions during DS are parallel links be-
tween same frequency bands in the Frontal, Central and Occipital locations, while
inter-channel interactions across different frequency bands are much weaker and
mainly present in the Frontal area. These complex brain-brain inter-channel interac-
tions topologically form a network structure similar to an upper half of a hexagon.
This half-hexagon structure is typical for all DS episodes throughout the night and
remains present as a building block across all sleep stages (Fig. 2).

Expanding our analysis toREMsleep episodes, we find a similar structure of inter-
channel interactions across various frequency bands as observed duringDS episodes,
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Fig. 2 Inter-channel brain networks during different physiologic states. Network nodes with
different colors represent seven different frequency bands (δ , θ , α , σ , β , γ1 , γ2) derived from
EEG signals, and each set of seven nodes ordered as a heptagon forms a vertex on the hexagon
representing six EEG channels from particular brain locations: 2 Frontal areas (Fp1 and Fp2), 2
Central areas (C3 and C4) and 2 Occipital areas (O1 and O2). Coupling strength between frequency
bands of signals from different EEG channels (i.e., inter-channel networks) is quantified as the
fraction of time (out of the total duration of a given sleep stage throughout the night) when TDS is
observed (% TDS). While during quiet W and LS the network of inter-channel brain interactions
exhibits high connectivity and strong links between frequency bands of different EEG channels,
the networks during REM and DS are more sparse with weaker links. Links between two nodes
represent the group averaged coupling strength between frequency bands over all subjects. Inter-
channel links strength is plotted in linear scale with gray color code and line thickness — strong
links with high %TDS are represented by dark thick lines

however, with more pronounced Occipital-Occipital (O1-O2) and same-hemisphere
Central-Occipital (C3-O1 and C4-O2) interactions with higher link strength. Similar
to DS, all inter-channel interactions during REM are characterized by dominant
interactions between the same frequency bands (parallel links), while links across
different frequency bands are much weaker and mainly located in the Frontal area.
The increased involvement of Occipital-Occipital and Central-Occipital interactions
duringREM lead to a network structure that extends the half-hexagon topology (basic
building block) observed in DS to a full hexagon configuration. In addition to this
hexagonal topology, the inter-channel network of brain interactions during REM is
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characterized by higher number of weak cross-hemisphere links that are not present
in DS (Fig. 2).

Investigating brain-brain interactions during LS, we find that the typical network
structure characterized by full-hexagon topology observed for REM is reinforced by
stronger links. Moreover, the transition to LS is characterized by a dramatic increase
in cross-hemisphere connectivity mediated through much stronger diagonal links,
and by the emergence of same-hemisphere Frontal-Occipital links of intermediate
strength that are absent in REM and DS. Further, we note that the brain network
dynamics during LS are characterized by a significant increase in interactions across
different frequency bands not only in the Frontal area (Fp1-Fp2) as observed in REM
and DS, but also in the Central area (C3-C4) as well as Frontal-Central interactions
(Fp1-C3, Fp2-C4, Fp1-C4 and Fp2-C3). In contrast, interactions across different fre-
quency bands are not observed in the Occipital area (O1-O2) or in Central-Occipital
interactions (C3-O1, C4-O2, C4-O1 and C3-O2). Thus our analyses indicate that on
top of the typical for REM hexagon topology, the brain-brain network during LS is
characterized by additional degrees of cross-hemisphere and cross-frequency bands
connectivity in the Frontal and Central areas.

DuringWake, we find that brain-brain interactions are characterized by a topology
similar to the one observed during LS. However, network connectivity during W is
reinforced by additional and stronger links in the Occipital area (O1-O2) as well as
by same-hemisphere Central-Occipital (C3-O1 and C4-O2) links. Moreover, in con-
trast to all other sleep stages, same-hemisphere Frontal-Occipital (Fp1-O1 and Fp2-
O2) interactions are characterized by strong network links. Notably, inter-channel
brain-brain interactions during W involve a high number of cross-hemisphere and
cross-frequency links (Fig. 2), leading to a homogenous network with the highest
connectivity and the highest average link strength compared to all other sleep stages
[5].

Comparing inter-channel brain networks for different sleep stages, we find that
the most significant change in the network of brain wave interactions occurs for links
which represent interactions between brain waves of different frequencies (Fig. 2).
Such dramatic reorganization in network connectivity and link strength between
different brain waves indicates high degree of neural plasticity and modulation of
global cooperative behavior of brain wave interactions to accommodate physiologic
function during different physiologic states.

3.2 Specific Roles of Different Brain Areas in Brain Wave
Network Interactions

To better understand the role of individual brain areas in the network of brain wave
interactions, we consider subnetworks associated with specific brain locations. We
consider six subnetworks associated with the six EEG channels in the experimental
setup, where each subnetwork represents the set of network links between different



154 P.Ch. Ivanov et al.

frequency bands (network nodes) derived from a given EEG channel (brain location)
and brain waves at all other brain areas (EEG locations).

Our results show a strong and robust symmetry between the left and right hemi-
sphere in both network topology and link strength configurations. For example, we
find that for each physiologic state, the subnetwork associated with the C3 channel is
almost identical to the one associated with the C4 channel. Thus, we only present and
discuss the results obtained for the C3 channels located in the left hemisphere. The
choice of C3 channel is also motivated by traditional sleep-stage classification rules
which utilize EEG signals derived from the C3 channel. Our analyses of brain-wave
subnetworks associated with other channels (reported elsewhere [29]) show a similar
stratification across sleep stages in the average link strength and number of network
links as shown here for the C3 channel.

3.2.1 Intra-channel Network at C3

The intra-channel network represents flow of communication (as measured by
%TDS) carried by the spectral power of different frequency bands of the EEG sig-
nal recorded at one specific channel location. We find that the connectivity of the
intra-channel network at C3 channel changes significantly across distinct physio-
logic states [29] — we observe a lowest connectivity in REM, a higher one in Wake
and Light Sleep and the highest connectivity during Deep Sleep. Notably, in Deep
Sleep we observe that most links are associated with high frequency β , γ1 , γ2 bands,
which form a dark triangle in Fig. 3.

3.2.2 Inter-channel Network Associated with C3

The inter-channel network represents interactions between one channel location and
all other brain areas. By investigating the inter-channel network associated with C3,
we find that the network undergoes a very pronounced reorganization with transition
across sleep stages. This network reorganization, both in network structure and link
strength, is more pronounced compared to the reorganization we observe in the intra-
channel network of C3 (Fig. 3).

Central-Central interaction: Our analyses show that inter-channel links that con-
nect same frequency bands (i.e., same-frequency links) at different central chan-
nel locations remain strong (>45%TDS) during all sleep stages. In contrast, inter-
channel links that connect different frequency bands (i.e., cross-frequency links) at
the twoCentral channels C3 andC4 change significantly across different sleep stages.
Central-Central cross-frequency links are weak with <45%TDS during REM (not
visible on the network graph), stronger during Deep Sleep andWake, and reach their
maximum strength during Light Sleep as shown in Fig. 3.

Central-Frontal interaction:Wefind that inter-channel links representing connections
observed between brain waves at the Central and Frontal channels have lower con-
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Fig. 3 Neural plasticity represented by transitions in the sub-networks of brain wave inter-
actions centered at the Central C3 channel. Network nodes with different colors represent seven
different frequency bands (δ , θ , α , σ , β , γ1 , γ2) derived from EEG signals. Each set of seven
nodes ordered as a heptagon forms a vertex on the hexagon representing six EEG channels from
particular brain locations: Two Frontal areas (Fp1 and Fp2), two Central areas (C3 and C4) and two
Occipital areas (O1 and O2). Interactions between frequency bands derived from the C3 channel
(intra-channel links) are color-coded in gray scale. Interactions between frequency bands derived
from the C3 channel and network nodes in all other EEG channels are represented by inter-channel
links shown with the same color as the corresponding frequency band (network node) at C3. Line
thickness represents the group-averaged link strength as measured by %TDS, and only links with
%TDS≥ 45% are shown. Both the intra-channel networks (involving links between the frequency
nodes at C3) and inter-channel networks (colored links between nodes at C3 and nodes at all other
channels) undergo complex hierarchical reorganization across sleep stages, indicating pronounced
plasticity in the way frequency bands communicate locally within the C3 Central area and with
frequency bands at other brain areas. The intra-channel subnetwork at C3 exhibits low connectivity
during REM, medium connectivity during Wake and Light Sleep, and becomes highly connected
duringDeep Sleep. A similar sleep-stage pattern is also observed for the intra-channel links strength.
In contrast, the inter-channel subnetwork between C3 and other brain areas undergoes a very differ-
ent transition in network connectivity and link strength – from low connectivity in REM and Deep
Sleep to high connectivity in Light Sleep and Wake. Note that an identical network structure and
reorganization across sleep stages is observed for the Central C4 channel (not shown), indicating a
robust symmetry between the left and right hemisphere



156 P.Ch. Ivanov et al.

nectivity in REM and Deep Sleep, higher connectivity in Wake and become highly
connected during Light Sleep. In general, we find that inter-channel links within the
same hemisphere (C3-Fp1) are stronger than cross-hemisphere links (C3-Fp2) in all
sleep stages.

Central-Occipital interaction: Further we observe that Central-Occipital brain wave
interactions are much weaker (lower network connectivity) compared to Central-
Central or Central-Frontal brain wave interactions, a behavior which is consistent
for all sleep stages (Fig. 3). Nonetheless, the connectivity of Central-Occipital sub-
network follows a similar sleep-stage stratification pattern as all other inter-channel
subnetworks associated with C3— lower connectivity during Deep Sleep and REM,
and higher connectivity during Light Sleep and Wake (Fig. 3).

In summary, our results show that each brain area follows its own rule with respect
to the intra-channel communications between different frequency bands. In contrast,
brain wave inter-channel interactions across different locations (Frontal, Central and
Occipital) exhibit a robust sleep-stage stratification pattern in network connectivity
and average link strength [29]. These observations suggest the possible presence
of two distinct mechanisms of neural plasticity, within a brain location and between
brain areas, that regulate the network of brain-wave communications across different
physiologic states.

3.3 Network Interactions of the Same Brain Rhythm Across
Brain Areas

Our investigations show that brain wave interactions between different frequency
bands at different brain locations exhibit strong sleep-stage specificity — as repre-
sented by dramatic change in the cross-frequency links in the Central, Frontal and
Occipital subnetwork during different sleep stages (Fig. 3) [29].

In contrast, brain wave interaction mediated through the same frequency band
(e.g., parallel diagonal lines in the TDS block matrices in Fig. 1e) are stronger in all
sleep stages compared to the cross-frequency links, indicating an important role of
same-frequency links in facilitating communications between different brain loca-
tions.

To better understand the role of same-frequency interactions across brain areas and
how these interactions respond to change in physiologic states, we obtain frequency-
specific networks (Fig. 4) as the ensemble of inter-channel links connecting a specific
frequency band at different brain locations (network nodes). We find that brain in-
teractions mediated through specific frequency bands are (i) associated with very
different network structure within a given physiologic state, and (ii) exhibit dis-
tinct patterns of hierarchical reorganization with transition across physiologic states
(Fig. 4).

Comparing frequency-specificnetworkswithin the samephysiologic state,wefind
very different degree of network connectivity and link strength for the different bands.
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Fig. 4 Neural plasticity in the frequency domain represented by reorganization of network
interactions across brain areasmediated through a specific frequency band across physiologic
states. Network nodes represent six different brain areas: Frontal Fp1 and Fp2 (top vertices of the
hexagon), Central C3 and C4 (middle vertices) and Occipital O1 and O2 (bottom vertices). Node
colors indicate different frequency bands through which the inter-channel brain interactions are
mediated. Group-averaged TDS links strength is represented by line thickness and by different color
on gray scale. Only linkswith%TDS≥45%are shown.Brain interactionsmediated through specific
frequencybands are associatedwith very different network structurewithin a givenphysiologic state,
and exhibit distinct patterns of hierarchical reorganization with transition across physiologic states.
Specifically, networks representing brain interactions in the δ and σ band are highly connected and
with stronger links in Light Sleep, whereas networks representing brain interactions in the α , γ1 and
γ2 band are highly connected and with stronger links duringWake. Notably, network characteristics
during Deep Sleep and REM are similar for almost all frequency bands

During Deep and Light Sleep, the inter-channel interactions are mainly mediated
through the δ and σ band. However, during Deep Sleep the network of δ band is
dominant where as during Light Sleep the network of σ band is dominant (Fig. 4).
Further, during REM we find that networks of all frequency bands have comparable
contributions to the inter-channel brainwave communications, with slight prevalence
of network interactions in the α and γ bands (Fig. 4). In contrast, the high-frequency
γ1 and γ2 bands dominates the inter-channel interactions during Wake.
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Our investigation reveals that each frequency-specific network is characterized
by a different signature pattern of sleep-stage stratification in average link strength,
reflecting different neural plasticity of brain activation in different frequency bands.

4 Brain-Organ Networks: New Signatures
of Neuroautonomic Control

To better understand the neurophysiologic control of key organ systems, we next
focus our investigation on identifying and quantifying the networks of interactions
between the brain and individual organ systems. Specifically we consider the cardiac
system. There are several key questions related to the nature of brain-organ interac-
tions: (i) how different areas of the brain as represented by different EEG-channel
locations are involved in the communications and control of each organ system,
(ii) which brain-wave frequency bands mediate the brain-organ communications,
and (iii) how the networks representing brain-organ interactions across brain areas
and different brain-wave frequency bands evolve with transitions across physiologic
states [5, 15, 16].

