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REFLECTION ELECTRON ENERGY LOSS SPECTROSCOPY OF 

IRON MONOSILICIDE 

A. S. Parshin,1 A. Yu. Igumenov,1 Yu. L. Mikhlin,2  UDC 543.428 
O. P. Pchelyakov,1,3 and V. S. Zhigalov1,4 

X-ray photoelectron spectra, reflection electron energy loss spectra, and inelastic electron scattering cross 
section spectra of iron monosilicide FeSi are investigated. It is shown that the spectra of inelastic electron 
scattering cross section have advantages over the reflection electron energy loss spectra in studying the 
processes of electron energy losses. An analysis of the fine structure of the inelastic electron scattering cross 
section spectra allows previously unresolved peaks to be identified and their energy, intensity, and nature to be 
determined. The difference between energies of fitting loss peaks in the spectra of inelastic electron scattering 
cross section of FeSi and pure Fe are more substantial than the chemical shifts in X-ray photoelectron spectra, 
which indicates the possibility of application of the fine structure of the spectra of inelastic electron scattering 
cross section for elemental analysis. 

Keywords: iron silicides, iron monosilicide, inelastic electron scattering cross section spectroscopy, reflection 
electron energy loss spectroscopy, x-ray photoelectron spectroscopy. 

INTRODUCTION 

Narrow-gap semiconductor iron monosilicide FeSi is promising for the creation of light sources or detectors in 
the near-infrared region [1]. In [2, 3] interest in the fundamental magnetic, thermal, and electrical FeSi properties as 
well as in a study of the special features of metal-dielectric transition was indicated. From the fundamental viewpoint, 
silicide FeSi is of interest as insufficiently investigated almost magnetic semiconductor with unique magnetic, thermal, 
and electric properties [2] as well as for studying the special features of the metal-dielectric transition in a system with 
hard fermions [3]. A study of iron silicides of different compositions and of iron monosilicide, in particular, by the 
methods of electron spectroscopy, gave unambiguous [4, 5] and sometimes contradictory results [6].  

The elemental analysis of the Fe/Si system is most often performed by the methods of electron spectroscopy, 
including the Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS), and reflection electron 
energy loss spectroscopy (REELS) [4–9]. Consideration of silicide formation is needed for quantitative elemental 
analysis of layered ferrosilicon structures [9]. The composition of iron silicides is determined by the above-mentioned 
methods from energies of photoelectron, characteristic, and Auger peaks whose difference is several fractions of 
electron volt for silicides of various compositions that hinders the elemental analysis of the Fe/Si system [4, 6]. The 
main parameter of the REEL spectra used to analyze the examined materials is the energy of the characteristic peaks, 
primarily of a bulk plasmon. This energy for silicides of various compositions depends on the iron content and increases 
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with iron concentration [6]. According to the literature data, the bulk plasmon energy in the REEL spectra of iron 
monosilicide varies in the region 20.9–21.5 eV [6, 8, 11]. 

The Tougaard–Chorkendorf algorithm [10] allows the inelastic electron scattering cross section spectra to be 
calculated from the REEL spectra. These spectra represent the dependences of the product of the electron inelastic mean 
free path λ and of the differential inelastic electron scattering cross section K(E0, T) (the so-called Kλ-spectra [10]) on 
the energy losses T equal to the difference between primary (E0) and reflection (E) electron energies: T = E0 – E. In 
accordance with this algorithm, the spectra of inelastic electron scattering cross section contain only single-scattering 
energy losses whose intensity is determined in absolute units. This allows not only the energies of the characteristic 
peaks, but also their intensities to be compared for different materials [7–9, 11, 12]. In [8, 9, 11, 12] advantages of Kλ-
spectra over the REEL spectra were indicated. In [7–9] the Fe/Si system was comprehensively investigated by the 
methods of REELS and inelastic electron scattering cross section spectroscopy. In the present work, results of 
investigation of iron monosilicide by the methods of XPS, REELS, and Kλ-spectroscopy are presented. An analysis of 
the fine structure of the Kλ-spectra based on their approximation by the Lorentzian-like Tougaard functions allows the 
intensities of individual loss peaks, including unresolved ones, to be determined quantitatively and peaks of bulk and 
surface nature to be separated. 

1. EXPERIMENTAL TECHNIQUE 

A FeSi specimen was prepared by melting the silicon and iron mixture in the 1:1 atomic ratio in vacuum not 
worse than 10–4 Pa using a UVN-2M-1 installation for vacuum deposition. A washer with a thickness of about 1 mm 
was cut from the obtained alloy, and after polishing, spectroscopic investigations were performed.  

The photoelectron and integral reflection electron energy loss spectra were measured using an ultra-high 
vacuum photoelectron spectrometer (SPECS GmbH, Germany). The spectrometer was equipped with a spherical energy 
analyzer PHOIBOS MCD9, an x-ray tube with a double anode used as a source of MgKα x-ray radiation, and 
a Microfocus EK-12-M electron gun (STAIB Instruments) used for excitation of the electron energy loss spectra. To 
remove surface impurities, argon Ar+ ion etching (with accelerating voltage of 2.5 kV and ion current of 15 µA) was 
performed using a PU-IQE 12/38 SPECS scanning ion gun directly in the spectrometer chamber before the registration 
of the spectra. 

2. EXPERIMENTAL RESULTS 

The binding energies of the photoelectron 2p Fe and 2p Si lines of iron monosilicide and 2p Fe lines of metallic 
iron measured after cleaning of the surface with ion etching were determined. The x-ray photoelectron spectra were 
obtained with the use of MgKα radiation with energy of 1253.6 eV. Si and Fe atomic concentrations were determined 
from the panoramic spectra by the method of sensitivity coefficients of the elements after subtraction of the noise 
background using the Shirley method. The ratio of iron and silicon atomic concentrations was 0.45:0.55, which is close 
to the composition of the initial mixture of the alloy. The binding energies of the 2p3/2 Fe doublet line and 2p1/2 Fe iron 
monosilicide line were 706.9 and 720.0 eV, respectively. These values were practically identical to those of metallic 
iron (707.0 and 720.1 eV) (Fig. 1). The obtained binding energies were in agreement with the literature data for iron 
silicides [4] and confirmed that it was difficult to identify FeSi by its chemical shift. 

The experimental reflection electron energy loss spectra in the integral form (Fig. 2a) were obtained in the 
region located 150 eV below the elastic peak with a step of 0.1 eV. The primary electron energies were 300, 600, 1200, 
1900, and 3000 eV. Three energy peaks were resolved in the integral REEL spectra: the intensive peak with energy of 
(21.0 ± 0.1) eV and the less intensive peak with energy (42.6 ± 0.6) eV corresponding to the excitation of the 
single (ħωp) and double (2ħωp) bulk plasmon in iron monosilicide [6, 8, 9], respectively, as well as the peak with energy 
of (55.9 ± 0.7) eV corresponding to single-electron transition M23 [8]. The energies of the loss peaks were practically 
independent of the primary electron energy; their values averaged over all E0 are shown in the figure. 
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