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Abstract We study the two-dimensional ultracold Bose gas
in optical lattice. We use cluster perturbation theory based
on Hubbard X-operators to calculate the spectral function
and phase diagram of Bose-Hubbard model which is mini-
mal model to describe behavior of ultracold gases in optical
lattices. We have analyzed spectral properties of spinless
bosons in a square lattice taking into account the short-range
correlation.
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1 Introduction

Ultracold gases have been studied intensively since the
achievement of Bose-Einstein condensation. This achieve-
ment results in two major developments. One can tune the
strengths of interaction between particles by means of Fesh-
bach resonance and change the dimensionality with optical
lattices. Using both of them or separately, one can enter
a regime in which ultracold gas is no longer described by
noninteracting quasiparticles. On contrary, such system will
exhibit strong interactions and should be described ade-
quately. Interest to ultracold gases in optical lattices comes
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from the possibility of studying phenomena of quantum
many-body systems. Also ultracold systems could be used
in quantum simulations [1, 2]. Quantum phase transition
from a superfluid to a Mott insulator has been realized in
ultracold boson gases in optical lattices [3–6]. There have
been done a lot of work in order to understand the behavior
of this systems in different regimes [7–11].

In this paper, we have studied ultracold spinless Bose
particles in the optical lattice. A simple model to describe
the behavior of such systems is Bose-Hubbard model [12].
We studied the Bose-Hubbard model with the nearest and
next-to-nearest neighbor hoppings. We have used the clus-
ter perturbation theory based on Hubbard X-operators [13]
in order to acquire the spectral function. We calculate the
phase diagram of the Mott insulator (MI)–superfluid state
(SF) transition and determine the boundary of the two first
Mott lobes for the different value of the next-to-nearest
neighbor hoppings. We also study the density of states and
the momentum distribution in the Mott phase taking into
account the quasiparticle spectral weight.

The paper is organized as follows. Firstly, we introduce
the Bose-Hubbard model with the next-to-nearest neighbor
hoppings and describe the cluster perturbation theory based
on X-operators in Section 2. Spectral properties and phase
diagram of ultracold spinless bosons in the square optical
lattice are described in Section 3. Finally, in Section 4, we
draw the conclusion.

2 Cluster Perturbation Theory Based
on X-Operators

A conceptually simple model to describe ultracold atoms in
an optical lattice at finite density is obtained by combin-
ing the kinetic energy in the lowest band with the on-site
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repulsion in the limit of sufficiently deep optical lattice [7].
We study the Bose-Hubbard model with the next-to-nearest
neighbor hoppings J ′:

Ĥ = −
∑

<i,j>

Jij b̂
†
i b̂j −

∑

�i,j�
J ′

ij b̂
†
i b̂j

+U

2

∑

i

n̂i

(
n̂i − 1

) − μ
∑

i

n̂i , (1)

where b̂
†
i and b̂j are creation and annihilation operators,

respectively; n̂i = b̂i
†
b̂i is the particle number operator, U

is the on-site repulsion energy; Jij is the hopping matrix ele-
ment of nearest neighbors, J ′

ij is the hopping matrix element
of next-to-nearest neighbors; μ is the chemical potential.
Here, < ... > and � ... � denote sum over nearest neigh-
bors and sum over next-to-nearest neighbors, respectively.
It is schematically shown in Fig. 1.

In order to obtain spectral properties of ultracold gas in
the optical lattice, we used the cluster perturbation theory
based on Hubbard X-operators [13]. Here, we use the 2 × 2
cluster for tiling of the square lattice (see Fig. 1).