To this end, we apply the TDSmethod to identify and quantify dynamical links in
the networks of brain-heart interactions, and we develop radar-charts to graphically
represent these complex communications, and how they change with physiologic
states. The obtained networks serve as unique physiological maps of brain-organ
interactions [5].

Our analysis of the network of brain-heart interactions shows a relatively sym-
metric distribution of the average links strength for different brain areas, with a slight
prevalence in strength for the links between the heart and the Central brain areas (C3
and C4), as indicated by the radar chart inside the heart hexagon in Fig. 5. We find
this spatial symmetry in the average brain-heart link strength to hold for all sleep
stages [5].

Next, we study the frequency profile for the strength of the brain-heart links.
We find that for a given physiologic state, the frequency profile of brain-heart links
remains stable for all brain areas (Frontal, Central and Occipital) [5]. However, com-
paring different physiologic states we find markedly different frequency profiles for
the strength of brain-heart links. Specifically, duringW the frequency profiles for the
links to the Frontal, Central and Occipital areas are characterized by strongest links
for the highest-frequency γ1 and γ2 bands and a gradual decrease in links strength for
the lower-frequency bands (β , σ , α , θ ), followed by a slight increase in link strength
for the lowest-frequency δ band. With transition to REM, the frequency profiles for
all brain areas are modulated, where the relative difference in links strength be-
tween different frequency bands is reduced compared to W, and the shape of the
profile changes — stronger links for high-frequency bands (γ1 , γ2 , β , σ ) and much
weaker links for low-frequency (α , θ , δ). In contrast, during both LS and DS, we
find that for all brain areas (Frontal, Central and Occipital) the frequency profiles of



Network Physiology: From Neural Plasticity to Organ Network Interactions 159

C4

Fp2

O2

Wake

Heartδ

θ

γ2

α

γ1

σ

β

Fp1

O1

C3 C4

Fp2

O2

REM Sleep

Heart

δ

θ

γ2

α

γ1

σ

β

Fp1

O1

C3

C4

Fp2

O2

Light Sleep

Heart
δ

θ

γ2

α

γ1

σ

β

Fp1

O1

C3 C4

Fp2

O2

Deep Sleep

Heart

δ

θ

γ2

α

γ1

σ

β

Fp1

O1

C3

Fig. 5 Networks of brain-heart interactions during different physiologic states. Brain areas are
represented byFrontal (Fp1 andFp2), Central (C3 andC4) andOccipital (O1 andO2)EEGchannels.
Network nodes with different colors represent seven frequency bands (δ , θ , α , σ , β , γ1 , γ2) in the
spectral power of each EEG channel. Within each brain area (EEG channel), intra-channel network
links between frequency bands are plotted in linear gray color code. Network links between the
heart (red hexagon) and EEG frequency nodes at different locations are determined based on the
TDS measure, and brain-heart links strength is illustrated by the line thickness (shown are links
with strength ≥5%TDS). Radar-charts centered in each hexagon represent the relative contribution
of brain control from different brain areas to the strength of network links during different sleep
stages. The length of each segment along each radius in the radar-charts represents TDS coupling
strength between the heart and each frequency band at each EEG channel location. These segments
are shown in the same color as the corresponding EEG frequency nodes. During W and REM,
the brain-heart network interactions are mediated mainly through high-frequency γ1 and γ2 bands
(orange and red links), while during LS and DS, the interactions are mediated uniformly through all
frequency bands. The brain-heart network is characterized by relatively symmetric links strength
to all six brain areas, as shown by the symmetric radar-charts in each hexagon. A pronounced
stratification pattern is observed for the overall strength of network links — stronger links during
W and LS (larger hexagons) and weaker links during REM and DS (smaller hexagons)

links strength are practically homogeneous with an almost flat distribution across all
frequency bands.

Systematically investigating the links strength in the brain-heart network for all
7 frequency bands and different sleep stages, we find that the average link strength
for the entire network of brain-heart interactions is highest during W and LS, lower
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�Fig. 6 Networks of physiologic interactions among key organ systems during different phys-
iologic states. (Left column) Interactions among organ systems are represented by weighted undi-
rected graphs, where links reflect the strength of dynamic coupling as measured by % TDS.Darker
and thicker links between organ systems correspond to stronger interaction with higher %TDS.
(Right column) Brain-organ interactions are represented by links between each organ and different
frequency bands at six brain locations: (Fp1, Fp2, C3, C4, O1 and O2) EEG channels. The size of
each organ node in the network is proportional to the strength of the overall brain-organ interaction
as measured by the summation of the TDS links strength for all frequency bands and EEG channel
locations. Hexagons representing individual organs in the networks are obtained in the same way
as in Fig. 5; and are normalized to the same size. Color bars represent different physiologically
relevant frequency bands in the EEG spectral power and are used in the radar-charts for the brain-
organ interactions shown in each hexagon. The color of each organ node as well as the edge color
of the organ hexagon corresponds to the dominant frequency band in the coupling of the organ
system with the brain. Notably, larger organ nodes representing stronger brain-organ interactions
are consistently connected by stronger organ-organ links (thicker and darker lines)

during REM and lowest during DS (Fig. 5). Further, this sleep-stage stratification
pattern is consistently observed for all three sub-networks representing the Frontal-
heart, Central-heart and Occipital-heart links across all frequency bands (Fig. 5).

Our analysis show that the observed hierarchical reorganization in the network
of brain-heart interactions across different sleep stages is accompanied by a par-
allel reorganization in the topology of intra-channel networks representing brain
rhythms interaction within the same brain location (EEG channel). Notably, during
Deep Sleep where the strength of brain-heart interaction is greatly reduced, intra-
channel brain networks at all EEG channel locations exhibit hight connectivity. This
intra-channel network connectivity is more pronounced for the Frontal and Central
locations compared to the Occipital areas – a pattern that is consistently observed
for all sleep stages [5].

5 Organ-Organ Networks: New Maps of Dynamical Organ
Interactions

Wedevelop a novel approach to analyze andgraphically present the complex behavior
of organ-organ interactions. Integrating information obtained from our investigation
of brain-organ interactions, we focus on how organ-to-organ interactions are influ-
enced by neural regulation through different brain areas. We combine radar-charts
representing the characteristics of brain-organ interactions with the network of links
between all organ systems obtained thought TDS analysis of the output signals for
each pair of organ systems (Fig. 6) [5].

We observe that, with transitions from one sleep stage to another there is a pro-
nounced structural re-organization in the topology and links strength of the organ-
organ network. This demonstrates a clear association between organ-to-organ net-
work structure and physiologic function of the entire organism. The result in Fig. 6
shows howphysiologic states influence the dynamics of horizontal integration among
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organ systems through changing the configuration of links strength in the organ-to-
organ network.

Specifically, we find that eye, chin and leg are always strongly connected despite
the very different characteristics in their interactions with the brain — i.e., different
dominating frequency bands (shown by different color rim of the organ hexagons)
and different involvement of the brain areas (shown by different shape of radar-charts
in each hexagon) and different overall strength of their network interaction with the
brain (shown by different size of the nodes representing each organ), in Fig. 6. In
contrast, the heart and respiratory system significantly vary their degree of coupling
with the rest of the network across physiologic states (Fig. 6). Further, we note that
even when two organ systems predominately interact with the same brain areas, their
coupling strength in the organ-to-organ network can still exhibit a complex transition
across different physiologic state — for example, both heart and chin predominately
interact with the Central brain areas, however, the strength of the heart-chin link in
the organ network dramatically change across different sleep stages [5].

Interestingly, we discover that strong organ-to-organ links often occur between
large nodes in the network that represent strong brain-organ interactions, suggesting
our TDS network approach captures significant cerebral component in organ-organ
interactions. Notably, the reduced link strength of the heart and respiratory system in
the organ-to-organ network during LS and DS compared to REM andW is consistent
with earlier findings of reduced sympathetic input and corresponding loss of long-
range auto-correlation in cardiac and respiratory dynamics during LS and DS [18,
25, 26, 39, 40].

6 Summary

The findings reported here are first steps in understanding how organ systems syn-
chronize and coordinate their output dynamics as a network to produce distinct phys-
iologic functions [5, 29, 30]. Our investigations reveal basic rules that underlie (i)
the dynamics of network interactions among organ systems, and (ii) the hierarchical
reorganization of organ network interactions in response to changes in physiologic
state. The uncovered association between physiologic network structure and specific
physiologic states (sleep stages) demonstrates the utility of the proposed integra-
tive approach as a necessary step to more comprehensively understand fundamental
mechanisms of neurophysiologic regulation at the organism level. In addition, our
investigations lead to the identification of new set of physiologic parameters (link
strength and network connectivity based on %TDS) that characterize the variability
and strength of organ network interactions during different physiologic states under
healthy conditions. The discovered dynamical networks of organ interactions are a
unique signature and hallmark of physiologic states and functions. This will impact
the current paradigmof defining health and physiologic states, shifting the focus from
structure and function of individual systems to the coordination and communication
among organ systems as a network.
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Finally, in a more general context, these are important first steps in the develop-
ment of an adequate analytic formalism and theoretical framework to study network
interactions among diverse complex dynamical systems with multiple coexisting
forms of coupling. Such framework will be necessary for the development of the
new field, Network Physiology, with focus on understanding physiologic function
through the prism of horizontal integration of physiologic systems in the organism.
The uncovered maps of organ network interactions are initial building blocks of a
more comprehensive dynamical atlas of the human organismunder health and disease
with broad clinical applications.
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Temporal Excitation Patterns on the Cerebral
Cortex as a Result of Migraine Modeling

Julia M. Kroos, Ibai Diez, Jesus M. Cortes, Sebastiano Stramaglia
and Luca Gerardo-Giorda

Abstract The complex, highly individual, geometry of the cerebral cortex in humans
presents a major challenge in studying the spreading of spontaneous neuronal activ-
ity. Recent computational advances [1] allow to simulate the propagation of depolar-
ization waves on the macroscale and for individual geometries, reconstructed from
accurate medical imaging as MRI, with high levels of detail. In this paper we take
advantage of such technique to study the temporal excitation patterns that follow the
passage of a depolarization wave on the cerebral cortex.
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1 Introduction

One of the most intriguing phenomenon related to reaction-diffusion processes in
complex geometries is the spreading depression of spontaneous activity, initially
discovered and characterized in animal cortices [2, 3]. Nowadays these phenom-
ena are believed to be relevant in a plethora of brain pathologies, such as cerebral
ischemia-infarction, transient global amnesia, epilepsy or migraine auras, the situa-
tion we focus on here. Several experiments suggest that a propagating depolarization
wave on the cortex is underlying migraine, see [4–6] and references therein. This
wave, named cortical spreading depression (CSD), causes a drastic failure of the
brain homeostasis and is followed by a wave of inhibition. CSD is characterized by
relevant increases in both extracellular K+ and glutamate, as well as rises in intracel-
lular Na+ and Ca2+. These ionic shifts result in slow direct current potential shifts
that can be recorded extracellularly. Starting in the visual cortex, CSD propagates to
the peripheral areas. It is worth mentioning that, whilst CSD has been experimen-
tally demonstrated in animal models, the strongest evidences for CSD in humans
are the migraine aura itself, and the spreading oligemia phenomenon observed in
migraine patients, consisting in a decrease of the cerebral blood flow in the posterior
part of the brain at the beginning of the attack, followed by the spreading of the low
flow region at a speed which is similar to those found for CSD in animals. Some
electrophysiological evidences that human grey matter in vivo supports CSD have
also been reported (see, e.g., [7]). A deeper understanding of CSD phenomenol-
ogy would be useful to test current and novel prophylactic drugs, while providing
knowledge on mechanisms of action relevant for migraine [8]. The role played by
the peculiar geometry of the brain cortex in supporting or blocking CSD is far from
being satisfactorily understood. In a recent paper [1] we investigated several aspects
of the brain geometry which favor or disfavor the propagation of CSD. In particular,
by using a computational neuronal model distributed throughout a realistic cortical
mesh, we have found significant differences in the propagation traveling patterns of
CSD, both intra and inter-hemispherically, and revealed important asymmetries in
the propagation profile. Moreover we identified brain regions displaying a peculiar
behavior during CSD propagation, in particular, some regions that appear to trap the
propagating action potentials for a longer time. Those regions play a key role in the
CSD propagation (and possibly would be able to stop it). These results are relevant
to identify target structures for therapies using stereotactic cortical neuromodulation,
see e.g., [9].

In the present workwewill concentrate on another feature of the propagating CSD
wave, still exploiting the computational frame of simulations on the realistic cortical
mesh. In the specific, we will study the temporal patterns of excitation associated
with the propagation of the CSD by analyzing the percentage of cortex that can get
excited at the same time. The paper is organized as follows. In Sect. 2 we describe
the distributed model for CSD propagation, its numerical approximation and the
characteristics of the realistic cortical computational grid. In Sect. 3 the temporal
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activity we study in this paper is introduced. Finally, numerical results from the
simulation of the distributed model are collected in Sect. 4.

