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A B S T R A C T

Using the diagram technique for the Hubbard operators an integral equation that determines the order
parameter of the superconducting phase pΔ( ) was obtained in the framework of t–J–V and t–J*–V models on
triangular lattice. It is shown that there are two scenarios of formation of superconducting phase with gapless
spectrum at the critical concentration of carriers xc. The effect of three-center terms on implementation of this
phase was also considered.

1. Introduction

Layered materials with a triangular lattice (e.g., sodium cobaltite
Na CoOx 2) constantly attract the attention of researchers. These materi-
als are of interest because of their non-trivial structure of magnetic
ordering in the case of the antiferromagnetic exchange coupling
between the neighboring spins. This feature is related to the frustrated
nature of the exchange Hamiltonian for a triangular lattice, and, as a
consequence, the induction of strong quantum fluctuations.

The discovery of superconductivity with T = 5 Kc in the water
intercalated Na CoOx 2 near x=0.3 [1] increased significantly the flow
of research of the properties of the superconducting phase, as well as
the study of the nature of Cooper instability in 2D triangular lattice
systems. Particular attention was paid to the symmetry of the super-
conducting order parameter (SOP) (see reviews [2–4]). Since the
symmetry of the triangular lattice allows the implementation of the
chiral d id+x y xy−2 2 SOP, it becomes an important to answer the
question on the presence (or the absence) of a gap in the spectrum of
the Fermi excitations of such a superconducting phase.

It is known that the single-orbital Hubbard model [5] can be used
as a minimal model of the electronic structure of the CoO2 plane. In the
regime U t≫ | | (U is the Hubbard repulsion of electrons at one site, t is
the hopping integral) it is advisable to pass to the effective
Hamiltonian. As efficient models are the t J– [6] and t J– * models [7]
obtained with accuracy up to terms of the second order in the
parameter t U| |/ . The superconducting phase with a complex order
parameter within the t–J model on a triangular lattice was considered
in [8–10]. However, in these works the interaction between fermions

was taken into account only within the first coordination sphere. In this
case, the nodal point of SOP is located only in the center of the
Brillouin zone and at its borders, and the spectrum is gapful at all levels
of doping. The paper [11] has been shown that at the accounting of the
interactions on the next-nearest sites, the nodal point of the complex
order parameter are within the Brillouin zone and at a certain
concentration (when the Fermi surface the normal state intersects
the nodal points of SOP) spectrum of the superconducting phase
becomes gapless, and is characterized by six Dirac's points. In the
work [12] it was considered the concentration dependence of the
position of the nodal points of the SOP and conditions for the
implementation of the superconducting phase with gapless spectrum
were found in the framework of t–J–V model with taking into account
the interactions between the electrons in the two coordination spheres.
In this paper we study the effect of the three-center terms on the
conditions of implementation of such a phase.

2. Formulation of models

Let us consider an ensemble of the Hubbard fermions in the
framework of t–J–V and t–J*–V models. The Hamiltonian of the t–
J* model differs from the Hamiltonian of t–J model in that it consists
of the three-center term H(3) (6). In the representation of the Hubbard
operators [13,14], the Hamiltonians take the form

H H H H= + + ,t J T J– 0 (1)

H H H H H= + + + ,t J T J– * 0 (3) (2)
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H0 describes the one-site energy of electrons, HT and HJ are kinetic
and exchange terms, respectively, H(3) describes the correlated hop-
pings. When taking into account the Coulomb repulsion between the
electrons located on the neighboring sites in the Hamiltonians (1) and
(2), the term HV

∑H V n n n n= 1
2

( − )·( − )V
fδ

f f f δ f δ+ +
(7)

occurs and we get Hamiltonians of t–J–V and t–J*–V models. The
Hamiltonians are written in terms of the Hubbard operators for the
upper Hubbard subband. Here ε is the energy of one-electron state, μ is
the chemical potential of the ensemble. The operator describing the
number of electrons at the site f is given by the expression
n X X X= + + 2f f f f