Firstly, we divide Hamiltonian (1) into two part:

Ĥ =
∑

f

Ĥ0(f ) +
∑

f �=g

Ĥint (f, g), (2)

where Ĥ0(f ) is Hamiltonian of 2 × 2 cluster f , Ĥint (f, g)

is the interaction between clusters f and g.
Secondly, we exactly diagonalize Ĥ0(f ). Eigenvectors

are used to construct X-operators [13–15]:

X̂α
f ≡ X̂

pq
f = |p〉〈q|, (3)

where |p〉 is the initial cluster state, 〈q| is the final cluster
state, α(p, q) is a root vector of transition between states in
the Hilbert space of cluster.
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Fig. 1 Scheme of a square optical lattice. J denotes the nearest neigh-
bor hoppings, J ′ denotes the next-to-nearest neighbor hoppings. f and
g are the cluster indexes

Now, we can represent annihilation operator b̂i in the
form:

b̂i =
∑

f α

γi(α)X̂α
f , (4)

γi(α) = 〈m′, N − 1|b̂i |m,N〉 (5)

where i is index inside of a cluster and runs over 1, 2, 3,
4, γi(α) is the matrix element which determine a transition
from state |m,N〉 to |m′, N − 1〉, m and m′ denote states in
the Hilbert space with N and N − 1 particles, respectively.

Using commutation relation between Bose-operators,
one can get the following sum rule:

〈[b̂i , b̂
†
i ]〉 = 1 =

∑

α

|γi(α)|2B(α) ≡ f, (6)

B(α) = 〈Xpp〉 − 〈Xqq〉, (7)

where B(α) is a filling factor [13]. In exact calculations
including all possible quasiparticle excitations α, the sum
in (6) is equal to unity. Practically, some part of the Hilbert
space gives miserable contribution to the spectral function
and may be omitted to reduce the computation time. Here,
we introduced f -factor which controls the sum over all tran-
sitions in the Hilbert space. This study shows that if one
keeps this number within a range from 0.99 to 1, results
will remain correct. This fact is only natural, we neglected
unlikely transitions which did not change a whole picture.
More details on this matter one can find below.

Substituting (4) into (1) and keeping in mind that Ĥ0(f )

is diagonalized, we have:

Ĥ =
∑

f n

εnX
nn
f +

∑

f �=g

∑

αβ

J
αβ
fg Xα

f X−β
g , (8)

where f and g are cluster indexes, α and β are root vec-
tors of transitions between cluster states, εn is the energy of
cluster, Jαβ

fg is the matrix element of the interaction between
clusters f and g.

Let us carry out a Fourier transformation of X-operators.
We take into account that these operators are defined for the
cluster forming quadratic superlattice with a period twice as
large as that of the initial lattice. In our case, the number of
sites in a cluster is four. Hence, the total number of clusters
is smaller than the initial number of sites also by a factor of
four. Keeping this in mind, we have:

Xα
f = 1√

N∗
∑

k̃

Xα

k̃
eik̃Rf , (9)

where N∗ is the number of clusters in the superlattice and k̃
is a wave vector which runs over the reduced Brillouin zone.
Taking into account (9), we obtain:

ĤJ =
∑

k̃

∑

α,β

Jαβ(k̃)X̂α

k̃
X̂

−β

k̃
, (10)
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where Jαβ(k̃) is the interaction between clusters.
To calculate the spectral function, we used the two-

time Green functions for the initial Bose-operators and for
Hubbard bosons in the representation of X-operators:

G(if, t; jg, t ′) = 〈〈b̂if (t)|b̂†
jg(t

′)〉〉, (11)

Dαβ(f, t; g, t ′) = 〈〈Xα
f (t)|Xβ

g (t ′)〉〉, (12)

where i and j are intra-cluster indexes, f and g are cluster
indexes. Here, we used notation from [13].

After writing the equations of motion for the Green
function (12) and using the Fourier transform (9), we can
obtain the following matrix equation in the Hubbard-I
approximation:

D−1(k̃, ω) = (D0(ω))−1 − J (k̃), (13)

where

D0(ω) = B(α)

ω − Ω(α)
δαβ, (14)

Ω(α) = εq(N + 1) − εp(N). (15)

Expression (14) defines the cluster Green function which
can be evaluated precisely and contains the energy (quasi-
particle energy) of transition from the state q with number
of particles N +1 to the state p with number of particles N ;
B(α) is the filling factor (7).

