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A B S T R A C T

We have studied the effect of magnetic field and disorder on the electronic z-spin polarization at the ends of the
one-dimensional wire with strong Rashba spin–orbit coupling deposited on an s-wave superconductor. It was
shown that in the topologically nontrivial phase the polarization as well as the energy of the Majorana bound
state oscillate as a function of the magnetic field. Despite being substantially nonzero in the low transversal and
longitudinal fields the polarization at one of the wire's ends is significantly suppressed at a certain range of the
magnitudes and angles of the canted magnetic field. Thus, in this case the polarization cannot be regarded as a
local order parameter. However, the sum of the absolute values of the polarization at both ends remains
significantly nonzero. It was demonstrated that Anderson disorder does not seriously affect observed properties
but leads to the appearance of the additional areas with weak spin polarization at the high magnetic fields.

1. Introduction

Since the works of Alexei Kitaev about the appearance of Majorana
fermions (MFs) in solid state systems [1,2] the number of studies in
this area has been increasing remarkably. The reasons why this topic
became so popular are two. The first one is fundamental due to very
unusual properties of MFs: Majorana particle and its antiparticle are
the same, they are real-valued solutions of the Dirac equation and carry
no charge [3]. In particular, in particle physics neutrinos are treated as
MFs, but that still needs an experimental proof. The second issue which
explains big activity around Majoranas is that emerging in solid state
systems they are non-local. Thus quantum information encoded in the
Majorana state is robust against decoherence by local perturbation.
Moreover, because an MF obeys so-called non-Abelian statistics [4],
such a qubit can be manipulated by braiding operations [5,6]. So it
opens the road to use MFs in topological quantum computations.

Since Majorana creation and annihilation operators are the same in
solid state systems so-called Majorana bound state (MBS) can be
defined as an equal-weight superposition of electron and hole states
with zero energy. It means that MBSs can be found in systems with
superconducting (SC) order. But this is not the only condition.
Following Kitaev's idea it is necessary to engineer an effective “spinless”
pairing. Different candidates were proposed for the experimental
observation of MBSs such as superfluid 3He-B [7], quantum spin
Hall systems [8], magnetic chains [9,10].

In 2010 two groups independently found out that semiconducting

nanowires with strong spin–orbit interaction deposited on the surface
of an s-wave SC can be driven into a topologically nontrivial phase by
applying an external magnetic field as it is depicted at Fig. 1a [11,12].
Without SC and magnetic field the spin–orbit interaction causes
splitting of the spin subbands of the wire (see blue and red lines in
Fig. 1b). In the magnetic field the energy gap emerges in the spectrum
(solid curves in Fig. 1b). If the chemical potential lies in the gap we
obtain the desired situation with only one pair of the Fermi points in
the half of the Brillouin zone: spin σ corresponds to right mover and
the opposite spin σ− corresponds to left mover. Induced s-wave SC
pairing such that V Δ μ> +z

2 2 leads to an effective “spinless” pairing
and the two MBSs appear at the ends of the wire as it is schematically
shown by the red circles at Fig. 1a.

One of the possible ways to probe Majorana states is to provide
transport experiments using, for example, tunnel spectroscopy tools.
And initially in theoretical studies it was shown that MBS could reveal
itself as Zero Bias Peak (ZBP) in differential conductance of height
e h2 /2 . The coupling between the two MBSs results in the ZBP splitting
[13–15]. First experiment presented the appearance of the ZBP as a
proof of the existence of MBSs in 1D semiconducting nanowires was
done in 2012 by Kouwenhoven's group [16]. The noise measurements
can be also used to detect MBSs [13,17]. In one-lead geometry
quantum transport is defined by Majorana fermion induced resonant
Andreev reflection when the Fano factor equals 2. In two-lead config-
uration there is a competition of two mechanisms depending on the
coupling strength between MBSs: resonant Andreev reflection and
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crossed Andreev reflection. Therefore the Fano factor changes from 0
to 1.

