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A B S T R A C T

In this work we demonstrate the occurrence of the characteristic spatial scale in the distribution of
magnetization unrelated to the domain wall or crystallite size with using computer simulation of magnetization
in a polycrystalline ferromagnetic nanowire. This is the stochastic domain size. We show that this length is
included in the spectral density of the pinning force of domain wall on inhomogeneities of the crystallographic
anisotropy. The constant and distribution of easy axes directions of the effective anisotropy of stochastic
domain, are analytically calculated.

1. Introduction

Recently, there has been a keen interest in studying relatively new
magnetic objects - ferromagnetic nanowires - with self-organization
elements in the structure. In particular, the authors of [1,2] demon-
strated the simplest case of magnetization self-organization in a
nanowire bunch under the action of demagnetizing fields. The result
observed was quite expected: neighboring nanowires appeared oppo-
sitely magnetized. The phenomenon of self-organization of the struc-
tures was observed in many systems containing the factor responsible
for ordering: in the electric systems [3], the system of magnetic dipoles
[4], superconductors [5], and thin ferromagnetic films [6–8]. In
addition, it is interesting to consider the magnetization self-organiza-
tion processes in 1D systems (nanowires and nanoribbons) [9,10]. In
particular, Rougemaille et al. [9] studied the formation of an ordered
domain structure in wires with a diameter of a few atomic layers
depending on the fabrication technique used.

In this work, we investigate the unusual self-organization type,
specifically, the occurrence of the stochastic magnetization super-
structure in a polycrystalline 1D ferromagnet. We consider a poly-
crystalline wire as a one-dimensional chain of crystallites with a linear
size somewhat smaller than the domain wall (DW) thickness
δ A K= /0 , (A and K are the exchange and anisotropy constants,
respectively). The crystallite easy magnetization directions are ran-
domly distributed over a sphere. The exchange coupling between
neighboring crystallites and crystallographic anisotropy of individual
crystallites compete in the magnetic structure formation. If there is no
uniform macroscopic anisotropy the magnetization field is a conglom-
erate of the so-called stochastic domains (SDs) or magnetic blocks

(MBs) [11–15]. New length δS corresponding the SD size was detected
in real experiments by different authors using different experimental
tools [16–18]. But magnetostatics defines favorable direction of
magnetization along the long axis of the crystallites chain.

2. Induced stochastic anisotropy

It is know the SDs exhibit the pronounced uniaxial anisotropy [15]
with its effective constant and effective axis direction. To calculate the
effective anisotropy constant for a block, we write the torque from the
side of the random anisotropy field of an ensemble of crystallites
contained in the SD:
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where vn and Kn is the volume and local anisotropy constant for the
nth crystallite, en are the easy magnetization axis (EMA) direction orts,
and N the number of crystallites in a SD, ϑ - polar angle of the
magnetization. The same torque should be induced by the effective
anisotropy of the SD that involves the block crystallites. We can write
the effective anisotropy torque as

M VK me= ∂
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( ) .ef efϑ
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where Kef and eef are the effective anisotropy constant and effective
anisotropy axis (EAA) direction vector of the block, and V v= ∑ n is the
block volume. We equalize expressions (1) and (2) and obtain
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where μ α α= cos(2( − ))n m , crystallite EMA polar angle α, and σv is
dimensionless crystallite volume dispersion. It should be noted that
when the volumes and constants K of crystallites are identical,
expression (3) acquires the well-known form K K N≈ /ef .

The exchange extracts a certain mode from the random picture of
the easy axes anisotropy distribution. To study the features of the
distribution of the SD effective easy axes (EAA) directions, we return to
Eqs. (1) and (2). Using this equation, we obtain the expression for the
effective direction of the anisotropy axis
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Let us calculate the density of distribution of the quantity s α= sin(2 )ef ,
which can be presented in the form
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where ρ α( )n is the density of distribution of the EAA polar angles, α0 is
a half of the polar angle of cone opening in the EAA distribution. In this
expression the δ-function excludes the implementations αn from
integration, that do not satisfy condition (4). To obtain the final form
of (5), we use the refining technique described in [19] (Fourier-
transform with the free parameter). The calculated ρ α( )ef values for
ρ α α( ) = 1/(2 )n 0 are presented in Fig. 1 in comparison with the Gaussian
approximation.

The exchange coupling strengthens the fragile stochastic regularity.
Thus, the self-organized area arises, where the exchange coupling
ensures the quasi-homogeneous magnetization. When the magneto-
static interaction starts working, SDs become invisible. Classical
domains and domain walls appear. Meanwhile, the magnetization
self-organization is observed in nanowires in the presence of the
uniform macroscopic anisotropy induced by magnetostatics.
Stochastic domains are analogous to the normal modes of interacting
oscillators and exist as a structural unit.

3. Self-organization manifestation upon magnetization
switching

The computations were made using the gradient descent technique
[20]. Let the wire be magnetized along the long axis direction. The
magnetic structure is almost homogeneous, except for weak oscillations
of the EAA direction. Below we show that some parts of the inhomo-
geneities are initial nuclei of inverse domains. The observations show

that the sizes of these parts are similar to those of SDs.
We apply an external magnetic field in the direction opposite to the

average magnetization. The applied field increases deviations of the
magnetization from the z axis direction. The beginning of this process
is illustrated in Fig. 2.