Let us perform a Fourier transformation for Bose-
operators:

b̂if = 1√
N0

∑

k

b̄k exp(ik · (Rf + ri )), (16)

where N0 is the number of sites in the initial lattice and k is
a wave vector defined in the initial Brillouin zone. There is
a relation between Fourier transform of the Green functions
(11) and (12):

G(k, ω) = 1

Nc

∑

αβ

Nc∑

i,j=1

γi(α)γ ∗
j (β)

×Dαβ(k, ω)e−ik(ri−rj ), (17)

where Nc is a number of sites in cluster (which is four in our
case).

We using the following spectral function:

A(k, ω) = −2Im[G(k, ω)], (18)

It is well known that the spectral function must obey the
sum rule obtained from the commutation relation for Bose-
operators as follows:
∫

dωA(k, ω) = 〈[b̂k, b̂†
k]〉 = 1. (19)

Above, we introduced the concept of f -factor (6) which
defines the extent to which equality (19) is satisfied, i.e.,
∫

dωA(k, ω) = f. (20)

We can now fully estimate the necessity of monitor-
ing f -factor at first steps of computation of the complete
Green function. After exact diagonalization of the cluster
and before calculating of the Green function, we can choose
this number of Bose quasiparticles which allow us to obey
the sum rule at the end of calculations. In ideal case, we
must include all transitions in Hilbert space. However, since
we perform numerical calculations in which an increase in
number of transition involves an increase the computation
time. It is very important to determine the optimal number
of transitions before calculations without noticeably affect-
ing the final result. This is ensured by controlling f -factor
at the beginning of numerical calculations.

3 Spectral Properties of the Spinless Bosons
in the Square Lattice

Here, we study ultracold spinless Bose gas in the square
optical lattice. For analyzing of the physical properties of
this system in Mott phase, we calculate the quasiparticle dis-
persion with spectral weight. In accordance with definition
(13), the dispersion equation takes the form:

det ((ω − Ω(α))δαβ − B(α)Jαβ(k̃)) = 0. (21)

The solution of this equation gives a bare dispersion for all
quasiparticles. This set contains both dispersions that define
bands as well as dispersionless levels, i.e., (21) gives such
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Fig. 2 The phase diagram of the Mott insulator (MI)–superfluid state
(SF) transition. The first two Mott lobes with an occupation number
per site < n >= 1 and < n >= 2 are presented. Solid blue line
is acquired when the next-to-nearest neighbor hoppings are disable
(J ′ = 0). Dashed red line is acquired when the next-to-nearest neigh-
bor hoppings are enabled (J ′ = 0.1J ). Asterisks denote the results
of the variational cluster approach (VCA) [9] and circles denote the
results of the quantum Monte-Carlo (QMC) [11]
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Fig. 3 a The density of states
N(ω), b the dispersion ω(k),
and c the momentum distribution
N(k). Here and below, we use
the following notation: 	 =
(0, 0), X = (π, 0), M = (π, π).
The hopping parameters
J/U = 1/22 and J ′ = 0
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poles which can be cancelled out by f -factor. The spec-
tral function (18) determines the spectral weight of all such
states for each value of a wave vector and, thus, selects
physically significant poles.

The Bose-Hubbard model exhibits a quantum phase tran-
sition from a Mott phase to a superfluid phase by changing
an occupation number per site or increasing the ration J/U .
The first two lobes of 2D Bose-Hubbard model obtained
by means of the cluster perturbation theory based on X-
operators are shown in Fig. 2. We used a gap between bands
to draw boundaries of the Mott phase on this phase diagram.

