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A B S T R A C T

A method for determining magnetic anisotropy parameters of a thin single-crystal film on vicinal (111)
substrate as well as substrate miscut angles from angular dependence of ferromagnetic resonance field has been
proposed. The method is based on the following: (i) a new approach for the solution of the system of nonlinear
equations for equilibrium and resonance conditions; (ii) a new expression of the objective function for the fitting
problem. The study of the iron silicide films grown on vicinal Si(111) substrates with different miscut angles
confirmed the efficiency of the method. The proposed method can be easily generalized to determine parameters
of single-crystal films grown on substrates with an arbitrary cut.

1. Introduction

Epitaxial ferromagnetic films and various multilayer structures
grown on single-crystal substrates are widely studied because of
prospects of their application in spintronic devices [1,2]. Particular
attention has recently been focused on the study of magnetic films
grown on the vicinal cuts of Si(111) single-crystal substrates. For these
substrates, methods of creating stepwise surfaces providing a high
accuracy of the step width and step height are well developed [3,4].
This offers the possibility to control the magnetic properties of the films
in a wide range by varying the miscut angle of the vicinal Si(111)
surface in a narrow range [5,6]. In this context, methods for precise
determining magnetic anisotropy parameters of the thin films [7]
assume greater importance, among which ferromagnetic resonance
(FMR) is a convenient and powerful technique [8].

Recently, we have pointed to the high sensitivity of the FMR
technique to small miscut angles of a vicinal (111) surface in single-
crystal thin films [9]. The possibility of azimuthal and polar miscut
angles determination from FMR field angular dependences was
demonstrated. The aim of this work is to describe in more detail our
developed method for determining magnetic anisotropy parameters of
a thin film and substrate miscut angles as well as the new approaches
realized in it.

2. Theoretical background

Let us consider a thin film in an external in-plane magnetic field H.
The equilibrium direction of the magnetization M and the ferromag-
netic resonance condition for a thin-film sample can be obtained from
the free energy density expression of the system

F θ ϕ M H ϕ ϕ θ F θ ϕ( , ) = − cos( − )sin + ( , ),s H
a (1)

where the first term of Eq. (1) is the Zeeman energy contribution, and
the second term is the magnetic anisotropy energy contribution. In the
coordinate system xyz where the z axis coincides with the film normal,
θ denotes the polar angle between the magnetization and the z axis,
while φ and φH correspond to the azimuthal angles of M and H
respectively, measured with respect to the x axis. Ms is the saturation
magnetization. For a single-crystal thin ferromagnetic film deposited
on a vicinal (111) surface with a small miscut angle δ (a model of the
film is shown in Fig. 1), the density of the magnetic anisotropy energy
can be written as [9]
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Here, the first term describes the energy contribution from the
demagnetizing field of the film. The second term describes the energy
of the uniaxial perpendicular anisotropy with the constant K⊥. This
magnetic anisotropy is associated with the symmetry breaking at the
film surface and at the interface between the film and the substrate [7].
The following two terms of Eq. (2) describe the energies of the
unidirectional (with constant K1) and the uniaxial (with constant K2)
magnetic anisotropies, which fieldsHk1 andHk2 lie in plane of the film
and are directed at angles φ1 and φ2 respectively (Fig. 1b). The
remaining terms of the expression are related to the magnetocrystalline
cubic anisotropy with the constant K4 and the orientation φ4 of the
[110]′ crystallographic direction (see Fig. 1).

In low-dimensional systems such as thin films, a shape anisotropy
energy is usually the dominant term in the total magnetic anisotropy
energy. The shape anisotropy is the main reason of in-plane orientation
of the magnetization in the sample. The reorientation of the sponta-
neous magnetization from the film plane to the normal because of the
surface anisotropy is possible only for ultrathin films with thicknesses
of a few atomic layers [10]. Therefore, when the film is magnetized by
the in-plane external magnetic field, the equilibrium angle θ equals π/
2.