The alternative way to detect MBS is to analyze the components of
the electronic spin polarization of the 1D nanowire. In articles [18,19]
the Majorana polarization was introduced and it was shown that this
characteristic is not equal to zero at the ends of the wire exactly in the
topologically nontrivial phase. As a result, the Majorana polarization
can be regarded as a local order parameter and measured by means of
spin-polarized scanning tunneling microscopy. The features of the
Majorana polarization will be discussed in another article of the
authors [20]. In this study we analyze the behavior of the z-component
of the electronic spin polarization in the MBS, Pz, which was also
considered in [18]. In particular, we study its dependence on the
magnitude and direction of the magnetic field in the xz plane and

disorder. It is shown that in the general case, when the magnetic field is
oriented at an arbitrary angle to the wire and perpendicular to the
Rashba effective field, Pz at opposite ends of the wire can have both
different sign and magnitude. Along with the MBS energy the z-axis
spin polarization demonstrates oscillating behavior which is deter-
mined by the structure of the MBS wave function. It is demonstrated
that there is a range of the magnetic-field magnitudes and angles at
which the Pz is significantly suppressed or, moreover, is equal to zero in
the topological phase. It allows to conclude that the z-spin projection
cannot be treated as a local order parameter in the canted magnetic
field.

Fig. 1. (a) A semiconducting nanowire with strong spin–orbit interaction deposited on an s-wave SC in an external magnetic field; (b) band structure of the semiconducting nanowire
for B=0 (blue and red lines) and B ≠ 0 (black lines). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 2. The electronic z-spin polarization in the MBS on the first (a) and last (b) sites of the 1D wire and the MBS energy (c) as functions of the magnetic-field magnitude and orientation.
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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2. Model Hamiltonian

Let us consider the 1D semiconductor wire deposited on the surface
of the s-wave SC along the x-axis and characterized by strong Rashba
spin–orbit interaction as depicted in Fig. 1a. But now we suppose that
the magnetic field is oriented at an arbitrary angle in the xz plane and
perpendicular to the Rashba effective field, BSO. Induced Cooper
pairing of electrons described by the potential Δ occurs in the wire
due to the proximity effect. The model Hamiltonian is given by
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(1)

where a a( )nσ nσ
+ —the creation (annihilation) electron operator on the

nth site with spin σ; ξ t σV μ= + −σ z —the on-site energy of the electron
with spin σ in the transverse magnetic field Vz; μ—the chemical
potential of the system; V μ gB=x z B x z( )

1
2 ( )—the x- and z-components of

the Zeeman energy; t —the hopping matrix element between nearest
sites; α—the intensity of the Rashba spin–orbit interaction. In the
tight-binding approximation we have t m a= /2 *2 2 , where m*—the
effective mass of electrons, a—the lattice spacing. The Rashba para-
meter, αR, is defined as α α a= /R . Consequently, for the InSb-nanowire
we get m m* = 0.015 e, α = 0.2 eV·ÅR , Δ ∼ 10 eV−4 , g ≈ 50,
B = 0.01 − 1 Tx z, (i.e. V ∼ 10 − 10 eVx z,

−5 −3 ) [16]. If a ∼ 1 nm that
t ∼ 1 eV, α ∼ 10 eV−2 . Thus, t α V Δ⪢ , ,x z, .

3. Electronic z-spin polarization

We utilize the Bogolubov transformation to study the MBS's

properties,

∑β u a v a w a z a= [ + + + ].l
n

N
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+
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(2)

Following [18], we derive z-component of the electronic spin polariza-
tion on the nth site using the coefficients of the transformation (2):

∑P n ω Ψ σ
τ τ

Ψ δ ω E( , ) = | +
2

| ( − ).z
l

N

ln z
z

ln l
=1

4
0

(3)

where El —lth eigenvalue of the wire's Hamiltonian HW ;
Ψ u v w z| 〉 = ( , , , )ln ln ln ln ln —lth eigenvector; σz, τ0, τz—the Pauli matrices
acting in the spin and particle-hole spaces, respectively. In further
numerical calculations main parameters of the system will be taken on
the basis of the above-mentioned estimations: t=1, Δ = 0.3, μ = 0,
α = 0.2, N=30.