2 Modeling and Numerical Simulation of CSD on Real
Geometries

2.1 A Distributed Computational Model for CSD Propagation

A key property of neural cells is to produce an action potential (AP). It consists
in a sudden variation in the transmembrane potential, called spike, followed by a
recovering of the resting condition through a refractory period, during which the
cell cannot be excited. In agreement with previous computational studies [10], we
consider neurons at rest to have a background firing rate of 4Hzwhile excited neurons
fire with an average frequency of 64Hz.

In [1] we introduced a slow variables model for the firing rate to describe the
neuronal activity, where the state variable u(x, t) represents the average firing rate
of neurons at location x and time t (in seconds). Such model is locally a temporal
mean field one with respect to the finer scale of the action potential, and represents
the typical all-or-nothing response of a single excited cell in a simplified manner
[11]. The model is a modification of the Roger-McCulloch variant of the Fitzhugh-
Nagumo model [12], that has been adapted to reproduce the characteristic neuronal
activity, with a resting state of 4Hz, a firing rate of 64Hz in the excited state, and
the plateau length matching the duration of the neuron excitation after the passage
of the CSD (around 10min, [13]).

A diffusion term accounts for the spatial propagation of the excitation on the
cortex, and the complete model reads:

∂u

∂t
= − I (u,w) + div(D∇u)

I (u,w) = G(u − u0)

(
1 − u

uth

) (
1 − u

u p

)
+ η1(u − u0)w (1)

∂w

∂t
= η2 (u − u0 − η3w) ,

where u(x, t) is the firing rate at time t ≥ 0, and w(x, t) is the recovery variable,
uth and u p are threshold and peak values for u, u0 is the background firing rate and
D ∈ R3×3 is the conductivity tensor, while η1, η2, η3 and G are parameters, whose
values are given in Table1. The coupled PDE-ODE system (1) is defined on the
computational domain Ω × (0, T ), Ω ⊂ R3. To ensure that problem (1) is mathe-
matically well posed, initial conditions u0(x) = u(x, 0), w0(x) = w(x, 0) must be
imposed in Ω and boundary conditions on ∂Ω . If the computational domain is a 2D
surface � ⊂ R3 the classical divergence and gradient operators are replaced by their
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Table 1 Model parameters

Parameter Value Description

G 0.2667

u0 4 Resting value of the firing rate

uth 11.8 Threshold value for excitation

u p 64 Peak value of the firing rate

η1, η2, η3 0.4806, 3.3333e−5, 60

tangential counterparts div� and ∇� . Boundary conditions are not necessary if the
surface� is closed, as in the case of the reconstructed cortical geometry we consider
in the numerical simulations of this paper.

2.2 Numerical Approximation

We discretise problem (1) by P1 finite elements in space and finite differences in
time (for an introduction to finite element methods see, e.g., [14]). Let tn = nΔt ,
for n = 0, . . . , N , be a discretisation of the time interval (0, T ): we denote with un

and wn the approximation of u and w at time tn . We use an implicit-explicit (IMEX)
scheme to advance from time tn to tn+1. The recovery variable wn+1 can be solved
explicitly and is used in the expression I (u,w) to compute un+1. The overall scheme
reads:

update: wn+1 = un − u0
η3

+
(
wn − un − u0

η3

)
exp (−η2η3Δt)

update: I n+1 = I (un,wn+1)

solve: Aun+1 = Mun − ΔtM I n+1

where A := M + Δt S, while M and S are the classic finite elements mass and
stiffness matrices.

2.3 Computational Domain

A crucial aspect in studying the behaviour of an individual brain relies on the use of
personalized computational domains. The cortical geometrywe used in this study has
been reconstructed from a MRI scan with FreeSurfer image analysis suite (http://
surfer.nmr.mgh.harvard.edu/): for further details, see [15] and references therein.
This data set was already acquired and published in [16], and used in [1], and its
acquisition was approved by the Ethics Committee at the Cruces University Hospital:

http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
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all the methods employed were in accordance to approved guidelines. The data set
corresponds to one healthy subject, male, age 28, and was acquired with a Philips
Achieva 1.5T Nova scanner. The cortical mesh was obtained from a high-resolution
anatomical MRI, acquired using a T1-weighted 3D sequence with the following
parameters: TR= 7.482 ms, TE= 3.425 ms; parallel imaging (SENSE) acceleration
factor =1.5; acquisition matrix size = 256× 256; FOV = 26cm; slice thickness =
1.1mm; 170 contiguous sections.

The computational grid is a triangulation of the reconstructed cortex, consisting
of 140, 208 nodes and 280, 412 triangles for the left hemisphere and 139, 953 nodes
and 279, 902 triangles for the right hemisphere.

2.3.1 Regions of Interest

We consider a subdivision of the brain cortex into different regions of interest (ROIs):
we base our study on the anatomical subdivision of each hemisphere into 34 ROIs,
which is a generalised version of the Brodmann atlas [17] (included in the MRIcro
software http://www.mricro.com).

2.4 Simulation Protocol

The numerical simulations of (1) are performedwith a self-developed code inMatlab
(MathWorks Inc., Natick, MA), taking advantage of its Parallel Computing Tool-
box to speed up the computations on multicore processors. We chose a uniform
time step of Δt = 0.6 seconds, and an isotropic diffusion tensor D = δ Id, with
δ = 0.7174mm2s−1. The conductivity coefficient has been tuned to ensure that a
wave is actually propagating across the cortex, at a velocity comparable with the one
of the CSD.

The finite element matrix A associated with the problem is poorly conditioned,
entailing high costs in terms of CPU time. In order to speed up the computation, a
proper preconditioning strategy can be implemented, such as an incompleteCholesky
factorisation with threshold, pivoting and properly chosen drop tolerance [18]. Since
the linear system is symmetric, a Preconditioned Conjugate Gradient (PCG) is the
natural choice as a solver.

CSD is known to originate from the visual cortex, but to gain deeper insight in the
effect of geometry on the propagation we simulate, in both hemispheres, the spread
of excitation waves between all the regions of the anatomical classification. In each
simulation, we consider as initial condition one fully depolarized region out of the
34 in the anatomical subdivision. Each simulation is run until all remaining regions
have been fully activated. The only compartment that is not considered as initially
activated is the corpus callosum as it constitutes the intersection between the two
hemispheres and obeys different rules for diffusion.

http://www.mricro.com
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Fig. 1 Duration of stay of the depolarisation wave and regions of the left hemisphere featuring a
long residence time. The duration of stay of the excitation wave in the different regions for all the
initially excited regions possible (left). The dashed line draws the 10min threshold; regions featuring
waves staying longer than 10min are marked in bold. The abbreviations give the affiliation to the
lobes: m.t. medialtemporal lobe, l.t. lateraltemporal lobe, f.l. frontal lobe, p.l. parietal lobe, o.l.
occipital lobe, c.c. cingulate cortex. A detailed description of the initially activated regions causing
the wave to stay for longer than 10min are marked with a tick (right). Rows represent the arrival
regions, columns the initially activated ones

3 Temporal Activity

We are interested in studying the pattern of excited regions over the course of time.
Although CSD is originating in the visual cortex, we aim for a deeper understanding
of the geometry impact on the propagation when a depolarization wave is starting
from another area. In that order, we initialise the excitation in one of the 34 different
regions of the brain, and observe the number of regions that is excited at every point
in time. The first aspect to consider is the definition of an activated region. Since the
duration of the excitation following the passage of CSD is about 10min [13], some
caution is mandatory with regions that are either big or feature a large aspect ratio.
In such regions, it might occur that some of the points initially excited have already
gone back to resting state before every remaining point in the region gets excited. In
view of these remarks, we consider a region as excited at a given moment in time if
80% of the grid points located in it are excited. Before taking a more detailed look
at any excitation pattern we thus have to verify that every region we are considering
can be deemed excited at a given moment in time, independently from the initially
activated area.

As done in [1], we record, for all simulations, the minimum and the maximum
activation times (in minutes) for each of the 33 regions that were not excited at
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Fig. 2 Detailed excitation patterns for the regions of the left hemisphere featuring a long residence
time. The percentage of excited points in time in the regions (a)–(h) identified in Fig. 1 for the
different initially excited regions. The dotted line marks the threshold value of 80%, at which the
whole region is considered excited
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t = 0. The minimum activation time is the moment when the first point of the region
at hand gets excited, while the maximum activation time is the moment at which
the last point of the region gets excited. Such values are collected into four 34 × 34
matrices, that we denote by Lmin , Lmax , Rmin and Rmax , where L and R refer to the
left and right hemisphere, respectively. To emphasize the spatial connection between
the regions, the ordering of the regions is arranged according to their affiliation to
lobes. Regions belonging to one lobe are then clustered according to the mutual
distance of their centroids in the Euclidean norm. In all of the above matrices, rows
represent the starting region of the wave propagation, while columns the arrivals: as
an example, the (i, j)-th element of Lmin represents the arrival time in region j of a
wave originated in region i . We also introduce the depolarization residence matrices
by considering the difference between the maximum and minimum activation times
(or equivalently, the time elapsed between the depolarization of the first and the last
point of the region), as

DL = Lmax − Lmin DR = Rmax − Rmin. (2)

Again, rows represent the starting region of the wave propagation, while columns the
difference between activation times: the (i, j)-th element of DL and DR represents
the residence time in region j of awavefront originating from region i . For illustrative
purpose, we focus here on the left hemisphere, but results and conclusions similar to
the ones we present in the following can be drawn for the right hemisphere as well.
Whenever DL

i, j > 10, the region j might not be considered as excited by a wave
originating in region i . In Fig. 1 (left), we plot the columns of the residencematrix DL ,
where the different markers in each row of the plot correspond to different initially
excited regions. The threshold of 10min, after which a regionmight not get excited as
a whole at any given time, is highlighted by a dashed line, and the 8 regions featuring
residence time longer than 10min are marked in bold. These regions are fusiform,
inferiortemporal, middletemporal, rostralmiddlefrontal, precentral, superiorfrontal,
superiorparietal, and postcentral. In Fig. 1 (right) we pair these 8 peculiar regions
with the corresponding initially activated ones: rows indicate the arrival regions,
columns the initially activated areas, while checkmarks highlight the occurrencies
when the depolarisation wave lasts longer than 10min. The regions so identified in
Fig. 1 require a more detailed analysis to check whether 80% of their grid points are
excited at any point in time. For each of these regions, we computed the percentage
of activated points along time for a depolarization originating in the areas identified
in Fig. 1 (right). A detailed visualisation of these patterns is given in Fig. 2, from
which we can infer that all the regions feature a period in time where at least 80% of
their points is excited, independently of the origin of the initial excitation. Analogous
results hold for the 9 regions of the right hemisphere (the same as the ones in the left
hemisphere, plus the precuneus one) featuring a residence time longer than 10min.

Since we ensured that all regions get fully excited independently from the initially
activated region, we can focus on the temporal activation patterns. Given an initially
activated region, we simulate the propagation of the depolarization wave andmonitor
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along time the percentage of excited points in every arrival region, thus identifying
the number of excited region at every moment in time.

4 Results

A comparison between the two hemispheres for all the possible initially excited
regions can be performed. Although the two hemispheres globally feature similar
excitation schemes in the course of time, some differences can be spotted. In order
to exhibit the typology of such differences, we display in Fig. 3 the comparison
between the two hemispheres for 6 representative regions, one per lobe: fusiform,
middletemporal, medialorbitofrontal, postcentral, lingual and rostralanteriorcingu-
late. The major differences we observe are in the guise of similar excitation patterns
that are shifted in time, where one of the two hemispheres features a faster activation
than the other, like for the medialorbitalfrontal (c) and the rostralanteriorcingulate
(f), or in the form of similar temporal patterns, but pretty different excitation ones,
like in the case of fusiform (a), middletemporal (b), postcentral (d), and lingual (e).

Fig. 3 Number of excited regions. The number of excited regions with initially activated regions
(a)–(h) for the left (red) and right (blue) hemisphere; each one is chosen exemplarily for each lobe
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Fig. 4 Average number of excited regions. The average number of excited regions (red) - averaged
over all initially activated regions - for the left (a) and right (b) hemisphere. For all initially excited
regions the number of excited regions is plotted in blue and the grey area marks the standard
deviation around the average

Fig. 5 Maximum number of excited regions. The maximum amount of excited regions for all
the initially activated regions for the left (red dashed) and right (blue solid) hemisphere. The
abbreviations give the affiliation to the lobes

For a more global approach, we average the number of excited regions over all the
initially excited areas at each time step, obtaining a temporal excitation pattern for
the left and right hemisphere. These temporal excitation patterns are shown in Fig. 4.
We display in the background (in blue) the excitation patterns for every initial region
and we highlight (in grey) the standard deviation around the mean. The temporal
excitation patterns of the two hemispheres are globally very similar, but show some
differences in the vicinity of 10min after the start of the wave propagation.

The maximum number of excited regions for each initially activated area high-
lights their impact on the excitation pattern of the cortex. A comparison of the left
and right hemisphere is given in Fig. 5, where a significant variation in the maxi-
mum number of activated regions is more evident intra-hemispherically than inter-



Temporal Excitation Patterns on the Cerebral … 177

hemispherically. As an example, a depolarization wave originating from the later-
aloccipital area will excite at once only up to 16 regions (in both hemispheres),
whereas a wave originating from the posteriorcingulate area can activate up to 27
regions in the left hemisphere (25 in the right hemisphere). Left and right hemisphere
exhibit a difference of up to 2 regions, but 10 areas feature exactly the samemaximum
number of excited regions in the two hemispheres.

