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A B S T R A C T

A new self-consistent approximation proposed earlier, is compared with various existing approximations, as
well as with a numerical simulation of solutions of the wave equation for a medium with one-dimensional
inhomogeneities. The Green's function, found using the new approach, is the closest to the result obtained by
the numerical simulation. The results of the work show that the new approach has undoubted advantages in the
study of stochastic problems in media with longwave inhomogeneities. The new self-consistent approximation
in some cases has advantages over a numerical method: a more rapid process of calculation and the possibility
of consideration of three-dimensional problems.

1. Introduction

A self-consistent approximation (SCA) is widely used in different
fields of physics for the approximate calculation of Green's functions. It
was proposed by Migdal in the study of electron-phonon interaction
[1]. In those same years, a similar version of the SCA was indepen-
dently proposed by Kraichnan [2] to investigate the effect of inhomo-
geneities on the dynamic susceptibility of waves in disordered media. A
similar version was proposed to study the scattering of electrons in
disordered media, as a generalization of the well-known non-self-
consistent Born approximation, and has became known as the self-
consistent Born approximation (see, e.g., [3]). We will use for all these
versions the name of the standard self-consistent approximation. The
standard SCA corresponds to taking into account of only the first term
of the expansion of the vertex function in a series. In this approxima-
tion, there are no diagrams with intersecting lines of correlations (and
those of the majority). Lack of diagrams with intersecting correlation
lines imposes restrictions on both the range of applicability of the
standard SCA and the accuracy of the results obtained with its help.
Therefore, intensive studies of amendments to the self-energy by taking
into account the next term in the expansion of the vertex function
(vertex corrections) are carried out [4–13]. In these works, a significant
progress in the study of the vertex corrections has been achieved.
However, the discrepancy between the results of different approaches
still remains significant. In [14], the self-consistent approximation of a
higher level relative to the standard SCA, which taken into account both
the first and second term of the expansion of the vertex function, was
derived and compared with the standard SCA.

The aim of this work is to compare both the new and the standard

SCA with the ladder approximation [15] and with the numerical
simulation of the problem.

2. New self-consistent approximation and its properties

The derivation of the new SCA was carried out in [14]. In contrast
to the standard SCA, the new SCA is described by a system of two
coupled nonlinear integral equations: either for the self-energy Σ and
the vertex function Γ (we omit the frequency ω in all expressions, where
this does not lead to misunderstandings)
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or for the Green's function G and the vertex function Γ
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Here Sk is the Fourier transform of the normalized correlation function
K x x( ′, ″) of inhomogeneities, of the normalized function of the
electron-phonon interaction D x x( ′, ″) or of the average potential of
the interaction between electrons and impurities and γ is a rms
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fluctuation of the correspondent physical value.
The new SCA contains, as limiting cases at small γ, all lower-level

approaches: the standard SCA and the non-self-consistent Bourret
(Born) approximation [16].

In the limiting case kc=0 (where kc is the correlation wave number,
r k=c c

−1 is the correlation radius of inhomogeneities),
S π δ k k→ (2 ) ( − )d

k k− 11 . In this case a quantity of diagrams in the
expansion of a Green's function can be found analytically. In [14] a
number of diagrams have been found for the standard and new SCA. By
using the rules of a function expansion in the binomial series [17], we
obtain the following representation for a Green's function
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The coefficient Nn is a number of diagrams in each n-th order of the
Green's function expansion.
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The general formula for the exact Green's function coefficients Nn, Eq.
(6), is well known. General formulas for the coefficients Nn of the
standard and the new SCA, Eqs. (7) and (8), respectively, were derived
in [14]. To find the coefficients of the ladder approximation [15], we
perform the following operations here. The system of Eqs. (3) and (4)
in the limiting case of kc=0 is simplified:
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This system led to a quadratic equation for the Green's function, and
this function was obtained in an explicit form. Substituting it in Eq. (5),
we received the coefficients Nn of the new SCA, Eq. (8). The ladder
approximation [15] for kc=0 leads to a system of equations in which
the first equation is identical with Eq. (9) and the second can be
obtained from Eq. (10) when we put Γ = 1k,0 in the denominator of the
latter. This system leads to a cubic equation for Gk and the Green's
function can not be represented in the form of Eq. (5). Therefore, to
find the coefficients Nn of the ladder approximation, we substitute the
simplified ladder analogue of Eq. (10) into Eq. (9), expand the latest in
a series of γ2, and carry out the process of iteration of the resulting
expression. As a result, we get

