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A B S T R A C T

Using the diagram technique for Matsubara Green's functions it is shown that the dynamics of the localized spin
subsystem in the s–d(f) model can be described in terms of an effective spin model with multi-site spin–spin
interactions. An exact representation of the action for the effective purely spin model is derived as an infinite
series in powers of s–d(f) exchange interaction J. The indirect interactions of the 2nd, 3rd and 4th order are
discussed.

1. Introduction

Kondo lattice model or s–d(f) exchange model is widely used to
describe the correlation effects in metals (and their compounds) with
unfilled d- and f-shells.

The nature of the ground state in these systems is largely
determined by the result of competition between two interactions. On
the one hand, s–d(f) exchange coupling between spins of itinerant s-
and localized d(f)-electrons due to Kondo fluctuations screens the
localized spins and tends to form a non-magnetic ground state [1]. In
the opposite direction acts indirect exchange (RKKY) interaction
between spins of d(f)-electrons [2], trying to set a long-rang magnetic
order which is not necessarily a ferromagnetic or antiferromagnetic.
Correlation effects can lead to, for example, helical magnetic structures
[3], with period that is determined by the Fermi surface singularities
[4,5].

It is clear that the study of competition between different effective
interactions, that occur in the localized spin subsystem and are caused
by the same itinerant electrons, must be carried out within the same
unified approach.

The purpose of this paper is to derive such an effective Hamiltonian
(or rather action), which will allow to study the localized spin
subsystem in the s–d(f) model within the model with only spin–spin
interactions.

This problem is solved by integrating charge degrees of freedom
using the diagram technique for Matsubara Green's functions. It is
shown that in addition to the two-spin indirect exchange interaction,
which occurs in the second order in s–d(f)-exchange parameter J, in
the following orders also appear terms describing, in particular, the
ring and biquadratic exchange interactions. The essential point of all

these interactions is the account for retardation effects provided by the
imaginary time dependence of all the effective multi-site exchange
parameters.

2. The Hamiltonian of the s-d(f) exchange model

The Hamiltonian of the Kondo lattice model (or s–d(f) exchange
model) can be written as a sum of two terms:

H H H= + ,int0 (1)

where

∑ ∑H ε μ c c H J c S c= ( − ) , =
2

.∼

kα
k kα kα int

f
f f f0

+ +

(2)

Operator H0 stands for the energy of noninteracting current carriers
(electrons or holes) with dispersion εk, μ the chemical potential.
Operator c c( )kα kα

+ creates (annihilates) a particle in the state with
quasimomentum k and spin projection α = ± 1/2.

The second term in (1) describes Kondo exchange interaction
between localized spins and itinerant quasiparticles. The intensity of
this interaction is defined by the constant J. Operator S S σ=

→→∼
f f is a

product of a localized spin operator S
→

f and a vector σ σ σ σ→ = ( , , )x y z

which is formed of Pauli matrices. In definition (2) the spinor
notations, c c c= ( , )f f f

+
↑

+
↓

+ , are used. The operators cf and ck are related
to each other by Fourier transformation: c N e c= ∑f k

ikf
k

−1/2 .

3. Spin Green's functions and effective action

The derivation of multi-site spin–spin interactions in the arbitrary
order in the coupling constant J is based on integrating the charge
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degrees of freedom using the diagram technique for Matsubara Green's
functions [6]:

T S τ S τ j j x y z− ( ) ′
′( ′) , , ′ = { , , }.τ f

j
f
j

(3)

In this expression the spin operators are written down in the

Heisenberg representation: S τ e S e( ) =f
j τH

f
j τH− , where H is the s–d(f)

exchange Hamiltonian (1), and τ the imaginary time varying within
interval T(0, 1/ ) (T is the temperature). The imaginary time ordering
operator Tτ arranges all operators on the right side of it in the
descending order of the imaginary time τ from left to right. Angle
brackets in (3) denote a thermodynamic average over the grand
canonical ensemble described by the Hamiltonian H .

As is known [7], in the interaction representation:

S τ e S e( ) =f
j τH

f
j τH−0 0, the expression (3) transforms into:

T S τ S τ β− ( ) ′
′( ′) ( ) .τ f

j
f
j

0
S (4)

Here the scattering matrix β( )S is defined as:

⎧⎨⎩
⎫⎬⎭∫β T τH τ( ) = exp − d ( ) ,τ

β

int
0

S
(5)

where in the exponent under the integral the interaction operator (2) is
written in the interaction representation. Lower index “0”, on the right
of the angle brackets in (4) indicates that the thermodynamic averaging
is over the ensemble of non-interacting spin and fermion systems.
Besides, when expanding the thermodynamic average in (4) using
Wick's theorem only connected diagrams should be considered.