5 Conclusions

It has been recently proposed that thalamocortical dysrhythmia may be responsible
for the altered synchronicity in migraine; CSD is expected to play a central role in
migraine pathogenesis being the cause of the aura phenomenon. In order to gain
further insights of the role of geometry in the temporal excitation patterns following
the passage of a depolarization wave on the cerebral cortex, here we have adopted a
distributed computationalmodel forCSD, and studied the temporal pattern connected
to the propagation of CSD on the real geometry of human brain. Our results may
also be useful for the automatic identification of CSD from electrophysiological
recordings [19].
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Persistent Memories in Transient Networks

Andrey Babichev and Yuri Dabaghian

Abstract Spatial awareness in mammals is based on an internalized
representation of the environment, encoded by large networks of spiking neurons.
While such representations can last for a long time, the underlying neuronal network
is transient: neuronal cells die every day, synaptic connections appear and disappear,
the networks constantly change their architecture due to various forms of synaptic
and structural plasticity. How can a network with a dynamic architecture encode a
stablemap of space?We address this question using a physiologicalmodel of a “flick-
ering” neuronal network and demonstrate that it can maintain a robust topological
representation of space.

1 Introduction

It is believed that mammalian ability to navigate, to escape from predators, to find
its nest, to plan hunting strategies and so forth, is based on an internalized neuronal
representation of space—a cognitive map of the environment [1–3]. Neurophysio-
logically, this map is encoded via timed sequences of quick electrical discharges of
the neurons—neuronal spikes—in various parts of the brain. A particularly important
role in producing this map is played by the hippocampus—one of the oldest parts
of the mammalian brain in evolutionary terms. The spike times of the hippocampal
principal neurons—so called place cells—are defined by the animal’s spatial loca-
tion: in rodents, each place cell fires when the animal visits a specific location—this
cell’s place field [3] (Fig. 1a). Why a given place cell fires only when an animal is
“here” rather than “there” is still a mystery, and how the ensemble of place cells
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Fig. 1 Place cells and cell assemblies. a Simulated place fields in a small planar environment con-
taining a square hole: dots of different color mark the locations where the corresponding place cells
produced spikes. The dots of a particular color form spatial clusters—the place fields. b Schematic
representation of four overlapping third-order cell assemblies by four third order simplexes (trian-
gles). The vertexes (shown by small circles) represent place cells synaptically connected to their
respective readout neurons (pentagons). A cell assembly σ “ignites” (red triangle) when all of its
place cells become simultaneously active, thus eliciting a response from the readout neuron nσ

(active cells have colored centers). c A coactivity of the place cells c1, c2 and c3 occurs when the
rat crosses through the overlap of the corresponding place fields—the domain 123

forms a hippocampal map of the environment is equally mysterious. In particular,
it remains largely unknown how the spike trains produced by the place cells are
processed downstream from the hippocampus.

Experimental evidence points out that groups of coactive place cells form func-
tionally interconnected “assemblies” [4, 5] that together drive their respective “read-
classifier” or “readout” neurons in the downstream networks (Fig. 1b). Since coac-
tivity of the place cells marks the overlap of their respective place fields (Fig. 1c),
the activity of a readout neuron actualizes a connectivity relationship between the
regions encoded by the individual place cells. This suggests that the hippocampus
provides a qualitative representation of space, based on connectivity, adjacency and
containment relationships, i.e., that the hippocampal cognitive map is topological
in nature—a hypothesis that receives an increasing amount of experimental support
[6–10].

In [11, 12] we proposed a theoretical model that showed that hippocampal cell
assembly network can indeed capture the spatial connectivity of the environment
in a biologically plausible time, given that the place cells operate within biological
parameters of firing rate and place field size. However, the approach of [11, 12] was
based on analyses of the ever-growing pool of spike trains, i.e., it ignored that, in
physiological networks, the connectivity information may not only accumulate, but
also decay. In particular, the physiological cell assemblies may not only form, but
also disband as a result of deterioration of synaptic connections [13], then reappear
as a result of subsequent learning, then disband again and so forth. Electrophysio-
logical studies suggest that the lifetime of the cell assemblies ranges between tens
of milliseconds to minutes or longer [4, 5, 14, 15], whereas spatial memories in
rats can last for days and months [16–18]. How can the large-scale spatial repre-
sentation of the environment be stable if the neuronal stratum that computes this
representation changes on a much faster timescale? Below we discuss a model of a
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transient hippocampal network and use methods of Algebraic Topology to demon-
strate that the topological characteristics of the large-scale spatial representation of
the environment encoded by this network can remain stable.

2 Model

The way place fields cover an environment E (Fig. 1a) calls to mind a basic theorem
of algebraic topology due to P. Alexandrov [19] and E. Čech [20]: it is possible
to reconstruct the topology of a space X from the pattern of overlaps between the
regions that cover it. The model proposed in [11, 12, 21] is based on the observa-
tion that this theorem can not only be applied to the place fields themselves, but
also implemented via spiking signals of cells that represent these place fields. In
this approach, groups of coactive place cells, c1, c2, …, cn , are viewed as abstract
simplexes, σ = [c1, c2, . . . , cn], which together form a simplicial “cell assembly
complex,” TCA (for definitions and details see [22, 23] and Methods in [11]).

This construction provides a connection between the local (cellular) and the global
(system-level) scales: the individual cell assemblies, just like simplexes, provide local
information about the space, but together, as a neuronal ensemble, they represent
space as whole—as the simplicial complex. Thus, TCA provides a schematic repre-
sentation of the cell assembly network and of its rewiring dynamics: formation of
new place cell assemblies and disbanding of some old ones are represented, respec-
tively, by the appearance and disappearance of their counterpart (maximal) simplexes
in TCA. On the other hand, the cell assembly complex TCA provides semantics for
describing the global spatial memory map in topological terms [24]. For example, a
sequence of cell assemblies ignited along a path γ navigated by the rat corresponds
to a chain of simplexes Γ ∈ TCA—a “simplicial path” (Fig. 2). The structure ofTCA

allows to establish certain qualitative properties of the simplicial paths and to relate
them to the properties of the physical paths in E . For example, a simplicial path that
closes onto itself in TCA may represent a closed physical path, a pair of topologi-
cally equivalent simplicial paths Γ1 ∼ Γ2 may represent physical paths γ1 and γ2 that
can be deformed into one another, a hole in TCA may represent a physical obstacle
and so forth. However, establishing these correspondences requires learning: as the
animal begins to explore the environment, only a few place cells would have time
to (co)activate, and only a few cell assemblies would have time to form; as a result,
a newly developing complex TCA consists of only a few maximal simplexes and
contains many holes, some of which correspond to physical obstacles or to regions
that have not yet been visited by the animal, and others are “spurious”, i.e., reflecting
transient information about place cell coactivity. As shown in [11, 12], the spurious
holes tend to disappear as more spatial information accumulates.

In [25] we suggested two methods for constructing the cell assembly network
and hence producing the simplicial cell assembly complex TCA that represents this
network, by selecting the most frequent combinations of spiking place cells.The key
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Fig. 2 Schematic representation of place cell coactivity in the cell assembly complex TCA. The
topological structure of TCA, induced from the place field layout in E , provides a topological
representation of E . For example, the hole in the middle of TCA, which produces non-contractible
simplicial paths (topological loops) corresponds to the central hole in the environment E , which
produces non-contractible navigation paths γ (e.g., a sample path is shown at the bottom). As
the animal travels along γ , the hippocampal place cell assemblies ignite in a certain order, which
corresponds to a chain of maximal simplexes in TCA—a simplicial path Γ , shown by red triangles
and tetrahedrons

observation of [25] was that in bounded environments, the coactive cell combinations
eventually become repetitive, and it is therefore possible to identify the cell assem-
blies from the most frequent coactivity patterns. However, the frequency of a given
cell assembly’s activation, fσ , was evaluated from the total number of its appear-
ances over the entire navigation period, and then the selected cell assemblies were
presumed to have existed for as long as the navigation continued. In other words, the
cell assemblies were “perennial” by construction. In the following, we model a tran-
sient hippocampal network by limiting the time during which a cell assembly σ can
form to a smaller time interval—“a memory window” W (σ ). Physiologically, W (σ )

defines the period during which readout neuron nσ can identify the combination σ of
coactive place cells, connect to it synaptically, retain these connections and respond
to subsequent ignitions of σ .
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To simplify the approach, we consider the case in which the entire ensemble of
readout neurons is characterized by a single parameter W (σ ) = W , and proceed as
follows. First, we identify the cell assemblies that emerge within the first W -period
after the onset of the navigation,W1, and then repeat the algorithm for the subsequent
windows W2, W3,…, obtained by shifting the W1 over small time steps. As a result,
a cell assembly σ that was identified in the window Wt1 , based on the local place
cell coactivity rate fσ (Wt1), may disappear at a certain step Wt2 , then reappear in
a later window, Wt3 , disappear again and so forth. The ensemble of appearing and
disappearing cell assemblies can then be schematically represented by a “flickering”
simplicial complex, FW , with appearing and disappearing maximal simplexes. Our
task is to study the net topological properties of FW , e.g., whether the lifetimes of
its topological loops can be longer than the lifetimes of its typical maximal simplex.

3 Results

We studied the dynamics of the flickering complex FW and the topological infor-
mation encoded in it, as a function of the discrete time tn = nΔt , Δt = 2.5s, for
the memory window width W = 5min. The results produced by a typical neuronal
ensemble containing Nc = 300 simulated place cells are shown on Fig. 3. First,
we observe that the fluctuations of the number of the maximal simplexes in FW ,
Nσ , remain confined within about 20% from the mean, 220 ≤ Nσ ≤ 300, so that
the simulated hippocampal network contains about 260 fluctuating cell assemblies
on average (Fig. 3a). However, while the size of the flickering complex remains
bounded, the pool of the maximal simplexes changes significantly: as temporal sep-
aration Δi j = |ti − t j | between the memory windows increases, the corresponding
complexes FW (ti ) and FW (t j ) become more and more dissimilar (Fig. 3b). After
about 50 time steps (∼120s), the set of simplexes in FW is essentially renewed,
which implies that the cell assembly network, as described by the model, is com-
pletely rewired (Fig. 3c).

A typical maximal simplex lasts on average about 10 discrete time steps (τσ ≈
25s), which is close to the range of values established experimentally [5]. Such rapid
rate of the simplex renewal in the flickering cell assembly complex allows us to
address our main question: what is the dynamics of the topological characteristics
of FW and how do they correspond to the topology of the environment?

The topology of the environment can be described in terms of the Betti num-
bers—roughly speaking, a Betti number bn defines the number of n-dimensional
topological loops in FW (i.e., closed surfaces counted up to topological equiva-
lence). In the case of the environment shown on Fig. 1a, the Betti numbers are as
follows: b0 = 1 (i.e., the environment is connected), b1 = 1 (i.e., there is one 1D
topological loop that encircles the hole in themiddle), while bn>1 = 0 (no topological
loops in higher dimensions). Using the methods of Persistent Homology [26–28], we
evaluated these numbers for the flickering cell assembly complex for the sequence of
windows, and found thatFW does, in fact, reliably capture the topological properties
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Fig. 3 Time evolution of the cell assembly complex. a The number of maximal simplexes (blue
trace) and the total number of all simplexes, scaled down by a factor of 10 (red) in the flickering
simplicial complex FW . The memory window spans over W = 5min, shifting over Δt = 2.5s at
a time. Shown are first 200 shifts. b The matrix of similarity coefficients, ri j , between the pairs of
flickering cell assembly complexes FW (ti ) and FW (t j ) defined as the proportion of the maximal
simplexes contained inFW (ti ) but not inFW (t j ). For close moments ti and t j , the differences are
small, but as time separation grows, the differences becomes larger. c At every moment of time ti ,
the blue line shows the fraction of the maximal simplexes that were also present at the previous
moment, ti−1. The green line shows the fraction of the original maximal simplexes (fromFW (t1))
remaining in FW (ti ). The population of simplexes changes entirely (by about 0.95%) in about 60
steps. The dashed line marks the mean simplex decay rate, τσ = 10 window shifts (about 25 s)

of the environment over long periods, which significantly exceed both the simplexes’
lifetimes, τσ , and the width of the memory window, W .