G N N N N; = 1, = 3, = 12, = 55, ….Lad 1 2 3 4 (11)

In Table 1 the values Nn up to the 6-th order are shown. One can
see that for n > 1 the new approach takes into account in every n-th
order more diagrams than standard SCA and then non-self-consistent
ladder approximation.

Fig. 1 shows relative portions (in percentage) of the amount of the
exact diagrams taken into account in each approximation. The stan-

dard SCA accurately takes into account only the first order, the new
accurately takes into account both the first and second order. In the
following orders of the expansion the new SCA is also much closer to
the exact value than the standard SCA. The ladder approximation is
also worse than ours, and, besides, it is difficult in the application
because it is non-self-consistent.

In the general case of an arbitrary correlation radius (k ≠ 0c ) the
number of diagrams in the Green's functions is determined by the same
formulas, Table 1, and Fig. 1, that for kc=0.

At k ≠ 0c , the fourth and higher orders of expansion of self-energy Σ
of the new SCA, along with correct diagrams contain small quantities of
defective diagrams [14]. It is difficult to evaluate the effect of such
diagrams in general form. Therefore, the comparison of results
obtained in the framework of the new SCA with the results of a
numerical simulation is of special importance to assess the accuracy of
the proposed method. The next section of the paper is devoted to this
comparison.

3. Applications of the new SCA. Waves in inhomogeneous
media

We carried out in [14] the comparison of the results of the new and
standard SCA for the simplest model of the wave equation in a
randomly inhomogeneous medium. In this section, we carry out a
numerical simulation of the same wave equation. We then compare the
results of the new and standard SCA with the numerical simulation,
that is almost with the exact solution of this problem. The considering
wave equation is

φ ν γρ φx∇ + [ + ( )] = 0,2 (12)

where ρ x( ) is a centered ( ρ〈 〉 = 0) and normalized ( ρ〈 〉2 =1) random
function. For scalar models of electromagnetic or elastic waves
ν ω s= ( / )2, where ω is the frequency, s is the velocity of corresponding
waves in the medium; for spin waves ν ω ω gαM= ( − )/0 , ω0 is the
frequency of the uniform ferromagnetic resonance, g is the gyromag-
netic ratio, α is the exchange parameter, M is the magnetization. In all
cases, γ is the rms fluctuation of the correspondent inhomogeneities.
We consider the case of one-dimensional inhomogeneities and model
the stochastic properties of the random function ρ x( ) by exponential
correlations.

We found in [14] dynamic susceptibilities (Green's functions) of the
waves in both the new and the standard SCA. Here we additionally find
a Green's function in the non-self-consistent Bourret/Born approxima-
tion. We find also a solution of this problem using a numerical
simulation method.

Table 1
The number of diagrams in each n-th order of the expansion of the Green's function for
the first six orders of n, taken into account in the standard (GSta), the ladder (GLad), and
the new (GNew) approximations and in the exact expression for the Green's function (G).

n 1 2 3 4 5 6

GSta 1 2 5 14 42 132
GLad 1 3 12 55 273 1428
GNew 1 3 13 67 381 2307
G 1 3 15 105 945 10395

n
Fig. 1. (Color online) The relative proportions of the exact number of diagrams (in
percent) accounted for the standard (circles, red curve), ladder (squares, green curve),
and the new (asterisks, black curve) approximations in each n-th term of the expansion of
the Green's function.
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For the numerical simulation, the medium is divided into layers of
equal thickness xΔ . Oscillations in each i-th layer is described by the
homogeneous wave equation, Eq. (12), with the discrete values of the
random function ρ x( )i in the middle of the i-th layer xi. A solution in a
separate layer is