The calculation of a Tτ-ordered average of a product of spin S- and
fermion c-operators can be divided into two stages: first, only c-
operators are coupled, and then the Wick's theorem is applied to the
remaining spin operators. Formally this can be written down as
follows:

T S S c c T S S T c c… … = … … .τ l m τ l τ m c S1 1
+

0 1 1
+

0 0 (6)

Internal thermodynamic average on the right side of Eq. (6) with index
“c0” denotes averaging only over an ensemble of non-interacting
fermions. External Tτ-ordered averaging, indicated by the index “S0”,
should be done using the ensemble of non-interacting spin subsystems.
Applying Eq. (6) to the definition of Green's function (4) we can write:

T S τ S τ β− ( ) ′
′( ′) ( ) ,τ f

j
f
j

S S0
S (7)

where the effective scattering matrix β( )SS is defined by the expression:

β β( ) = ( ) .S c0S S (8)

The transformation to the purely spin model is obtained by
coupling of all c-operators according to Wick's theorem in each order
of theS-matrix expansion in powers of the coupling constants J. After
some, omitted here, diagrammatic and combinatorial calculations it
turns out that the result can be presented as a Tτ-ordered exponent:

β T Ξ( ) = exp{− },S τS (9)

where

⎛
⎝⎜

⎞
⎠⎟ ∫∑Ξ Ξ Ξ

n
J x x G x x

G x x S x S x

= , = 1
2

d …d ( − ) × ⋯

× ( − )Sp{ ( )… ( )}.∼ ∼
n

n n

n

n

n n

=1

∞

1
(0)

1 2

(0)
1 1 (10)

The functions G(0) in (10) are fermion propagators arising after
coupling the c-operators due to Wick's theorem, and the integral over

xd j denotes the operation: ∫ τd ∑
β

j f0 j
with x R τ= (

⎯→⎯
, )j f jj

.

The effective action Ξ describes all possible multi-site spin–spin
interactions in the localized spin subsystem in the arbitrary order of the
coupling constant J. The partial action Ξn determines the n-th order
interactions in J and diagrammatically can be represented as a loop
with n lines, corresponding to propagators G(0), and n vertices related

to spin operators S∼ (see Fig. 1). It can be seen that all effective
interactions in Ξ take into account retardation effects.

Note that applied here scheme of integrating over the charge
degrees of freedom in the s–d(f) model in some sense is similar to
the proof of equivalence between diagrammatic expansion for Green's
function of localized f-electrons in the periodic Anderson model and
diagrammatic expansion of the fermion Green's function in the
Hubbard model [8,9].

4. Effective interactions of the 2nd, 3rd and 4th order in J

Let us consider the first s everal terms of the series for Ξ. The first
term with n=1 is zero, because S x S x σSp{ ( )} = ∑ ( )Sp{ }∼

j
j j

1 1 , and

σSp{ } = 0j at any j x y z= , , .
To calculate the operator Ξ2 one should derive the trace
S x S xSp{ ( ) ( )}∼ ∼

1 2 . Using the identity: σ σ δ iε σ= +i j
ij ijl

l, where εijl is the
Levi–Civita antisymmetric tensor we find:

S x S x S x S xSp{ ( ) ( )} = 2(
→

( )
→

( )).∼ ∼
1 2 1 2 (11)

Then the operator Ξ2 takes the form:

∫Ξ x x V x x S x S x= d d ( − )
→

( )
→

( ),2 1 2 2 1 2 1 2 (12)

where the effective interaction between spins is defined via a polariza-
tion loop (see Fig. 1a):

⎛
⎝⎜

⎞
⎠⎟V x x J G x x G x x( − ) =

2
( − ) ( − ).2 1 2

2
(0)

1 2
(0)

2 1
(13)

From Eq. (12) it follows that at f f≠1 2 the second order effective
action Ξ2 describes indirect exchange interaction of two localized spins
through the subsystem of itinerant electrons. However, in contrast to
the usual RKKY interaction here the retardation effects, caused by τ-
dependence of V2, are taken into account. Note also that in the Ξ2 there
is a term with f f=1 2. The Fourier transform of the indirect exchange
interaction (13) has the form:

⎛
⎝⎜

⎞
⎠⎟V k iω J χ k iω( , ) =

2
( , ),m m2

2

0 (14)

where

∑χ k iω
N

f f

iω ε ε
( , ) = 1 −

+ −m
q

q q k

m q q k
0

+

+ (15)

is the Lindhard susceptibility in the Matsubara representation,
ω mπT= 2m with m ∈ , and f ε μ T= (exp{( − )/ } + 1)q q

−1 is the
Fermi–Dirac distribution function. The intensity of the exchange
interaction is largely determined by the properties of the itinerant
subsystem. The well known RKKY-interaction follows from (15) at
ω ≡ 0m .