Using the Smith and Suhl formula [11,12], the ferromagnetic
resonance equation and equilibrium condition can be written as follows
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where f0 =ω0/2π is the microwave pump frequency, and γ is the
gyromagnetic ratio. The partial derivatives of Fϕϕ

a , Fθθ
a , Fθϕ

a , and Fϕ
a have

to be taken at the equilibrium position of the magnetization vector, that
is, for angles θ=π/2 and φ=φM, for which the total free energy density
F has its minimum value.

In practice, methods for determination of model parameters by
means of FMR are based on one or other numerical procedure that
allows to approximate the experimental angular dependence H ϕ*( )R H by
the theoretical curve HR(φH), which is calculated from the nonlinear
Eqs. (3) and (4). The practical realization of such a procedure faces two
problems that influence both the accuracy and the reliability of the
obtained results.

The first problem is directly related to the realization of an
algorithm for simultaneous solution of the nonlinear equations for
equilibrium and resonance conditions. When modeling the resonance
field prior knowledge of the external field is required to calculate the
equilibrium direction of M. The solution of this problem with a large
number of unknown parameters for the considered here model leads
not only to a long calculation time but also to an emergence of errors
that are difficult to control. We suggest a quite simple solution of this
problem, which can be used in all cases when a magnetization vector
and an external magnetic field lie in the same plane. Let us first rewrite
the system of the nonlinear Eqs. (3)–(4) as
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Fig. 1. The model and the orientation scheme of the crystallographic plane (111) of the
single-crystal film with respect to its surface (a). Notations used in the phenomenological
model of the thin film (top view) (b).
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Fig. 2. Dependences of the resonance filed HR and FMR linewidth ΔH on the sweeping
magnetic field direction φH: (a) sample 1, (b) sample 2, (c) sample 3. Symbols
correspond to the experimental measurements. Solid lines are the theoretical calculations
for the model of a film on the vicinal surface with δ‡0, while dashed lines show the
theoretical results for the case of singular surface (δ=0°).
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If we transform these expressions to the complex representation
and denote Z(φM) = f(φM) + ig(φM) and Z*(φM) = f(φM) – ig(φM),
we obtain
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Alternatively, in exponential form of the complex function
Z ϕ Z ϕ e( ) = ( )M M

i Z ϕarg ( )M

ϕ ϕ Z ϕ H Z ϕ= − arg ( ), = ( ) .H M M R M (7)

Therefore, we obtain two independent equations. The first equation
enable us to determine fast and accurate all equilibrium directions of
the magnetization φM by using a simple iteration algorithm. The
second equation allow us to calculate all values of the resonance fields.

The second problem is related to the choice of an objective function
form fobj for the realization of an algorithm that minimizes deviation
between experimental and theoretical curves. The usage of the com-
monly accepted expression fobj =[H ϕ*( )R H -HR(φH)]2 does not always
enable to determine the optimal model parameters, and the final result
can depend significantly on the choice of the initial values. For
justification of the choice of our suggested objective function form let
us write an approximate expression f(φM) from (5). Taking into
account the following notions
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where M M K πM= − /2eff s s⊥ is an effective saturation magnetization,
f(φM) in the linear approximation with respect to the small parameters
ε, η, and λ will be
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Several key points can be concluded from the analysis of the last

expression. First, the dependence f(φM)—in contrast to the angular
dependence of the resonance field HR(φH) = f(φM)/cos(φM – φH)—
has a simple form and contains only several main terms of a Fourier
expansion versus the equilibrium magnetization angle φM. From the
above reasoning, we propose the following form of the objective
function to solve fitting problem f H ϕ ϕ f ϕ= [ * cos( − ) − ( )]obj R M H M

2 .
This choice, as will be demonstrated in Section 3, enable us to
determine effectively parameters of the theoretical model, including
cases when angular dependences H ϕ*( )R H with several resonance fields
values for certain angles are obtained. Second, the Eq. (9) is convenient
to use for evaluation of the initial values of the model parameters.
Third, the Eq. (9) enables six equivalent directions of the angle
ϕ ϕ nπ= ′ ± /34 4 (where n is integer) and, therefore, six equivalent
azimuthal miscut angles α=φ4 +ξ. This means that we cannot deter-
mine α unambiguously from the analysis of the resonance field
dependence. However, the direction of the azimuthal miscut angle
can be chosen based on general physical considerations. For example,
in Ref. [9] it was demonstrated that this could be done by an analysis of
the direction φ2 of the uniaxial magnetic anisotropy formed in the film.

