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A B S T R A C T

It is shown that the Rashba spin–orbit coupling induces the spatially nonuniform spin state in the square-
shaped 1D wire. The electron states of this type are characterized with spin orientation changing according to
the harmonic motion along the square side. The period of the oscillation is determined only by the spin–orbital
coupling and the hopping parameters ratio. The modulation of spin orientation is caused by step-like changing
of Rashba field direction. The obtained results were generalized on the case of polygon-shaped wire.

1. Introduction

The low dimensional systems are of great interest because of their
topological insulator properties [1–4]. Amongst other issues, the edge
states in such systems are characterized by the strong correlation
between the spin direction and the direction of electron propagation. It
leads to the possibility of fermion propagation without scattering on
nonmagnetic impurities.

The points of fermion path non-analyticity, leading to the step-like
changing of the Rashba field orientation, are usually ignored in the
investigation of the Rashba spin–orbit coupling [5] influence on the
properties of low dimensional systems. The properties of edge states
are investigated in the systems infinite in one direction [6,7]. The
possibility to extend the conclusions obtained in such analysis on the
spatially limited systems, which have the points of fermion path
analyticity violation, is a point of discussion. In this connection, it
should be noted that the authors of the paper [8] emphasized the
importance of the investigation of square-shaped systems, but the
detailed research of the influence of corners on the spin-polarized
states have not been provided yet.

It was shown earlier in Ref. [9] that the Rashba spin–orbit coupling
may lead to the spin symmetry violation in the topological insulators.
In this case the quasi-particle state cannot be classified according to
spin projection and the effect of symmetry violation manifests as the
changing of spin orientation with the propagation. Meanwhile, the
authors of Ref. [9] did not take into account the corners and the spin
oscillations which are assumed to be dependent on the wave vector.

Neglecting the presence of corners in the system can be a good
approximation, if the electron mean free path is much less than the
system side length. But in the case of nano-scaled systems this kind of

approach may be incorrect. The objective of this article is to investigate
the influence of the corners on the properties of spin-polarized states
on the example of square-shaped wire.

2. The model Hamiltonian

Let us consider the square-shaped 1D wire (Fig.1) with N sites on
each side placed on the substrate. The Hamiltonian of the system is
given by

∑ ∑

∑

∑

t c c t c c

iα e τ c c

iα e τ c c h c

= − −

− →→

− →→ + . .

n jσ

N

jn σ jnσ
jσ

j σ j N σ

n jσσ

N

j σ σ jn σ jnσ

jσσ
j σ σ j σ j N σ

=1,

−1

+1
+

+1,1
+

, −1

=1, ′

−1

′ +1 ′
+

′
′ ,1 ′

+
+1, −1

(1)

Here the first two components describe the nearest neighbor hopping
with the parameter t > 0, the next two components describe the Rashba
spin–orbit coupling caused by the gradient of electric potential
oriented perpendicular to the plane of the square. The
j = I, II, III, IV numerates the side of the square (in clockwise direc-
tion), n N= 1,…, − 1 numerates the sites along every side, α is a
Rashba spin–orbit coupling constant, τ→ – Pauli matrices, σ = ± 1 – the
spin projection in the z direction, e→j – a unity vector along the Rashba
field (Fig. 1). It is important that this direction is different for each side
of the square: the Rashba field vector lies in the plane of the square and
oriented perpendicular to its sides.

The one-electron eigenstates of (1) are written in the form:
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where |0〉 is a vacuum state. The studied system has the symmetry axis
C4 that is oriented perpendicular to the square plane and crossing its
center, so the wave functions of the one-electron states can be the
eigenstates of the π /2 rotation operator U:
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Taking into account the spinor property U ψ ψ= −4 , the relation
between the coefficients (2) can be described in the form:
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where l = −2, −1, 0, 1 is the orbital number.
The coefficients in the expansion (2) are found from the Shrödinger

equation. According to the above-mentioned symmetry, it is enough to
solve the general equation on the side I and the equations on the right
edge of side I and the left edge of side II. The general equation and its
solution are
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where k0 is the important parameter describing the shift of dispersion
curve along the wave vector axis for the different projections of spin

k α t α= arcsin( / + ).0
2 2 (6)

In general, the wave vector k in the expression (5) may be imaginary
and can provide the existence of edge states on the corners of the
square.

The unknown parameters in the expression (5) are found from the
boundary conditions described by the equations at the edges of the
sides:
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Taking into the account that the coefficients are the solutions of general
equations (5) the expressions (7) can be rewritten in the simple form:
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These equations correspond to the continuity condition for the wave
function in the continual limit. The coefficients uNσ

I and u σ0
II are the

solutions of general equation (5), which do not enter the expansion (2).
The allowed values of wave vector k are determined by three

quantum numbers:
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One can see that for each allowed k with quantum number s =+ 1 exists
the allowed wave vector k− with s = −1. All N8( − 1) values of k are
real, that is why no evanescent states appear in the wire.