4. Numerical calculations

We plot the z-component of electronic spin polarization in the MBS
(E E=l MBS in (3)) at both wire's edges as a function of the components
of the magnetic field (Fig. 2a, b). If the magnetic field does not satisfy
the inequity [20]

μ Δ V V t μ Δ+ < + < (2 − ) + ,x z
2 2 2 2 2 2 (4)

the wire is in the topologically trivial phase. In this case Pz is close to
zero with the corresponding low- and high-field white segments at
Fig. 2a, b. As it is clearly seen at Fig. 2a in the topological SC phase the
Pz oscillates with changing the magnetic-field magnitude. Such a
behavior agrees with one of the MBS energy, EMBS (Fig. 2c). In
general the oscillations can be explained by the structure of the MBS

Fig. 3. The influence of disorder on the electronic z-spin polarization (a, b) and the MBS energy (c), W = 1/2.
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wave function [21,22]. The MBS wave function has an exponentially
decaying envelope with certain localization length and a fast-oscillating
part depending on the magnetic field. When the field exceeds a critical
value, the two MBSs at the wire's ends overlap and their energy split
away from zero (see the colored areas in Fig. 2c). At the same time the
MBS energy can return to zero if the fast-oscillating part vanishes (see
the white-color arches at Fig. 2c, do not confuse with the white-color
segments corresponding to the trivial SC). As a result we obtain the
MBS energy and MBS probability density oscillations. The last leads to
the oscillating behavior of the Pz. It is worth to note that at high fields
the oscillations approach to small and zero values of Pz. Another
important feature is that at one of the ends the Pz has a different sign if
the magnetic-field orientation changes from the transversal to the
longitudinal one (see Fig. 2b). Consequently, there is an area at the low
canted fields where the z-spin polarization is virtually absent. At the
high fields the oscillations give rise to the alternation of the weak- and
strong-polarization regimes. Thus, for the arbitrary magnetic-field
angles at the xz plane the electronic z-spin polarization can be close
to zero even in the topologically nontrivial phase and it becomes
inconvenient to use this parameter to describe the topological phase
transition [18]. At the same time, as it follows from Figs. 2a, b the sum
of the Pz absolute values at both ends remains significantly nonzero.

5. The influence of disorder

Let us consider the influence of disorder on Pz and EMBS. For
modeling Anderson disorder we introduce an on-site random potential
Wn which takes values with an uniform distribution in the interval
[−W/2, W/2]. The effect of disorder on the electronic z-spin polariza-
tion in the MBS at both ends and the MBS energy is shown in Fig. 3. It
follows from the graphs that the qualitative changes in the behavior of
Pz and EMBS as a result of random term addition to the on-site energy
do not occur. Regions with different sign and, consequently, the region
of weak spin polarization at one of the ends are maintained (see
Fig. 3a,b). The disorder suppresses the polarization at the high fields as
it results from a comparison of Figs. 2b and 3b. The MBS energy has
narrow arch-shaped areas where E ≃ 0MBS and wide arch-shaped areas
where E ≠ 0MBS , due to the coupling between the MBSs at opposite
ends. But the disorder causes to the nonmonotonic change of the
maxima height of the EMBS when Vx z, is swept.

6. Conclusions

We numerically studied the dependence of the z-component of the
electronic spin polarization at the ends of the topological super-
conducting wire on the magnetic field and diagonal disorder. It was
shown that the Pz oscillates as a function of the external magnetic field.
This behavior correlates with the one of the MBS energy and is
explained by the features of the MBS wave function. It was demon-
strated that the Pz oscillations reach close-to-zero values with increas-
ing the magnetic field. Additionally, there is a range of the magnetic-
field angles where the Pz becomes weak in the topologically nontrivial
phase since this characteristic has different sign in the transversal and

longitudinal fields. Consequently, it becomes unpractical to use this
parameter to describe the topological phase transition in the canted
field. However, the superposition of the electronic spin polarization at
both ends can still be considerably nonzero in this case. Anderson
disorder does not seriously affect the above-mentioned features but
leads to the appearance of the additional areas with weak spin
polarization.
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