Calculating the 3rd order effective action Ξ3 we obtain (see also
Fig. 1b):

Fig. 1. The effective action Ξ can be expressed as an infinite series of terms Ξn. Each
term Ξn in the diagrammatic representation corresponds to a single loop of n-th order in
the exchange coupling constant J and describes the effective n-site spin–spin interaction.
The lines with arrows represent bare fermion Green's functions and each vertex, shown
with a bold circle, corresponds to a spin operator S∼.
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∫Ξ x x x V x x x S x S x S x= d d d ( , , ) ×
→

( )·(
→

( ) ×
→

( )),3 1 2 3 3 1 2 3 1 2 3 (16)

where

⎛
⎝⎜

⎞
⎠⎟V x x x i J G x x G x x G x x( , , ) = 2

3 2
( − ) × ( − ) ( − ).3 1 2 3

3
(0)

1 2
(0)

2 3
(0)

3 1
(17)

The formula (16) describes the three-spin interactions in the form of a
mixed product of three spin operators. This type of interaction was first
considered in [10] but without taking into account the retardation
effects.

It is evident that the interaction (16) favors the chiral order in the
magnetic subsystem. In this regard we note that in the paper [11] the
third order corrections to the Hall conductivity due to s–d(f) exchange
interaction were shown to give rise the anomalous Hall effect provided
that non-trivial spin configuration (chirality) is formed in the spin
subsystem. Interestingly the structure of the expression for the Hall
conductivity obtained in [11] is similar to that of (16).

The operator Ξ4, which determines the effective spin–spin interac-
tions in the fourth order in the coupling constant J, after calculating the
trace S x S x S x S xSp{ ( ) ( ) ( ) ( )}∼ ∼ ∼ ∼

1 2 3 4 takes the form (see also Fig. 1c):

∫Ξ x x x x V x x x x S x S x S x S x= d d d d ( , , , ) × (
→

( )
→

( ))·(
→

( )
→

( )),4 1 2 3 4 4 1 2 3 4 1 2 3 4 (18)

where
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× ( − ) − ( − ) ( − ) ( − )

× ( − ) + ( − )
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The terms of the expression (18) with unequal indices of sites fj
( j = 1, …, 4) correspond to the four-spin exchange interactions.
Among them there are, in particular, interactions describing ring
exchange of four spins located, for example, at the square plaquette
vertices. For the first time the ring exchange (without retardation
effects) was obtained from the Hubbard model at half filling in the
fourth order of the perturbation theory in the parameter t U/ , where t is
the tunneling integral, and U is the Coulomb repulsion energy of two
electrons at the same site [12]. The four-spin ring exchange interaction
was involved to explain the magnetic ordering features in the quantum
crystal 3He [13]. In the paper [14] it was argued that ring exchange is
important to describe magnetic properties of cuprate high-temperature
superconductors. Effect of ring exchange interaction on the super-
conductivity in cuprates was investigated in [15].

At pairwise coincident site indices: f f=3 1 and f f=4 2, in the sum
(18) there are terms that are responsible for biquadratic exchange
interaction. These interactions were first used in [16] for explaining the
paramagnetic resonance on Mn ions in the compound MnO. Besides,
the biquadratic exchange interaction is essential in multilayer magnetic
systems [17].

5. Conclusion

The paper presents a method of deriving all possible kinds of
effective indirect interactions between the localized spins due to s–d(f)
exchange coupling of these spins with the subsystem of itinerant
electrons. After integrating over the charge degrees of freedom in the
s–d(f) exchange model an exact representation for an action of a purely
spin model is obtained. Using this action allows to study the spin
subsystem in the s–d(f) model in the framework of effective purely spin

model. The important point of this model is that all effective interac-
tions take into account retardation effects. Although explicit expres-
sions are written only for two-, three- and four-spin interactions, the
formula (10) allows to generate multi-site spin–spin interactions in the
arbitrary order in the s–d(f) exchange coupling constant J.

The validity of the suggested theory is, obviously, restricted by the
smallness of the s–d(f) exchange interaction as compared to the
conduction bandwidth. Otherwise, we are not allowed to be confined
by the study only the lowest orders (in J) of effective interactions but
the entire series (10) should be considered. The need to sum up the
entire series makes the advantages of the proposed approach not so
obvious. Besides, we should keep in mind that in real materials the
wave functions of itinerant and localized electrons are not orthogonal.
Mathematically this is reflected in noncommutativity of the Fermi and
quasi-spin operators, which significantly complicates the application of
the diagram technique [18,19]. As a result, the shown in the article
formulas for the effective action cease to be valid. The last remark,
however, concerns rather model used in the work then the suggested
method.

Within the s–d(f) model, involving orthogonality of the s- and d(f)-
states, in the regime where J is not greater than the conduction
bandwidth, the proposed approach opens up new opportunities for the
study of various magnetic phases in the systems with itinerant
electrons. As was already noted the third order interactions (16) may
lead to the helical magnetic structures and the fourth order interactions
(18) explain particularly the occurrence of ring exchange and biqua-
dratic exchange interactions. Also our theory suggests a relatively
simple way to investigate the influence of retardation effects in the
indirect exchange interactions on the phase diagram of the systems
with itinerant electrons.
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