3. Experiment and discussion

For testing of our proposed method, we have studied three samples
of epitaxial iron silicide thin films. The samples were prepared by
simultaneous thermal evaporation of iron and silicon from two
crucibles in ultra-high vacuum (1.3×10−8 Pa) and subsequent deposi-
tion of atoms on the boron-doped atomically clean vicinal Si(111)
substrate (see Ref. [13] for details). The films were grown on vicinal
Si(111) surfaces with the following nominal miscut angles: 0.1° for the
first sample, 0.6° for the second sample, and 4° for the third sample.
Magnetic properties of the produced samples were studied by the
automated scanning spectrometer of ferromagnetic resonance [14,15]
at the pump frequency f0 =3.329 GHz. For each sample, FMR angular
dependences were measured on two local areas (~0.8 mm2) with a
spacing of 4 mm.

Fig. 2 shows angular dependences of the resonance fieldHR(circles)
and FMR linewidth ΔH (triangles) measured on one local area of each
sample. In this figure, theoretical angular dependences are also shown
(solid lines), with model parameters obtained from the experimental
dependences H ϕ*( )R H by our developed method. Here, a good agree-
ment between theory and experiment is clearly seen. To illustrate the
significance of the substrate miscut influence on the resonance field
angular dependences, in Fig. 2a and b we additionally plotted
theoretical dependences (dashed lines) calculated for a model of a film
on the singular (111) surface with δ=0° and, as in the previous cases,
for optimal parameters of the model. These results demonstrate that
even such small misorientation as δ≈0.1° and δ≈0.6° of the samples 1
and 2 surfaces from the singular (111) surface leads to the significant

Table 1
Optimal parameters of the thin film model for the three iron silicide samples. These parameters are obtained from the FMR field angular dependences by the suggested method.

Meff (G) Hk1=K1/Meff (Oe) φ1 (deg) Hk2=2K2/Meff (Oe) φ2 (deg) Hk4=2K4/Meff (Oe) φ4 ( ± nπ/3, deg) α=φ4+ξ ( ± nπ/3, deg) δ (deg)

sample 1
1 1 590.7 0.04 −39.6 1.21 156.3 297.35 30.7 48.4 0.097
2 1 583.1 0.04 40.0 1.11 157.0 296.95 31.0 48.2 0.098

1 586.9 0.04 0.2 1.16 156.6 297.15 30.9 48.3 0.097

sample 2
1 1 697.8 0.02 250.6 1.01 44.5 352.09 31.8 28.9 0.62
2 1 694.9 0.02 376.8 1.51 36.2 343.74 31.9 29.3 0.64

1 696.3 0.02 313.7 1.26 40.4 347.91 31.8 29.1 0.63

sample 3
1 1 490.2 0.28 54.0 31.86 93.7 498.76 30.7 27.6 3.93
2 1 491.5 0.14 229.0 28.70 95.6 498.53 29.7 23.1 3.77

1 490.9 0.21 141.5 30.28 94.6 498.64 30.2 25.4 3.85
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modification of the resonance curves behavior.
The calculated parameters of the measured samples are presented

in Table 1. The parameters of different local areas (1 and 2 in Table 1)
within each sample are in good accordance, whereas some discrepan-
cies can be seen between averaged parameters of the samples (shown
as bold font in Table 1). This might be related to a slight change in the
stoichiometric composition of the investigated films. However, the
obtained values of the polar miscut angle δ of the vicinal Si(111)
surface are in reasonably good agreement with the nominal values.

4. Conclusion

In conclusion, we would like to emphasize that the proposed
method can be easily generalized to determine parameters of single-
crystal films grown on substrates with an arbitrary cut. Particularly, in
our recent work [16] we have successfully adapted this method for the
accurate determination of parameters of an in-plane magnetic aniso-
tropy with an arbitrary number of expansion terms.
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