The coefficients on the side I of the square take the form:
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where ρ is a real positive value

ρ χ s χ= 1 + sin − sin .2 (11)

Here the value n N= ( + 1)/2c corresponds to the center of the side.

3. The changing of spin orientation along the square side

The mean value of spin vector on the n site of side I for stationary
one-electron state is described by the expression
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where A N= 1/4( − 1) is the probability of the particle to be found on
site n and s→n is a unity vector along the spin direction:
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These expressions describe the rotation of quasi-particle spin around
the Rashba field direction with the frequency equal to 2k0 (6) along the
cone (Fig. 2) with the aperture
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The orientation of spin on each side is not influenced by the
quantum numbers, l and m, and depends only on the quantum number
s which corresponds to the spin projection on the Rashba field
direction. According to (12) the physical meaning of the value χ (9)

Fig. 1. The geometry and sites numeration in the case of wire, folded in the square form.

Fig. 2. The quasi-particle spin rotation with the growing of number n of site along the
side I.
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is a half of the spin rotation angle around the Rashba field direction
while the quasi-particle propagates from the first to the last site on one
side.

It is useful to compare the obtained states with the ones in the
straight wires with various boundary conditions. In the case of N-site
wire with periodic boundary conditions (infinite wire with translation
symmetry in the case of N → ∞) each energy is twofold degenerated
and a pair of states with the same energy has the form:
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One-electron states are a pair of plane waves propagating in opposite
directions and with oppositely orientated spins.

In the case of square-shaped wire, each of the eigenstates with the
same twofold degenerated energy is also a pair of modified plane
waves. The spins of quasi-particles are also opposite while the particles
propagate along the wire in opposite directions. In this respect they are
similar to the eigenstates in the wire with periodic boundary condi-
tions.

The first difference is the essential decrease of the spin projection
onto the Rashba field direction, s0 ≤ | | ≤ 1/ 2z , instead of s| | = 1z for
the infinite wire. The second feature is the changing of spin direction
with the frequency equal to 2k0, which does not depend on neither
quasi-particle velocity nor on square size but depends only on the ratio
between spin–orbital and hopping parameters α t/ .

The solutions in the case of the straight unbound wire of length N
are:
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Each solution is the superposition of two plane waves propagating
in opposite directions with codirectional spins due to the internal
reflection on the edge sites. The eigenstates in the square are also the
superposition of two waves but they propagate in the same direction
and have opposite projection of spins.

4. The regular polygon-shaped wire

One can generalize the above investigated model to the case of
arbitrary numbers of sides Ns. Such a model has a symmetry axes CNs

and a polygon is invariant to the rotation on angle ϕ π N= 2 / s. Using the
above described technique we obtained the generalization of the
expression for allowed wave vectors (9):
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The coefficients in the expansion (2) take the form
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The changing of quasi-particle spin orientation is described by
harmonic motion as in the case of square-shaped wire:
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It is useful to investigate the model in the case of N → ∞s , N=2,
corresponding to the ring-shaped wire. The solutions in this case take
the form:
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where j N= 1,…, s numerates all sites of the ring. One should use the
local axes with the z′-axis orientated in the Rashba field direction to
make the expression (19) more clear:
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It should be expected that the solutions (20) coincide with the ones in
the case of straight wire with periodical boundary conditions (14) with
the additional term in kl due to the spinor rotation. This result appears
because there is no step-like changing of the Rashba field orientation in
this limit.

Another limit is the case Ns=2 corresponding to the flattened ring:
two lines with two intersection points. While this limit is unphysical it
clarifies that the obtained results are the consequence of the presence
of corners in the system but not of the used method. The solutions in
this limit have the form:
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where the quantum number l is included in m.
The solutions for the straight wire with periodical boundary

conditions also can be classified as the eigenstate of rotation operator
C2:
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While the expressions (21) and (22) are similar they have a significant
difference. The oscillation frequency in the case of system without
corners depends on the wave vector km, and, consequently, on the
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quasi-particle energy. In contrast to this, the oscillation frequency in
the case of system with corners depends only on the ratio between
spin–orbital coupling and hopping parameters and is the same for all
one-particle solutions.

5. Conclusions

It was shown in the article that in the case of system with non-
analyticity points of fermion paths the Rashba spin–orbit coupling
induces one-electron states with spatially nonuniform spin orientation.
The Shrödinger equation was solved and exact wave functions were
obtained in the case of square-shaped wire in the nearest neighbor
approximation. It was found that in the wire under investigation the
spin oscillations appear with the frequency depending on the ratio
between the spin–orbit coupling and hopping parameters and not
depending on wire length and particle energy, in contrast to the case of
the straight wire with periodical boundary conditions. The presence of
the corners in such a system provides the dependence of spin
projection on the oscillation frequency and square side length. The
extension of the model to the case of regular polygon-shaped wire has
been carried out.
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