The critical ration is (J/U)c = 0.047 for the first
Mott lobe and (J/U)c = 0.028 for the second Mott lobe
when the next-to-nearest neighbor hoppings are disabled.
For a case when the next-to-nearest neighbor hoppings are
enabled (J/U)c = 0.053 for the first lobe and (J/U)c =
0.032 for the second one. Thus, the Mott lobes increase
with the next-to-nearest neighbor hopping J ′. The strong-
coupling perturbation theory [16] and QMC [11] results
(J/U)c = 0.0597 for the first lobe and (J/U)c = 0.0378
for the second one.

The dispersion ω(k), the density of states N(ω), and
the momentum distribution N(k) for an occupation num-
ber per site < n >= 1 and the nearest neighbor hopping
J/U = 1/22 are shown in Fig. 3. In the numerical com-
putation of spectral density, we replaced a delta-function

by a Lorenz curve with a broadening parameter δ = 0.03.
All calculation was carried out while keeping f -factor at
0.995. The dispersion is displayed along the symmetrical
directions 	 → X → M → 	 in the first quadrant
of the first Brillouin zone. We use the following notation
	 = (0, 0), X = (π, 0), M = (π, π).

An interesting feature of Bose systems is negative value
of N(ω). It is a result of the Green function definition [9].
When the strength of hoppings J is growing in comparison
with on-site interaction U , the gap between bands tend to
narrow and close at critical (J/U)c (see Figs. 3 and 4).

Particles tend to occupy sites instead of hopping when
the nearest neighbor hopping J are small. In this case, the
distribution of the spectral weight becomes more uniform
and the momentum distribution N(k) straightens (Fig. 4b,
c). For large hopping, we see a peak in the momentum
distribution at the 	 point which is a precursor for the Bose-
Einstein condensation. Figure 3b shows the nonuniform
distribution of the spectral weight in the dispersion. We can
see a large spectral weight near the 	 point. These results
agree with the results obtained by means of the variational
cluster approach [9] and the strong-coupling perturbation
theory [16].

In addition, we studied and analyzed the spectral proper-
ties for J ′ = 0.1J . But we do not present these results here
because they do not qualitatively differ from results above.

Fig. 4 The same as in Fig. 3 for
the hopping parameters
J/U = 1/50 and J ′ = 0

Γ X M Γ

−0.5

0

0.5

1

1.5

0 0.5 1 1.5

−2

−1

0

1

2

3

 

 

Γ X M Γ
0

0.1

0.2

0.3

0.4

0.5

0.6
(c)(b)

N (ω)

k k

N (k )ω

 (a)

ω

J Supercond Nov Magn (2017) 30:103–107106



4 Conclusions

In this paper, we have presented and discussed results
obtained within the cluster perturbation theory based on
Hubbard X-operators for the spectral properties of the two-
dimensional Bose gas in optical lattice. The minimal model
to describe the behavior of such system is the Bose-Hubbard
model. It undergoes a quantum phase transition form the
Mott phase to superfluid phase, depending on a occupa-
tion number per site and the ration J/U . We determined
the first two Mott lobes of the phase diagram and obtained
the change of boundary of the Mott phase with the next-to-
nearest neighbor hopping J ′. In particular, the Mott lobes
increase with J ′ (see Fig. 2). Our results is in reasonable
agreement with different methods for the boundaries of the
Mott lobes apart from the region close to the tip. Despite
the fact that methods like the quantum Monte-Carlo or the
strong-coupling perturbation theory are very accurate, our
approach requires less computational effort.

Moreover, we calculated the spectral function in the first
Mott lobe of the phase diagram. An important fact about
the cluster perturbation theory is that one can calculate
the Green function in the real frequency domain and, thus,
directly calculate the spectral function. It is shown that the
distribution of the spectral weight is the uniform for a small
nearest neighbor hopping J and the sharply nonuniform for
a large J . In particular, the spectral weight in the 	 point
increases with J and, thus, it indicates a precursor to the
Bose-Einstein condensation. We also calculated the density
of states and the momentum distribution taking into account
the quasiparticle spectral weight.
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