φ A e B e= + ,i i
ik x x

i
ik x x( − ) − ( − )i i i i (13)

where k ν γρ x= + ( )i i is a wave number. At the interface between the
i-th and i + 1-th layer, the solution must meet the conditions of
continuity of the function φi and its derivative. The Green's function
must satisfy the radiation conditions and the conditions at the source
x0 [18]
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Solutions of equations in layers on the left and right of the source are
connected by the products of transfer-matrices [19]. To simulate the
random function ρ x( )i with exponential correlation function, the
recursive algorithm [20] was used

ρ x t ξ tρ x t k x( ) = 1 − + ( ), = exp(− Δ ),i i i c
2

−1 (15)

where ξi is the discrete white Gaussian noise with zero mean and unit
dispersion.

A number of realizations sufficient for the convergence of solutions
depends on the selected parameters of the problem. With the increase
of γ, a greater amount of realizations is required, while with the
increase of kc, we can confine ourselves to a smaller number of
realizations. Thus, when the value k k/ = 0.01c , it was necessary to
average 4.5 × 105 realizations, and for k k/ = 0.55c only 2 × 104 realiza-
tions.

Fig. 2 shows the dynamic susceptibility G ω″( ) found analytically in
[14] for both the new (top row) and the standard (middle row) SCA and
found analytically in this paper in the Bourret (Born) approximation
(bottom row). Results of numerical simulation of the problem (red dots
in all charts) are also shown in this figure. The calculation was
performed for a fixed wave number u k γ= / = 1.8. It is seen that a
significant narrowing of the resonance curve G ν″ ( )k , increasing its
height, and change its shape occur with the increase of the dimension-
less correlation wave number u k γ= /c c . Since the value of k is fixed,

the increase in uc also corresponds to an increase of the ratio k k/c

(lower row numbers). It is seen that on the left and below the green line
in Fig. 2, the standard SCA unsatisfactorily reproduce both the form
and the width of the resonance peak of the function G ν″ ( )k in most part
of the studied interval u0 ≤ ≤ 1c . Most clearly the advantage of the new
approach over the standard is seen at small uc. The shape of the
resonance peak, calculated in the standard SCA, has far from the
reality, a domed appearance, and peak width exceeds the width of the
exact (calculated by numerical simulation) resonance peak. In contrast,
the resonance peak of the imaginary part of the Green function G ν″ ( )k ,
calculated using the new SCA, close to the exact peak as in the shape
and width. In the Bourret (Born) approximation, most of the investi-
gated interval corresponds to the physically meaningless solution: two
resonance peaks of large amplitude; with an increase in uc these two
peaks converge and merge into a single peak. It is a well known fact,
and the Bourret (Born) approximation is shown here to demonstrate
that at u ≥ 1c (Fig. 2e) the Green's functions obtained using a simple
non-self-consistent approximation, the standard SCA, and the new SCA
practically coincide with each other and with the results of a numerical
experiment.

4. Conclusion

We investigate in the work the properties of the new SCA derived
earlier [14] and the accuracy of the results obtained using this
approach. A comparison of diagrams, taken into account in the
standard, ladder, and new approach demonstrates the advantage of
the latter method. A Green's function of waves in a medium with one-
dimensional inhomogeneities is found by numerical simulation. It is
shown that the Green's function calculated in the new approach,
practically coincides with the results of the numerical experiment in
the entire investigated interval of variations of the correlation wave
number of inhomogeneities kc. The results obtained with the standard
SCA, differ significantly from the results found by numerical simulation
method for small values of kc. It is shown that the use of such
sophisticated techniques as both the standard and the new SCA, the
ladder approximation, or the numerical simulation gives no advantage
at k γ/ ≥ 1c : virtually the same results can be obtained in a simple
(non-self-consistent) Bourret (Born) approximation. At the same time,
the new SCA has undoubted advantages in the study of stochastic

Fig. 2. (Color online) The imaginary part of the Green's function calculated in different approximations (black curves) and its numerical simulation (red dots). The scales of the axes of G
are different.
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problems of radio physics in media with longwave inhomogeneities
(small kc). The new SCA in some cases has advantages over the
numerical method: the more rapid process of calculation and the
possibility of consideration of three-dimensional problems.
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