As illustrated on Fig. 4a, the first and the second Betti numbers almost never
deviate from their respective physical values (b1 = 1 and b2 = 0). The occasional
changes of b1 and b2 can be viewed as short-time “topological fluctuations” in the
hippocampal map. For example, an occurrence of b1 = 2 value indicates the appear-
ance of an extra (non-physical) 1D loop, and at the moments when b1 = 0, all 1D
loops in FW are contractible, i.e., the central hole (Fig. 1a) is not represented in
the hippocampal map. Similarly, the moments when b2 �= 0 indicate times when the
flickering complex FW contains non-physical, non-contractible 2D bubbles (one
can speculate about the cognitive effects that these fluctuations may produce). The
0-th and the third Betti number always came out correct, b0 = 1, b3 = 0, implying
that despite the fluctuations of its simplexes, the cell assembly complexFW does not
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Fig. 4 Stability of the topological information. a The low-dimensional Betti numbers, b1, b2, b3
as a function of the discrete time, computed using 5min wide memory window W . The 0th Betti
number (b0 = 1 at all times) is not shown. b As the memory window decreases to W = 3min,
the frequency and the number of the topological fluctuations increases: the flickering complex
repeatedly produces an extra (spurious) 1D topological loop and up to two spurious bubbles

disintegrate into pieces and remains contractible in higher (D > 2) dimensions, i.e.,
that the topological fluctuations in the hippocampal map are bounded to 1D paths
and 2D surfaces.

Further numerical analyses demonstrate that, as the memory window increases,
the Betti numbers b1 and b2 become more stable. In contrast, as the memory window
shrinks, the fluctuations of the topological loops intensify (Fig. 4b). This implies that
if the characteristic timescale of the network’s transience is sufficiently large, then
the corresponding coactivity complex remains fixed and topologically equivalent to
the “perennial” cell assembly complex, FW=∞ = TCA. On the other hand, if the
simplexes are too unstable, then the cell assembly complex TCA fails to acquire the
correct physical structure, no matter how long is the learning period.

4 Discussion

In physical literature, fluctuating simplicial complexes have been previously used in
the context of Simplicial Quantum Gravity theories for discretizing quantum fluctu-
ations of the space-time [29, 30]. A natural requirement for these theories is that the
quantum fluctuations at the micro-scale should average out in the thermodynamic
limit, yielding a smooth space-time continuum at the macroscale.

There are certain parallels with cognitive representations of space that emerge
from the spiking activity of neuronal ensembles. At the micro level, the encoded
spatial information is naturally discrete at the cellular level and allows a schematic
representation in terms of simplicial complexes [11, 12, 24, 25]. Moreover, since
the various place cell assemblies that spike at different locations are transient struc-
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tures, these auxiliary simplicial complexes fluctuate. On the macro level, the emer-
gent hippocampal maps provide a stable topological representation of the physical
environment over long periods [10, 16–18], enabling topological reasoning during
animals’ spatial navigation [8, 9].

Ourmodel provides one explanation for how these two experimentally established
aspects of hippocampal neurophysiology can coexist. According to the model, while
the simplexes of the flickering simplicial complexFW fluctuate at the physiological
timescale, its Betti numbers can keep their physical values indefinitely. The fact that
the simplex fluctuations can average out at the scale of the entire complex suggests
that rapid rewiring of the cell assemblies can preserve the stability of the cognitive
map as a whole.

Although these results were obtained using a simple computational model, we
hypothesize that the observed effect reflects a more general phenomenon that might
apply to physiological mechanisms of synaptic and structural plasticity in the hip-
pocampal network.

5 Methods

Place cell spiking activity is modeled as a stationary temporal Poisson process with
a spatially localized rate [31] that is characterized by the spatial location of the
peak, rc, the peak firing amplitude, fc, and the place field size, sc. We simulated an
ensemble of Nc = 300 place cells with log-normally distributed peak firing ampli-
tudes, with the mean 〈 fc〉 = 14 Hz, log-normally distributed place field sizes with
the mean 〈sc〉 = 17 cm (for details see Methods in [11]). Spiking is modulated by
the 8Hz θ -oscillations—the basic rhythm of the extracellular field in the hippocam-
pus [32]. Neuronal coactivity is defined as firing that occurred over two consecutive
θ cycles—a computationally established optimal value [12], which corresponds to
the parameters estimated from experimental data [32, 33]. The topological analyses
were implemented using the JPlex package [34].
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Abstract We developed a multiplex network approach for the description and
recognition of structural brain changes in the context of the early diagnosis of
Alzheimer disease (AD). Our techniques can supply a convenient mathematical
framework to model structural inter- and intra-subject brain similarities in magnetic
resonance images (MRI) within Alzheimer disease studies. We used a set of 100
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improve the classification performance obtained only with the use of structural fea-
tures. They can also effectively distinguish NC, MCI and AD patterns with an area
under the receiver-operating-characteristic curve (AUC) ≥ 0.89 ± 0.04.
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1 Introduction

The number of elder people affected by dementia (in 2010 ∼ 35.6 million) is
dramatically increasing.1 This is particularly evident for the Alzheimer’s disease
(AD). Therefore, it is fundamental to find new instruments, methods and strate-
gies to describe these pathologies. In recent years, machine learning algorithms and
multivariate data analysis methods have been widely utilized. In particular, several
validation strategies and classifiers, several feature extraction and selection methods,
applied especially to MRI measures, have been explored [1–4].

Graph theory can be a suitable tool to reveal differences between healthy controls
and patients or quantify them through topological network properties [5]. The inves-
tigation of which measurements and graph properties can better capture and model
these alterations, eventually furnishing a direct interpretation of the disease etiology,
depends on the data used and the connectivity definition adopted.

In our case the attention was focused to model the single-subject variations, to
outline brain atrophy and consequently predict neurodegeneration onset. Multiplex
approach, that recent study have demonstrated to be more informative than a single-
graph approach, was naturally adopted here to include in this model the context
information obtainable only considering the other subjects and the related networks
[6, 7].

We compared the classification performances obtained with structural and mul-
tiplex network features. Moreover, we quantified the add-on value carried by mul-
tiplex. Finally, we evaluated the robustness of the informative content with respect
of the different features included in the description and the classification techniques
adopted.

2 Materials

Data used in this study was obtained from the ADNI database (adni.loni.usc.edu). In
particular, a data setDADNI of 100 MRI scans, including normal controls (NC), mild
cognitive impairment (MCI) and Alzheimer’s disease (AD) subjects, from the ADNI
database, was used in preparation of this work. DADNI set consisted of MPRAGE
MRI brain scans with a resolution of 1 × 1 × 1 mm3 or 1 voxel. Data size, clinical
detail, age and sex information ofDADNI are summarized in Table1. The DADNI was
chosen to result balanced from the clinical and demographic point of view.

1http://www.alz.co.uk/research/world-report-2014.

http://www.alz.co.uk/research/world-report-2014
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Table 1 Image demographics. Group size, range age, sex and clinical composition of normal
controls (NC), mild cognitive impairment (MCI) and Alzheimer’s disease (AD) subjects of the
DADNI data set are provided

Data Size Age (years) M/F NC-MCI-AD

DADNI 100 60–90 56/44 29–33–38

3 Multiplex Model

The DADNI MRI scans were spatially and intensity normalized with FSL [8]. In
particular, the scans were both linearly and non-linearly registered to the MNI152
template, then parceled into smaller volumes called supervoxels (of dimension equal
to 3000 voxels). The supervoxels were used for twomain reasons: wewanted a robust
description of the brain, thuswe chose to perform our analyses on a dimensional scale
far higher than the voxel; at the same time,we did notwant aROI description, because
of its well known limitations in perceiving small ormulti-site effects involved in brain
atrophy [9–11].

As scans had been spatially and intensity normalized, we hypothesized that cor-
responding supervoxels:

1. contained the same anatomical districts;
2. shared analogous gray level distributions unless substantial morphological vari-

ations.

This hypothesis yields a crucial aspect. In fact, the comparison of the similarity of
two supervoxels in different subject scans, can model important changes occurring
in grey matter volume of a diseased brain, that would be neglected within a single
subject perspective. Besides, as Alzheimer disease does not uniformly involve the
whole brain, it is reasonable to assume that supervoxels, including brain regions
affected by atrophy, manifest different similarity patterns that can be captured by the
proposed approach.

A graph G = (N ,E ) is by definition a couple of two sets N and E , respec-
tively representing the nodes and the edges of the graph. We built a multiplex net-
work considering each MRI scan as a multiplex layer α, that is a network where
each supervoxel represents a node i (549 nodes). To build our model, the last step
required, was the network edge definition. Many structural MRI studies, adopting
graph theory, define the network nodes as anatomical regions and establish the link
presence between them, when they covary in thickness or volume across subjects,
within an individual or longitudinally [12, 13]. However, this edge choice needs and
relies upon an accurate brain mapping and a preliminary knowledge of the anatomi-
cal areas to extract. In the present study, instead, connections and the related weights
were obtained measuring the Pearson’s correlation, in absolute value, between each
supervoxel. We discarded correlations lower than moderate (|r| < 0.3). This met-
ric was chosen because simple to interpret and computationally fast. In this way a
multiplex, formed by undirected and weighted networks, was obtained. To extract
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Fig. 1 Representative networks for each group: NC (left), MCI (middle) and AD (right). Corre-
lations are sorted as a function of the node strength. Color bar shows the value of the Pearson’s
correlation coefficient. This figure suggests that the loss of connections could be a marker of the
disease

significant features for the classification, for each layer α and for each node i of the
multiplex network, two topological properties were computed:

1. strength sαi ,
2. inverse participation ratio Yα

i .

These quantities are usually used to portray weighted networks. In particular, the
first one is the sum of the weights of the links incident upon node i in layer α and the
second one indicates how evenly the weights of the links of node i are distributed in
layer α [14]:

sαi =
∑

j

aα
ij

Yα
i =

∑

j

(
aα
ij

sαi

)2

with
(
Yα
i

)−1 ∈ (
1, kα

i

)
(1)

the previous sums are calculated over all nodes connected with node i. Then for each
layer also the conditional means of the strength and the inverse participation ratio
of the nodes with the same degree k were evaluated. Correlation matrices are shown
in Fig. 1 as an example of each group (NC, MCI, AD).

To obtain topological features encoding the information content of the whole
multiplex network, it was necessary to consider the aggregate adjacencymatrixA =
{aij} where:

aij = {1 if ∃α|wα
ij > 0 ∧ 0 otherwise} (2)

The matrix A allowed the previous network measurements to be introduced within
an inter-layer perspective. Thus, for each network 8N features were obtained. The
overall multiplex network resulted in a M × 8N (100 × 4392) feature matrix that
could be used to feed a classifier and study specific disease patterns. A fundamental
step of the analysis was then the feature selection and classification.
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4 Feature Selection and Classification

Feature selection techniques are usually distinguished in three classes: filter, embed-
ded and wrapper approaches. The first one measures the single feature relevance.
This method is particularly appropriate for high dimensional datasets as it is robust
against overfitting, independent from the classification and computationally easy and
fast. Both wrapper and embedded methods select feature subsets using a machine
learning and taking inter-connections among features into account. Wrapper meth-
ods explore the space of all possible feature subsets using a search technique and
assessing every time the chosen subsets repeating classification process. Embedded
methods select features evaluating, for each one, the chosen metric values without
retraining the classifier [15].

We compared these different approaches with 1000 5-fold cross validations, using
standards techniques, to find the best feature configuration for the multiplex features.
For thefiltermethod, theKruskal–Wallis (KW)non-parametric statistic testwas used.
Only the p < 0.01 significant features were selected. For the wrapper method we
chose as search algorithm the Sequential Forward Selection (SFS). SFS starts from an
empty set and for each step, it adds a new feature evaluating the feature combination
with the highest performance. At the end, the subset with the configuration providing
the best accuracy are selected. For the embedded method we trained a RF (Random
Forest) classifier and used it to measure the feature importance. In this case only
those features whose importance exceeded the third quartile of the whole normalized
importance distribution were selected. Finally, we trained two distinct models with
RF and SVM (Support Vector Machine). The RF was trained with 500 trees, SVM
model consisted of a radial kernel with cost C = 1 and the free parameter of the
Gaussian radial basis function γ = 0.01. Classifiers parameters were set with typical
values as our study was aimed at assessing the informative difference between the
several sets of features, more than refining the method performances.

In Fig. 2 the classification performance is shown. It can be noticed that the best
method was the Embedded one with a reduction to 43 features and an accuracy of
0.88 ± 0.01. Successively with the chosen features we performed these two distinct
evaluations:

1. one versus one classification: with this test we studied the separation of the classes
(NC, MCI, AD) along with the discriminant power of the selected features. We
studied separately the groups NC/MCI, NC/AD and MCI/AD.

2. one versus others: for each cross-validation round, training exampleswere divided
in three binary groups, each one consisting of the elements of one class, e.g.,
NC, and considering the remaining two classes as an other class, e.g., not-NC
(¬NC). Accordingly, for each cross-validation round three different classifiers
were trained, whose scores allowed us to assign the class to each test example.

Performance for the binary classification problems were measured in terms of
accuracy, sensitivity and specificity. For the three class prediction we measured the
area under the receiver operating characteristic (AUC) with the relative standard
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Fig. 2 The figure shows the performances in terms of accuracy and standard error obtained respec-
tively with RF (on the left) and SVM (on the right) for the three different chosen feature selection
methods: the Kruskal–Wallis (KW) non-parametric statistic test, the Random Forest (RF) feature
importance selection and the sequential forward selection (SFS)

error [16]. The same procedure was also adopted with the FreeSurfer [17] features
and with the combination of the structural and topological ones.

5 Results

5.1 Binary Classification

Our first test aimed to demonstrate if multiplex features were able to capture the
differences between NC, MCI and AD. Besides, we assessed if the base of knowl-
edge provided by the multiplex framework allowed classification performances to
be compared favorably with those obtained using structural FreeSurfer features. A
comprehensive overview, with the three cases NC/AD, NC/MCI and MCI/AD is
shown in the following Fig. 3.