↑↑ ↓↓ 22.
The diagram technique for the Hubbard operators [14] is used to

describe the superconducting phase. The equation for SOP in frame-
work of the t–J–V model was obtained in [12]. In the mean-field
approximation, the components of anomalous mass operator are
determined by three graphs shown in Fig. 1. Here the thin lines
correspond to the bare Green's functions and thick lines show the
generalized ones. Indices near these lines determine the root vectors
[13]. The wavy lines in two upper diagrams correspond to the exchange
interaction, and the dashed line in lower diagram corresponds to the
Coulomb repulsion of electrons. Diagrams arising from the accounting
of kinetic term do not contribute to the SOP with d + id type of
symmetry, and therefore are not presented here. Self-consistent
equation for the order parameter pΔ( ) obtained within t–J–V model
has the form

∑p
N

J J V q
E T
E

Δ( ) = 1 ( + − )Δ( )
tanh( /2 )
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p q p q p q

q

q
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where E ξ q= + |Δ( )|q q
2 2 is the spectrum of the Hubbard fermions in

superconducting phase, ξ ε U t μ= + + −p
x

p
1 +

2 is the spectrum in
normal phase measured from the chemical potential (contributions
from the exchange and interstitial Coulomb interaction are dispersion-
less and are not affected to the Fermi contour, and therefore they are
not shown here), x n= − 1 is the concentration of one-site states with
two electrons.

Account for correlated hoppings (6) leads to an additional term in
the expression for the spectrum in the normal phase
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Additionally, several new diagrams for the mass operator occur (Fig. 2).
As a result, the equation for the order parameter with the d id+ -type
symmetry in the framework of the t J V– *– model takes the form
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where E ξ q= + |Δ( )|∼∼
q q

2 2 . The comparison (8) and (10) shows that
term H3 leads to a renormalization of the pairing interaction due to the
exchange processes. Near the bottom of band, the renormalization
reduces pairing in two times and decreases it to zero with an increasing
carrier concentration.

Solution of Eqs. (8) and (10) for the superconducting gap with
d id+ symmetry can be written in the form of the superposition

Δ q Δ φ q Δ φ q( ) = 2 ( ) + 2 ( ),d d d d d1
0

1 2
0

2 (11)

where φ q( )d1 and φ q( )d2 are the complex basis functions corresponding
to the first and second coordination spheres of the lattice. The
expressions for the basic functions and the Fourier transforms of the
interaction integrals are given in works [12,11].

Substitution of Eq. (11) into (8) or (10) leads to a system of two
algebraic equations for the amplitudes Δd1

0 and Δd2
0
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Functions Aij are defined as
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where L E T E= tanh( /2 )/q q q and α = 2 for the t–J–V model, and

L E T E= tanh( /2 )/∼ ∼
q q q, α x= 1 − for the t–J*–V model.
The system (12) describes the temperature dependence of Δ q( )d ,

and ordering temperature Tc determines by the existence of non-trivial
solutions of the equation

A A A A(1 − )(1 − ) − = 011 22 12 21 (14)

when Δ q( ) = 0d . The solutions of this equation for both models showFig. 1. One-loop diagrams for the mass operator for the t–J–V model.

Fig. 2. One-loop diagrams for the mass operator resulting from H(3) term.
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that the renormalization of the exchange interaction caused by the
inclusion of the three-center terms, leading to a decrease in both the
critical temperature and the implementation of the superconducting
phase. The inclusion of the Coulomb correlations also leads to
suppression of the pairing interaction.

3. Influence of Coulomb correlations on the evolution of
nodal points

The importance of the Coulomb correlations is related, in particu-
lar, to the additional possibility of the formation of a gapless spectrum
phase with an increase in the number of carriers. It is known that the
formation of a gapless spectrum superconducting phase with a complex
order parameter occurs when the Fermi surface intersects nodal point
of Δ q( )d . The presence of the real and imaginary parts in the Δ q( )d

complicates this condition. In Ref. [11] it was shown that if there is
only one basic function corresponding to the second coordination
sphere, then zeros of Δ q( )d are located inside the Brillouin zone.

When taking into account the interactions of the two coordination
spheres the situation may change qualitatively, because the position of
zeros of the two basic functions depend on the ratio of the amplitudes
of Δd1

0 and Δd2
0 of the complex parameter

Δ q Δ φ q Δ φ q( ) = 2 ( ) + 2 ( )d d d d d1
0

1 2
0

2 (see. Fig. 3).
t–J–V model: Let us consider first the conditions of the formation

of the phase with gapless spectrum in the framework of the t J V– –
model. Fig. 4 shows the location of the nodal points of Δ q( )d in the
Brillouin zone and the Fermi contour for various system parameters.
Fig. 4a corresponds to the case when the intersite Coulomb interaction
is not taken into account. With an increase x the ratio Δ Δ/d d1

0
2

0 is
changed. This causes a shift of the nodal points to the center of the
Brillouin zone stronger than a shift of the Fermi contour. As a result,
changes in the concentration of fermions in this mode do not generate
phase with gapless spectrum. This is one of the essential features
associated with the superposition nature of the chiral order parameter.