When the external field attains a critical value of H μ M≈ 0.16nucl S0 ,
the magnetization of separate nuclei drastically rotates, which results
in the occurrence of 180- or 360-degree domain walls [20]. Fig. 3

Fig. 1. Distribution of the polar angle of the effective anisotropy axis of a stochastic
domain. Plot 1 shows the uniform distribution of local axes in a cone from π− /2 to π+ /2;
plot 2, in a cone from π− /100 to π+ /100; and plot 3, the Gaussian approximation for a
cone from π− /100 to π+ /100.

Fig. 2. Enhancement of magnetization fluctuations with an increase in the external
magnetic field. The solid line corresponds to h H H= / = 0S and the.

Fig. 3. Domain structure formed at attaining the critical field.

Fig. 4. Characteristic spectral density of the distribution of the polar angle for a magnet
at b a δ= / = 0.10 .
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illustrates the end of this process.
The frequently occurring 360-degree domain walls and some of

180-degree walls do not move upon variation in the external magnetic
field. The low mobility originates from the fact that at large saturation
magnetizations MS of a material, the demagnetizing field creates
satellite domains with the opposite magnetization at the domain edges
(Fig. 3). The domain wall continuation in the satellite works as a part of
the 360-degree wall, pinning the latter [20]. The nuclei domain walls
have the anomalously low mobility. The obtained domains are located
in the places where SDs would be located if the induced magnetostatic
anisotropy were absent. Thus, the information about SDs is stored,
despite the effect of such a strong masking factor as the anisotropy
induced by magnetostatics. The phenomenon of pinning the domain
walls that separate the regions related to SDs can apparently be
observed in experiments. The experiment should follow the scenario
described above.

Spectral study of the magnetization distribution function makes it
possible to consider the structure in more detail without switching the
sample magnetization. Let us consider the spectral density G ξ( ) of the
spatial distribution of the polar angle zϑ( )
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The spatial magnetization distributions zϑ( ) shown in Figs. 2 and 3
were obtained at the same implementation of the stochastic anisotropy
field at different external fields. These distributions were subjected to
the spectral analysis.

It can be seen that with an increase in the field, the functions zϑ( )
exhibit the common features. The peaks and dips in the zϑ( ) curves are
positioned at the same places and only have different values. However,
in the critical external fields, one can observe significant differences. It
is remarkable that the spectral densities at any external field values
completely coincide. The effects masking the self-organization are not
reflected in the spectral density. The form of G ξ( ) is determined by the
primary interactions (crystallographic anisotropy and exchange), i.e.,
by SDs. The main contribution to the spectral density is made by the
long-wavelength region (SD size). It is important that, as expected, the
spectral density plot contains a noticeable maximum corresponding to
the crystallite sizes (a δ/ 0 value) Fig. 4.

Fig. 5. Spectral density Ω k( ) of the force relief for samples with differentMS values. The EMA directions are distributed randomly and uniformly over a sphere. Here, k λ≈ 1/ , where λ is

measured in units of a.
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4. Spectral analysis of domain wall pinning

The authors of [21] theoretically discussed domain wall pinning in
ultradispersed 1D materials on the force relief of magnetic inhomo-
geneities and statistical properties of this relief. In this study, we
simulated the nanowire magnetization switching to investigate the
pinning force spectrum. In computer simulation the magnetic field
applied along the z axis was increased. The equilibrium distribution of
magnetization searched by gradient descent. The initial distribution of
magnetization chosen so as to form one domain wall. The total SD
energy EW was detected. The pinning force was defined as the ratio of
the changes of energy of wall to its displacement at the distance a:
F E a= −Δ /W .

Fig. 5 presents the result of the spectral analysis of the force relief of
wires with the same cross section and parameter a δ/ = 0.10 , but
different ratios μ M K/S0

2 . This ensured approximately the same SD size,
but different widths of domain walls between classical domains. The
maximum corresponding to the large k values is determined by the
magnetization ripples upon tuning to the local anisotropy of separate
crystallites. The other maximum is, in our opinion, complex and
contains peaks responsible for the domain wall width and SD size (in
this case, their characteristic sizes are comparable). It can be seen from
the Fig. 5 that with decreasing MS, the maximum splits and the peak
responsible for the increasing domain wall width becomes pronounced.
In this case, the peak responsible for the SD is nearly invariable.

Thus, the force relief has at least three pronounced harmonics: two
long-wavelength - SD size and domain wall size with short-wavelength
mode - crystallite size.

5. Conclusions

The spectral analysis of magnetization and pinning force allowed us
to determine the long-wavelength harmonic, which is attributed to the
existence of the so-called stochastic domains (magnetic blocks). The
wavelength of this harmonic coincides with the stochastic domain size.

The parameter characterizing the new self-organization is the
induced stochastic anisotropy. We derived the universal expression
for the induced stochastic anisotropy, which involves fluctuations of the
crystallite size, fluctuations of the local constants, and arbitrary
distribution of the local anisotropy axes directions.
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