Higher performances, in terms of accuracy, were reached by SVM for all three
cases NC/AD, NC/MCI and MCI/AD, RF always performed worst. In particu-
lar, these SVM accuracy values and standard errors were found (in parenthe-
sis the corresponding sensitivity/specificity): 0.90 ± 0.01 (0.92/0.89) for NC/AD,
0.90 ± 0.02 (0.89/0.91) for NC/MCI and 0.81 ± 0.02 (0.85/0.86) for MCI/AD.
Finally, no significant improvement could be obtained using both kinds of features.

5.2 Three Class Evaluation

A second test was performed to establish whether the discriminating power, previ-
ously assessed, could be suitably adopted for the three class classification problem
of distinguishing NC/MCI/AD.
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Fig. 3 Accuracy, sensitivity and specificity are shown for each classifier and for each binary clas-
sification: NC/AD (a), NC/MCI (b) and MCI/AD (c). SVM performs better than RF and multiplex
network features (MN) allow higher performances than structural features (SF)
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Fig. 4 The figure shows the
three class classification
performances for NC (blue),
MCI (green) and AD (red)

NC vs all

AD vs all
MCI vs all

We adopted a one versus others approach using SVM to perform three class
classification, as the previous test had already demonstrated its effectiveness.

Performances were measured in terms of area under the curve and the relative
standard error. We found an AUC of 0.92 ± 0.03 for NC/¬NC, 0.89 ± 0.04 for
MCI/¬MCI and 0.91 ± 0.03 for AD/¬AD. As expected the best performances were
achieved forNCandADclasses.AKruskal–Wallis test established that no significant
difference could be found for the three AUC values (p < 0.05). A performance
overview is presented in the Fig. 4

6 Conclusions and Discussion

We have extensively studied the multiplex network use for describing brain changes
due to neurological diseases. We showed that this approach suitably reveals impor-
tant bio-markers, such as the grey matter loss in Alzheimer’s disease patients, and
can outline them independently from other adopted structural measures (FreeSurfer
features).

Notably, the proposed method can be used for predictive purpose in the context of
the early diagnosis of Alzheimer disease. Accordingly, we considered three classes:
controls, AD and MCI subjects and found: (i) MCI subjects can be accurately dis-
tinguished from the others (AUC = 0.89 ± 0.04); (ii) the remaining classes have
classification performances not significantly different (AUC = 0.92 ± 0.03 for NC,
AUC = 0.91 ± 0.03 for AD), confirming the multiplex network approach robust-
ness; (iii) the multiplex-based features outperform the structural ones in two-class
classification problems; (iv) it is worthwhile to note that the use of both kinds of
feature does not yield any significant enhancement.

This study could be improved evaluating whichMCI converts to AD or increasing
the dataset size. Other machine learning techniques, such as neural networks, that
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can provide richer models when multiple layer are included and there is a large
number of samples could be explored. Further important investigations can arise
from the introduction of longitudinal informations and from the use of other imaging
modalities, such as diffusion MRI, within the described framework.
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DRD2 Case Study
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Abstract Gene interactions can suitably be modeled as communities through
weighted complex networks. However, the problem to efficiently detect these com-
munities, eventually gaining biological insight from them, is still an open question.
This paper presents a novel data-driven strategy for community detection and tests
it on the specific case study of DRD2 gene coding for the D2 dopamine receptor,
which plays a prominent role in risk for Schizophrenia. We adopt a combined use
of centrality and topological properties to detect an optimal network partition. We
find that 21 genes belongs with our target community with probability P ≥ 90%.
The robustness of the partition is assessed with two independent methodologies: (i)
fuzzy c-means and (ii) consensus analyses. We use the first one to measure how
strong the membership of these genes to the DRD2 community is and the latter
to confirm the stability of the detected partition. These results show an interesting
reduction (∼80%) of the target community size. Moreover, to allow this validation
on different case studies, the proposed methodology is available on an open cloud
infrastructure, according to the Software as a Service paradigm (SaaS).

A. Monda · A. Bertolino · P. Di Carlo · M. Papalino · G. Pergola
Dipartimento di Scienze Mediche di Base, Neuroscienze e Organi di Senso,
Università Degli Studi di Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy

N. Amoroso (B) · T.M.A. Basile · R. Bellotti · A. Fanizzi · M. La Rocca · T. Maggipinto
Dipartimento Interateneo di Fisica “Michelangelo Merlin”, Università Degli
Studi di Bari “Aldo Moro”, Via G. Amendola 173, 70126 Bari, Italy
e-mail: nicola.amoroso@ba.infn.it

N. Amoroso · T.M.A. Basile · R. Bellotti · M. La Rocca · T. Maggipinto · A. Monaco · S. Tangaro
Istituto Nazionale di Fisica Nucleare - Sezione di Bari, Via Orabona 4, 70125 Bari, Italy

A. Bertolino · G. Blasi
Azienda Ospedaliero-Universitaria Consorziale Policlinico, 70124 Bari, Italy

A. Bertolino
pRED, NORD DTA, F. Hoffman-La Roche Ltd., 4070 Basel, Svizzera

© Springer International Publishing AG 2017
G. Mantica et al. (eds.), Emergent Complexity from Nonlinearity, in Physics,
Engineering and the Life Sciences, Springer Proceedings in Physics 191,
DOI 10.1007/978-3-319-47810-4_16

199



200 A. Monda et al.

1 Introduction

Gene coexpression network analysis arises from the merge of network theory and
transcriptome analysis techniques [1]. Its pertinence to formalize, include and man-
age all the information originated from the genetic data, especially for the character-
ization of complex diseases, is manifest [2]. Therefore, explaining the widespread
use of this methodology has gained. However, no general consensus exists as to
an unambiguous interpretation of all the knowledge that could be extracted from
a graph [3] and yet the choice of the data analysis technique is a crucial element
depending both on the data and on the aims of the experiment [4–6]. Furthermore, it
is well known that biological networks tend to self-organize into many small, highly
connected topological modules, generally difficult to detect, that gradually tend to
combine in a hierarchical manner into larger, less cohesive units [7].

In the present work, we designed and implemented a data-driven analysis for
community detection in weighted graphs, specifically, we adopted this methodology
for the study of DRD2 gene. This gene could play a relevant role, as a dopamine
receptor, in several psychiatric disorders, such as Schizophrenia, as it is known that
dopaminergic transmission is altered in this kind of disease.

Several approaches have been proposed to investigate weighted gene coexpres-
sion networks. In particular, the Weighted Gene Coexpression Network Analysis
(WGCNA) [8] allows us to suitably generalize to weighted networks important prop-
erties of binary networks. Nevertheless, weighted graphs suffer from an intrinsic vari-
ability, as no a priori considerations allow to establish which gene correlations are
biologically meaningful. This issue especially affects community detection strate-
gies. Accordingly, our work aims to tackle some questions: (i) we try to determine the
existence of a suitable and robust threshold for weighted graphs; (ii) then we perform
a data-driven community detection, whose robustness is granted by iterated cross-
validation analyses; (iii) finally, we refine our analysis by assigning to each gene a
community membership degree by means of fuzzy c-means. Finally, we deployed
this methodology on the Bari ReCaS computer farm1 as an available Service, to
ensure wider opportunities to validate our methodology on new case studies.

2 The DRD2 Community Detection

WGCNA is a framework based on the concept of correlation networks, i. e. networks
whose edges are represented by correlation measurements. This approach has been
widely adopted in genetic studies to summarize coexpression profiles and identify
communities of interacting genes. On the contrary, it would seem counterintuitive
to have just one gene regulating highly complex phenomena, as those involving
pathologic conditions [9]. Thus, in preparation of this manuscript we used the Brain-
cloud dataset, publicly available at http://braincloud.jhmi.edu/, consisting of 85 gene

1http://recasgateway.ba.infn.it.

http://braincloud.jhmi.edu/
http://recasgateway.ba.infn.it
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Fig. 1 This figure shows a schematic overview of the proposed approach. The target oriented
strategy is mainly composed of three steps: topological thresholding, community detection and
measurement of membership degree with a fuzzy approach. An independent assessment of the
communities detected is provided with a consensus analysis

expressions xi from 199 subjects [10] and measured the absolute value of Pearson’s
pairwise correlations sij to define the network:

sij = ∣
∣cor

(

xi, xj
)∣
∣ . (1)

Since we’re interesting in the strength of the relationship between pairs of genes,
the sign of the correlation value became non influential. After constructing the net-
work, we detected theWGCNAmodules and selected the subgraph includingDRD2,
our gene of interest. The subgraph, as the original graph, can be interpreted as net-
work of interacting genes. We studied the possibility to further divide the WGCNA
module. In this work we propose a data-driven approach to detect a further partition.
We also assessed the quality of the partition with a consensus analysis and for each
gene of the DRD2 community we measured a degree of membership (see Fig. 1 for
a schematic overview).

The essential hypothesis of the proposed approach is that a varying threshold for
pairwise correlations can be used to prove the existence of network communities.
The presence of network communities should be closely related to centrality and
topological measurements, therefore we expect it should also affect their measured
values. Thus, we explored several properties, namely: degree, betweenness, diameter
and eccentricity.

The degree, ki, indicates the amount of connections that the node i have, with
respect to all other nodes in the networks j, for j = 1, ...,N . It is defined as:

ki =
∑

j∈N
aij, (2)

where aij are the elements of the adjacency matrix, A.
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In weighted networks, this quantity is straightforwardly a degree generalization.
For each node i it represents the sum of the weights extended to the node connected
neighbors and expresses the overall strength of the node connectivity.

The matrix A is defined by aij = f (sij), so they are derived by the correlation
measurements. This matrix formally represents the graph and it is differently defined
depending on the case we are implementing a weighted networks:

aij = power(sij, β) = ∣
∣sij

∣
∣
β
, (3)

withβ ≥ 1. This is the case of soft thresholding, otherwise, for unweighted networks,
we employ a so called hard thresholding:

aij = signum(sij, t) =
{

1 if sij ≥ t

0 if sij < t.
(4)

Another centrality measure applied in this work is the betweenness bi. This topo-
logical property emphasizes the paths including the considered node instead than the
number of its connections:

bi =
∑

j,k∈N,j �=k

njk(i)

njk
(5)

In this case njk represents the number of geodesics between node j and k, while njk(i)
is the number of geodesics between the same genes, passing through node i.

A geodesic between two nodes j and k is the shortest path connecting a node j
with a node k. The diameter is the maximum geodesic of a graph, thus it can be
considered as a size measure of the graph itself. The last property we considered was
the eccentricity. For each node i, the eccentricity is defined as the maximum geodesic
starting from node i. This quantity can be considered a geometrical alternative mea-
sure of centrality. All these properties except the diameter which is already a global
network property, were considered on average to characterize the network behavior
in order to analyze their trends. Figure2 shows these four properties varying with the
correlation threshold. The network reveals an interesting structure in a moderate cor-
relation ranges ([0.40, 0.55]). For lower threshold values it is reasonable to assume
that noisy relationships prevent the emergence of significant structures. On the other
hand, for higher correlations the loss of information is too much. Interestingly, the
same considerations arose from all the adopted measures.

There is an abundant literature (see for example [11–13]) on the importance of
betweenness for graph characterization and also in our case the betweenness seemed
to be the more informative property. Accordingly, we chose to maximize its value
to define the optimal threshold. A qualitative inspection of the network partition
can be useful in this case. Figure3 shows how low threshold values yielded a rough
two-class partition. On the contrary, with the optimal threshold values an underlying
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Fig. 2 The plots show the average network properties of degree, betweenness, diameter and eccen-
tricity, for different threshold values

Fig. 3 The graphs illustrate the communities detected with two different values of threshold:
a t = 0.3 and b t = 0.45. The case (b) suggest the presence of underlying communities within the
WGCNA module

community structure of the WGCNA module was manifest. For higher threshold
values there is a continuous increasing of isolated points.

Once the optimal threshold had been fixed, an edge-betweenness based commu-
nity detection algorithm was used [14]. It is notable here that, after performing a
WGCNA, with clearly a soft threshold method employed, we use an hard threshold-
ing analysis. Therefore,whatwe implemented indeed is an integratedprocedure of the
previous techniques. Chosen the threshold, we decided to use the edge-betweenness
algorithm to detect communities. However, we highlight that this is only one of the
available procedures, so there is not an univocal clustering for the network now exam-
ined. We found a 6-class partition of the whole network. In particular a community
of 28 genes including our target DRD2 was found. This reduction was not trivial, as
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theWGCNA included initially 85 genes. This subsetting represents an overall reduc-
tion of about 67%, nonetheless we performed further tests to better characterize this
community and eventually identify smaller yet significant communities.

3 Results

3.1 Methodological Assessment

A cross-validation analysis was carried out on the subjects to check the meaningful-
ness of the detected communities, focusing on our target geneDRD2. Consequently,
we assessed to what extent theDRD2 community depended on the subjects selected,
i.e., its robustness. For each cross-validation round, up to n = 199, we checkedwhich
genes belonged to the DRD2 community and summarized this information by intro-
ducing a dedicated Coexistence index for each gene i:

Coexistencei = 1

n

n
∑

j=1

Ii,j (6)

where:

Ii,j =
{

1 if genei ∈ DRD2 cluster

0 if genei /∈ DRD2 cluster
(7)

Ii,j values, for each iteration, depend on membership of the genei to the DRD2
cluster, as detailed in Formula 7. The number of occurrences of genei within the
target community is represented by Ii,j values summed over j. This quantity were
then scaled by n to define the Coexistence, see Formula 6.