When taking into account the Coulomb correlations the situation
can be changed dramatically. In particular, there is a range of
parameters (V J∼ 1), for which the mutual dynamics of the nodal points
and the Fermi contour changes qualitatively (Fig. 4b). In this case, the
nodal points move relatively slow and the Fermi contour manages
“catch up” nodal point. At the critical concentration, the system of
nodal points of Δ q( )d located on the Fermi contour.

Thus, the Coulomb correlations between the Hubbard fermions
from the first coordination sphere not only suppress tendency to
pairing, but also can significantly affect the dynamics of the nodal
points by modifying the partial amplitudes Δd1

0 and Δd2
0 , and initiate the

superconducting phase with the gapless spectrum.

In the case V J≫ 1, the system of nodal points becomes close to the
system defined by only the second basic function. In this case, the
concentration behavior of the system corresponds to the scenario
described in [11], and the increase in the Coulomb interaction results
only in reducing both the transition temperature and the implementa-
tion of the superconducting phase, but does not affect the position of
the nodal points. In Fig. 4c the model parameters are chosen in such a
way that for large values of V superconducting phase exists at the
critical concentration.

t–J*–V model: As we mentioned in Section 2, an account for the
three-center terms results in the renormalization of the pairing
interaction. This renormalization leads to a decrease in the critical
temperature and the implementation of the superconducting phase. In
the absence of the Coulomb correlations (Fig. 5a), the behavior of the
system does not differ qualitatively from the behavior of the t J– model.
But if the intersite repulsion of electrons is taking into account, the
transition in the gapless spectrum phase (Fig. 5b) occurs at V J∼ 1

2 1. In
contrast to the t J V– – model, in the framework of the t J V– *– model the
second scenario of formation of phase with gapless spectrum (when
V J≫ 1) is not implemented, because the superconductivity is destroyed
at the concentrations less than the critical.

4. Conclusion

The main results of the paper are as follows:
(1) Using the diagram technique for the Hubbard operators we

obtain an integral equation for the SOP within the t J V– – and t J V– *–
models on the triangular lattice.

(2) It is shown that for system of the Hubbard fermions interacting
at the nearest and next-nearest sites, the formation of the super-
conducting phase with gapless spectrum can be implemented in two
qualitatively different scenarios.

Fig. 3. The dependence of the position of nodal points of SOP with d id+ symmetry type
at different ratios between the amplitudes Δd1

0 and Δd2
0 with coincide (a) and opposite (b)

signs.

Fig. 4. Nodal points of Δ q( )d and the Fermi contour for the t J V– – model calculated for

the model parameters J = 0.31 ; J = 0.22 and (a) t t= = 02 3 , V=0, (b) t t= = 02 3 , V=0.3, (c)

t = 0.22 , t = 0.153 , V = 10 (all parameters in the units of t| |1 ).
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According to the first scenario [11], which can be implemented in
case of the strong Coulomb correlations,V J≫ 1, the system of the nodal
points of SOP is determined almost by the second basic function φ q( )d2
and the position of the zeros in the Brillouin zone is practically
unchanged with an increase in concentration.

The second scenario is implemented when the value of V is
comparable to the J. In this case, the formation of zeros of SOP
involved both basis functions, and the strong dynamics of the nodal
points takes place under changes of concentration.

(3) It is shown that the second scenario of the formation of a phase

with gapless spectrum within the t–J–V model is implemented at
V J∼ 1, while for t–J*–V model it is implemented at V J∼ 1

2 1 because of
renormalization of the exchange interaction by three-center terms.

(4) We found the parameters of the model, in which the formation
of a gapless spectrum phase within t–J–V model takes place in the first
scenario. But within t–J*–V model this scenario is not implemented
due to the fact that the superconductivity is destroyed at concentrations
less than critical ones.
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