We additionally performed a leave-k-out cross-validation, with k increasing in the
range [1, 150]. The k value is the number of subjects left out of the sample in each
cross-validation round. The results of these analyses are presented in Fig. 4.

Importantly, the stability test concerning the variation of the subjects in the sample
showed the existence of a robust core within the target community. Figure4 shows
two distinct and important aspects: (i) theDRD2 community is seemingly composed
of about 28 genes, (ii) this composition remains stable even when the sample size
is reduced, notably suppressing 75% of the original dataset. Results suggested the
existence of a definitely stable community core with 21 genes, for an overall 80%
reduction, being present in 90% of cross-validation rounds. Consequently, a quanti-
tative analysis to determine which genes should be considered to be part of theDRD2
community is presented in the following.
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Fig. 4 The figure displays how the Coexistence between all genes andDRD2 is nicely independent
from the sample subjects (case a). Interestingly, the leave-one-out analysis suggests the existence
of a stable DRD2 community, with 28 genes detected in 50% of cases (vertical line)

3.2 Consensus Analysis

It is demonstrated that the combination of different algorithms can improve the
community detection. We performed a consensus analysis to test and validate the
community structure detected as suggested in recent studies [15]. We considered 5
different community detection algorithms: edge betweenness, fast-greedymodularity
optimization, label propagation, leading eigenvector and multi-level to define the
consensus adjacency matrix.

Each community detection algorithm gives a network partition. For two generic
nodes xi and xj, the consensus adjacency matrix takes into account how many times
they belong to the same community, so that a new connectivity measure ranging
from 0 (for nodes never found in the same community) to 1 (always in the same
community) can be defined. The procedure is then iterated until a unique partition is
reached by all methods.

Interestingly, this analysis confirmed the DRD2 core community was composed
of 21 genes. The quality of the partitioning was measured in terms of modularity and
the consensus matrix led to the modularity maximization. In fact for the previously
mentioned techniques modularity ranged from 0.483 to 0.488, while the consensus
matrix had modularity 0.55 (see Fig. 5). This analysis confirmed the robustness of
the network partition and the DRD2 community.
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Fig. 5 This figure shows the
consensus analysis results.
The presence of three main
communities is manifest. In
particular, the DRD2
community resulted
composed by 21 genes, in
agreement with the fuzzy
membership

3.3 A Membership Degree Measurement

Previous results have shown how a stableDRD2 community does exist. Nonetheless,
it is also important to measure how strong its the community membership for each
gene. In this section we pursue this aim with the fuzzy c-means.

In general, fuzzy clustering techniques assign to each data point a membership
score. This score evaluates how strong is the degree of membership of a generic data
point to each cluster. The degree ofmembershipμig of the i-th gene x(i = 1, 2, . . . , n)
to the g-th cluster (g = 1, 2, . . . , k), in such a way that it satisfies the following
two constraints: 0 ≤ μig ≤ 1 and

∑k
g=1 μig = 1. Given the number of k groups, the

non-hierarchical technique known as fuzzy c-means [16] estimates the values of
minimizing the object function:

k
∑

g=1

n
∑

i=1

μ2
ig

∣
∣
∣
∣xig − cg

∣
∣
∣
∣
2

(8)

where

cg =
∑n

i=1 μ2
igxi

∑n
i=1 μ2

ig

(9)

is the centroid of the g-th cluster. As in the analogous non-fuzzy c-means technique,
such expression represents the sum of squares within-group. In this case, the distance
areweightedby the (squared)membership degrees of eachobservation to the different
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Table 1 Number of genes
belonging to DRD2
community with maximum
membership

Number of fuzzy partitions Maximum membership
genes

From 2 to 3 30

From 2 to 4 30

From 2 to 5 21

From 2 to 6 21

clusters. In other words, such object function is a measure of overall heterogeneity
within the clusters.

Different fuzzy partitions were computed with the previously mentioned tech-
nique, in particular by varying the expected number of partitions from 2 to 6, as
suggested from network’s threshold analyses. It is worthwhile to note that the num-
ber of maximum membership genes depended on the number of fuzzy partitions.
This is the reason why we performed a consensus analysis to independently assess
the number of communities to be 6 (Table1).

In conclusion, the fuzzy approach shows a DRD2 community consisting of 21
genes. It is worthwhile to note that, if a data partition is a meaningless data samples,
the degree ofmembership assigned could be the same for different clusters, thus these
measurements could be meaningless. Accordingly, it is of paramount importance to
assess the robustness and meaningfulness of the communities detected.

4 Conclusion

In this work we presented a data driven approach to refine the community detection
performed by state-of-the-art tool such as WGCNA.We applied our methodology to
theDRD2 case, a gene of interest for its involvement in several psychiatric disorders.
A stable DRD2 community of 21 genes was detected with the proposed approach.
This community represented a consistent reduction (of about 80%) if compared with
the original WGCNAmodule, but at the same time these genes achieve a probability
P ≥ 90% to belong with our target gene DRD2, tested by several and different
methods.

In order to assess the robustness of the methodology from two distinct perspec-
tives, we performed: (i) a consensus analysis and (ii) a fuzzy clustering. The consen-
sus analysis confirmed the partition obtained with our method, thus suggesting that
the detected DRD2 community did not depend on the adopted community detection
algorithm. The fuzzy clustering on the other handwas adopted tomeasure how strong
was the community membership of each gene to theDRD2 community. Notably, the
21 genes previous detected resulted to be those belonging to the DRD2 community
with maximum membership, so also the fuzzy membership is well-defined.

Finally, we assessed the stability of the results with respect of the sample size.
Specifically, we performed repeated cross-validation analyses, with a decreasing
sample size. This analysis quantified how the DRD2 community depended on the
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particular subjects composing the data. Notably, we found that even suppressing
75% of the original subjects the DRD2 community remained unchanged.

These results suggest DRD2 being strongly related to a small, robust and stable
community of 21 genes. Nonetheless, further investigations could be of interest. In
particular, we intend to introduce a significance measurement for the detected com-
munities, a possibility could be for example the adoption of the OSLOM algorithm
[17]. Furthermore, a clinical validation on independent data sets is fundamental to
understand whether the detected DRD2 community caries a biological meaning. In
this sense, a possibility could be the study of intermediate phenotypes [18].
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Power Laws in Neuronal Culture Activity
from Limited Availability of a Shared
Resource

Damian Berger, Sunghoon Joo, Tom Lorimer, Yoonkey Nam
and Ruedi Stoop

Abstract We record spontaneous activity from a developing culture of dissociated
rat hippocampal neurons in vitro using a multi electrode array. To statistically char-
acterize activity, we look at the time intervals between recorded spikes, which, unlike
neuronal avalanche sizes, do not require the selection of a time bin. The distribution
of inter event intervals in our data approximate power laws at all recorded stages of
development, with exponents that can be used to characterize the development of the
culture. Synchronized bursting emerges as the culture matures, and these bursts show
activity that decays approximately exponentially. From this, we propose a model for
neuronal activity within bursts based on the consumption of a shared resource. Our
model produces power law distributed avalanches in simulations, and is analytically
demonstrated to produce power law distributed inter event intervals with an exponent
close to that observed in our data. This indicates that power law distributions in neu-
ronal avalanche size and other observables, can be also an artefact of exponentially
decaying activity within synchronized bursts.

1 Introduction

In the recent global push to understand brain function, it has become clear that
an experimental paradigm is required where the interaction between neuronal net-
work structure and function can be understood. In vitro studies of neuronal cultures
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on multi-electrode arrays (MEA) provide a window onto the relationship between
growth and activity, from the individual neuron to the ensemble level, both dur-
ing development and in the mature state. During development, neuronal structures
undergo several structural changes, and these are reflected in the statistical proper-
ties of their spontaneous activity. One major approach in the analysis of neuronal
culture recordings has been to focus on these statistical properties, considering neu-
ronal cultures as ensembles of coupled items linked by an interaction paradigm. This
approach opens up a connection to similar abstract situations that have been greatly
analyzed in statistical physics. Generally the predictions made by models in statis-
tical physics depend on the specific law of interaction, which may not sufficiently
reflect the poorly understood laws governing neuronal interaction. There is, however,
a particular situationwhere the details of these laws should cease to be of importance.
This is in the presence of a second order phase transition, or the ensemble being at
‘criticality’ or in a ‘critical state’, leaving open a parameter from which all other
statistical parameters could be inferred [1]. A fingerprint of such a process to be at
work is power law distributions of local descriptors evaluated across the ensemble.

Historically, the connection between neuronal tissue and statistical physics was
sparked by the observation of power law distributed neuronal ‘avalanches’ of activa-
tions in the neural tissue, from recordings of local field potentials (LFP) on a MEA
by Beggs and Plenz [2, 3]. Even before these observations, the potential connection
between criticality and activity in neural networks was recognized or suggested [4,
5]. The power law observations of Beggs and Plenz [2, 3] were made from ma-
ture cultures, where activity is often characterized by synchronized bursting activity
separated by quiet periods [6], by studying the sub-structure of such bursts. Other
work has claimed to observe ‘sub-critical’, ‘critical’ and ‘super-critical’ avalanche
statistics at different stages of development [7], or under chemically altered neuronal
connectivity states [8], though the more general principles underlying power law
distribution deviations are still in the process of being explained [9].

It often remains elusive, by exactly which process and mechanism power laws
are generated. In physics, there are typical situations in which power laws emerge:
Generally in systems that exhibit self-similarity, and more particularly in second
order phase transition critical regimes (involvingmodels of branching andpercolation
processes). Whereas these represent rather distinct physical situations, in the context
of the neuronal avalanche size power law distributions, they have all been used to
provide interpretations with the hope of gaining a grip on the phenomenon from a
physics point of view [10, 11].

A further challenge arises when inferring the origin of power laws in neuronal
avalanches: It is not clear exactly how an avalanche should be defined.Avalanches are
generally defined as periods of uninterrupted neuronal activity with respect to a given
time binning, but it is well known that changing the bin size changes the exponent of
the power law; i.e. changes the key piece of information used to infer the generating
process [2]. It is perhaps not so surprising, for example, that selecting the time bin size
as the average inter event interval in neuronal LFP recordings results in an exponent
close to the theoretical exponent of the branching process universality class, as in this
way each event will be followed by, on average, one more event in the next bin. This
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raises the question whether the avalanche power laws observed in neuronal cultures,
in the absence of other evidence, are best explained by an underlying critical state,
or whether there could be a simpler explanation. Furthermore, the activity patterns
often discussed in terms of critical dynamics occur inmature cultures. During culture
development, activity patterns undergo striking qualitative changes, but a quantitative
statistical characterization is still missing.

Here we investigate the emergence of power law statistics in neuronal activity
from new recordings of unsorted spikes from dissociated rat hippocampus neurons
and propose both a simple, unambiguous statistical characterization of development,
and an alternative, simpler model for the emergence of power law statistics in mature
neuronal culture activity.

2 Power Law Statistics in Development Characterization

We analyzed one culture of dissociated hippocampal rat neurons grown on a 60-
channel MEA (for details, see Methods). Between 9 and 15 days in vitro (DIV),
each day recordings of two hours were sampled for further analysis. From the sixty
channels of the MEA some measured no or very little activity; for simplicity and
reliability, we will consider for plotting and calculations only channels with a mean
firing rate above 0.1Hz. The recorded activity across the development is visualized
in Fig. 1. The raster plots show a clear evolution in the spiking characteristics from
rather unsynchronized firing (9 and 10 DIV), towards distinct synchronized bursts.
Such synchronized bursts, separated by periods with little activity, are typical for
mature neuronal networks grown in isolation [6].

Similar synchronized bursts were the object of study in [2]. Following the same
avalanche size distribution analysis procedure on our data from 15 DIV, we define
avalanches to be a consecutive sequence of time steps of size Δt with at least one
recorded event (in any channel) in each time step, ended by a time step of no activ-
ity. The size of an avalanche is then defined by the number of spike events in the
avalanche. The resulting avalanche size distributions for themeasurements at 15DIV
are presented in Fig. 2, showing reasonable agreement to a power law for different
bin sizes Δt . However, Fig. 2 also highlights the earlier mentioned difficulty in pro-
ducing an unbiased characterization of neuronal culture activity data from avalanche
size distribution power law exponents: different exponents and distribution forms
are observed for different time bin sizes. Arguments have been made justifying the
average inter event interval as the appropriate bin size [2] by claiming that this relates
to the rate of signal propagation between electrodes. We find this argument to be not
sufficiently strong to justify setting such a sensitive parameter.

If we wish to resolve the ambiguity arising from time bin selection, and more-
over to statistically characterize neuronal culture development, we require a non-
parametric measure applicable also to the less synchronized activity seen from 9 to
12 DIV.We propose, as such a measure, the distribution of inter event intervals (IEI).
IEI, defined as the time difference between two successive events at any channels, are
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Fig. 1 Raster plots for the first 10min of the recorded activity from 9 to 15 DIV. The 19 active
channels are arranged vertically within each recording day. Each event within each channel is
represented by a short vertical black line

Fig. 2 Avalanche size distribution of experimental data from 15 DIV, using different binning sizes:
a Δt = 1ms; b Δt = 2ms; c Δt = 4ms. Power law exponents were fit using maximum-likelihood
(see Methods) over a data-range from smin = 2 to smax = number of active channels = 19

also approximately distributed according to a power law in our data (Fig. 3). More-
over, looking at IEI reveals that a fractal structure exists not only as a substructure of
the synchronized bursts seen inmature cultures, but also in the time series throughout
the culture’s development from 9 to 15 DIV.We also observe a clear, almost perfectly
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Fig. 3 IEI distributions for: a 9 DIV; b 10 DIV; c 11 DIV; d 12 DIV; e 13 DIV; f 14 DIV; g 15
DIV. Least-squares power law fits are shown for the range I = 5ms to I = 50ms

monotonic increase in the exponent of the power law in our data, from an exponent
close to 1 at 9 DIV to an exponent close to 2 at 15 DIV, which suggests this may be
an appropriate quantitative measure of development. Furthermore, IEI distributions
reveal in a simple way the emergence of synchrony as the culture matures. For ex-
ample, at 14 and 15 DIV (Fig. 3f, g) we see the distribution split into two parts, with
the power law decay reflecting the within-burst structure, and the high density of IEI
above 1000ms reflecting the quiet inter-burst periods. This can be seen without the
need to define a threshold of discrimination between ‘burst’ and ‘inter-burst’ prior
to analysis.

3 Structure Within Bursts of Mature Cultures

Returning now to our question about the origin of the power law distributions in neu-
ronal avalanches, we limit ourselves to the synchronized activity of mature cultures,
and look in more detail at the structure within bursts at 15 DIV. The recordings at 15
DIV show strongly synchronized activity, and all bursts have roughly the same size
of about 60 spikes. A zoom into a single burst reveals how the activity is distributed
(Fig. 4). The number of spikes is highest at the beginning of the bursts and then after
is reduced. Looking at a histogram of events within all bursts aligned by the first
spike (Fig. 5), we see an initial increase in activity during the first 20ms followed by
a roughly exponential decay.
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(a)

(b)

Fig. 4 a Raster plot for the first ten minutes of the recorded activity at 15 DIV showing strongly
synchronized activity. b A closer look at two of the bursts in a, revealing a similar temporal pattern

Fig. 5 a Stacking of all bursts, aligned at the first spike of each burst and counting the number
of spikes per millisecond. The activity increases during the first 20ms and decreases then after
exponentially. b p-value for the exponential fit as a function of the lower bound tmin (tmax = 300).
For tmin ≥ 82 the p-values are greater than 0.1. c p-value for the power law fit as a function of the
lower bound tmin (tmax = 300). For tmin ≥ 117 the p-values are greater than 0.1

Even though visually the exponential seems to provide a plausible fit, we wish
to use this observation as the basis of our later modeling, so we must clarify this
statistically, and moreover, clarify that the fit is plausible over a greater range than a
power law alternative. To this end, we fit each distribution over a variable range, and
follow the procedure outlined in [12]. For each range [tmin, tmin + 1, . . . , tmax ], the
distribution parameters were estimated using maximum likelihood (see Methods)
and these estimated parameters were used to generate 1000 surrogate datasets. The
surrogateswere then fit usingmaximum likelihood, and for each fit, theKolmogorov–
Smirnov distance was calculated. As a measure of plausibility of fit for a given
distribution type, p-values were calculated as the fraction of surrogate data sets
with a higher Kolmogorov–Smirnov distance (a worse fit) than the corresponding
experimental data fit. We chose a p-value greater than 0.1 as a criterion for the
plausibility of the hypothesized fit, and limited our fitting range by tmax = 300ms.
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In the exponential case, a plausible fit is achieved over a greater range than for the
power law case (tmin ≥ 82 vs. tmin ≥ 117, Fig. 5) so we suggest that this justifies,
as a first approximation, treating the decay of activity within a burst in our dataset
as exponential. Further, our observations of the shape of bursting activity in vitro
from our recordings of rat hippocampus neurons are at least qualitatively consistent
with previous in vivo results from bursts of spikes in the thalamic reticular nucleus
in anesthetized cats, which show a similar fast buildup followed by an exponential
decay [13].

4 Exponential Resource Decay Model for Power Law
Activity Statistics

The observation that burst activity decays exponentially suggests defining a model
whereby spikes are generated stochastically,with probability proportional to an expo-
nentially decaying ‘resource’ or ‘potential’.Wemodel bursts by simulating recording
channels that have no direct interaction, and are linked only by a shared probability
density p of recording a spike. An approximate exponential decay of p in our model
is provided in a natural way by the spikes themselves: each spike reduces p by a
constant amount c (Fig. 6).

Bursts modelled in this way lead to power law avalanche size distributions. Mod-
eling small bursts of 60 spikes using this method produces power law distributed
avalanche sizes, that, like the avalanches in our data, are sensitive to bin size. Mod-
eling larger avalanches moves the power law exponent close to −2, and reduces the
sensitivity to binning (Fig. 7).

For IEI distributions arising fromourmodelwe can derive a power lawanalytically
for the case of one channel. Let pdt be the probability of a spike in the time interval
dt . After each spike, p will be reduced by c � 1; the starting probability is p0 ≤ 1.
For known p, the probability of an interval with no spike with a length between L
and L + dL is given by

Fig. 6 Example time series
of spikes generated by our
model and its corresponding
decay in p, in the case of
only one channel
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Fig. 7 Avalanche size
distribution of modeled
bursts: The distribution
follows a power law with
exponent close to −2. 14803
bursts of 1000 spikes each
were generated using a 10
channel model

P(L | p)dL =
(

lim
Δt→0

(1 − pΔt)
L
Δt

)
· pdL =

(
lim
x→∞

(
1 − p

x

)Lx)
· pdL = e−pL · pdL .

(1)

To make the IEI-distribution P(L) independent of p, one needs to know the
probabilities for the occurrence of the different values of p, which we denote by
P(p). We may then write P(L , p) = P(L | p)P(p) and P(L) = ∫ 1

0 P(L , p)dp. The
distribution of P(p) can be found easily: there will be exactly one IEI for each
p ∈ {c, 2c, . . . , p0 − c, p0}, so each possible value of p as a starting point for an
IEI, appears with the same frequency, and P(p) is constant. Thus

P(L , p)dL = P(L | p)P(p)dL ∝ e−pL · pdL , (2)

from which it follows that

P(L) =
∫ p0

0
P(L , p)dp ∝

∫ p0

0
e−pL pdp = 1

L2
− e−p0L

(
1

L2
+ p0

L

)
L→∞−−−→ 1

L2

(3)

and so our simple model predicts an unambiguous IEI distribution power law expo-
nent within bursts of α = 2, very close to the observed exponent in our data.

5 Conclusions and Outlook

It is well known that power law distributions can be generated from exponentials [14,
15]. However, to our knowledge, so far no explicit model calculations exhibiting this
in a realistic neuronal context were put forward. The presented model shows that this
can be achieved in the most natural way. Our prediction of a power law exponent
of α = 2 holds only for the case of isolated bursts, that all have the same size. The
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measurements at 14 and 15 DIV roughly fulfil these requirements; their power law
exponents are indeed close to α = 2 (α = 1.83 for 14 DIV and α = 2.11 for 15
DIV). How to describe the situation in the earlier stages, where the correlations also
decrease exponentially but the activity does not consist of isolated bursts, is still
unclear. We could speculate that in the earlier stages (9–12 DIV), the potential that
we use for our modeling, does not completely recover before it decays. We found
that in these earlier stages, the exponent is much lower, indicating a much slower
activity decay. This may be taken as a fingerprint for an exponential decay that often
starts before the previous one has finished.

Our results do not contradict the more general hypothesis that a critical state
underlies brain activity [16], and nor do they contradict earlier observations and
claims based on neuronal cultures, such as those made by Beggs and Plenz [2].
The bursts generated by our model are not intended to reproduce the finer structure
which can be seen in our data (Fig. 4). Our intention is simply to demonstrate that
an exponential decay in activity may be sufficient to produce power laws in MEA
recordings; i.e. that power law distributed neuronal avalanche statistics can simply
arise as an artefact of the partitioning of an exponential decay of activity within
mature culture bursts. This wouldmean that these power law distributions are weaker
evidence for a critical state than previously thought, and highlights the importance
of looking at other evidence (e.g. [17, 18]).

On a more general level, it remains somewhat unclear to us how a partitioning
of isolated, roughly stereotypical bursts into avalanches should be related to criti-
cal phenomena. Avalanches, such as those in the sandpile model [19], are distinct
events with a clear definition. If an avalanche sub-structure exists within bursts, the
avalanches need not even necessarily be separated in time, and if they result in a
temporal structure which is fractal, this structure should be insensitive to time bin
selection for sufficiently large bursts. The IEI distributions in our data suggest that
a fractal temporal activity structure may be a stable property of neuronal cultures
throughout development, and not only a substructure of mature bursts, opening a
window toward a quantitative statistical characterization of development.

6 Methods

6.1 Neuronal Culture Preparations

Hippocampiweremicro-surgically separated fromE18 (embryonic day18) Sprague–
Dawley (SD) rat (Koatech, Republic of Korea). Dissected tissues were dissociated
with pipetting in HBSS buffer solution and centrifuged at 1000 rpm for 2min.
Supernatant was then removed, and settled cell pellet was resuspended in plating
medium (Neurobasal medium supplemented with B27, 2 mM GlutaMAX, 12.5 μM
L-glutamate, and penicillin-streptomycin). After being sieved through a cell strainer
(BD Falcon, NJ, USA), cells were plated on a chip at the density of 1500 cells/mm2.
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Cultured neurons were kept in a humidified incubator maintained with 37 ◦C
and 5% CO2. Half of the medium was changed twice a week with maintenance
medium (plating medium without L-glutamate). All experiments were performed in
accordance with the guidance of the Institutional Animal Care and Use Committee
(IACUC) of Korea Advanced Institute of Science and Technology (KAIST) and all
experimental protocols were approved by IACUC of KAIST.

6.2 Neural Recordings

A microelectrode array (MEA) was purchased from Multi Channel Systems (Reut-
lingen, Germany). It was composed of 59 microelectrodes (TiN, 30 μm in diameter,
200 μm spacing) and 1 reference electrode. In order to promote cell adhesion to
the chip surface, the MEA was coated with poly-D-lysine (100μg/mL) and steril-
ized with 70% ethanol. To measure neural signals, the MEA was connected with a
60-channel preamplifier (MEA 1060-BC, Multi Channel Systems) and placed in a
recording incubator (5% CO2). To prevent the evaporation of cell culture medium,
the MEA was capped with FEP-membrane sealed Teflon ring. The preamplifier was
connected with an MEA workstation (Plexon Inc., Dallas, USA) and digitized at
40kHz. The overall gain factor was 14,000 and the bandwidth 250Hz–6kHz. For
spike detection, the threshold level was set to six times the standard deviation of the
background noise. At 8 DIV, theMEAwas transferred to the recording incubator and
neural spikes were continuously recorded for 7 days (9–15 DIV). To extract spike
times for the data analysis, NeuroExplorer (Nex Technologies, Madison, USA) was
used.

6.3 Fitting Using Discrete Maximum-Likelihood

Maximum likelihood estimation of a distribution parameter, α begins from the
assumption that the observed data, in this case, spike times, t, were sampled inde-
pendently from a distribution, p(t |α). The likelihood,L of α is then the probability
of the observations t, given α, i.e.

L (α|t) = p(t|α) =
∏
i

p(ti |α) . (4)

Since the logarithm is a monotonic function, the α which maximises the log likeli-
hood, l, will also maximise the likelihood, which allows us to replace the product
with a sum:

argmaxα

[
L (α|t)] = argmaxα

[
l(α|t)] = argmaxα

[∑
i

ln p(ti |α)
]
. (5)
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For the discrete, truncated power law in t , with scaling exponent α, lower bound
tmin and upper bound, tmax , the properly normalised probability mass function is

p(t |α) = t−α∑tmax
j=tmin

j−α
, (6)

which gives the log likelihood

l(α|t) = −N ln
tmax∑
j=tmin

j−α − α

N∑
i=1

ln ti , (7)

where N is the number of spike times ti in the interval [tmin, tmax ].
For the discrete, truncated exponential distribution in t , with scaling exponent

λ 
= 0, lower bound tmin and upper bound, tmax , the properly normalised probability
mass function is

p(t |λ) = e−λt∑tmax
j=tmin

e−λ j
, (8)

which gives the log likelihood

l(λ|t) = −λ
∑
i

ti − N ln
tmax∑
j=tmin

e−λ j . (9)

Dividing by the constant factor N does not affect the maximisation of l(λ|t), so we
can write

lN (λ|t) = −λt − ln
tmax∑
j=tmin

e−λ j , (10)

where t is the arithmetic mean of spike times ti in the interval [tmin, tmax ].
We find that maximising these log likelihood expressions is generally a one di-

mensional convex optimisation problem which can be solved numerically with any
standard method.
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